EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

to the

CERN/SPSC 84-9 SPSC/P196/S

Mr. Alfred GUNTHER/DOC

THE PRODUCTION OF STRANGE BARYONS AND ANTIBARYONS WITH RELATIVISTIC LIGHT ION COLLISIONS AT THE CERN SPS

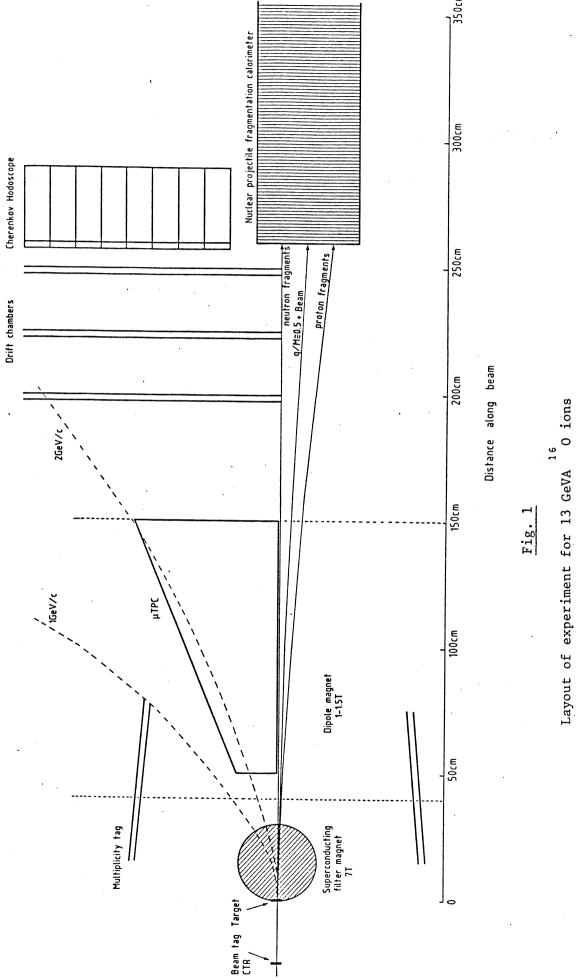
C.R. Gruhn^{1(*)}, M. Heiden¹, G. Løvhøiden², G.C. Morrison³, H.G. Pugh¹, W.D.M. Rae⁴, T.J.M. Symons¹ and T.F. Thorsteinsen²

- 1 Lawrence Berkeley Laboratory, Berkeley, CA, USA
- 2 University of Bergen, Bergen, Norway
- э University of Birmingham, Birmingham, UK
- 4 University of Oxford, Oxford, UK
- (*) Spokesman

SUMMARY

We have proposed to measure the inclusive production cross sections of strange baryons and antibaryons with light ion collisions with nuclear targets (A = 9-238) over the energy range of 13 GeVA to 200 GeVA at the CERN SPS.

We expect to detect per day the following approximate event numbers for $^{16}O + U \rightarrow B + X$ at 40 GeVA $[K_S^O(2200) \ p(4.2 \times 10^5) \ \Lambda(4.3 \times 10^5) \ \overline{\Lambda}(9000) \ \Sigma^+(1000) \ \Sigma^-(8.6 \times 10^4) \ \Xi^-(540) \ \Omega^-(26)]$. These rates are the rates we would expect if there is no enhancement (no quark-gluon plasma). It is clear that the rates are such that the predicted enhancement factor would be observed even if the quark-gluon plasma is created only for impact parameters of less than 1 fm.


A high-field superconducting magnet would be used to disperse the high multiplicity of mesons from the region of our measurement. A micro TPC would be used to recognize primary decay kinks and secondary decay V° 's.

CERN LIBRARIES, GENEVA

CM-P00045082

2104C/CG/ef

