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Abstract

The transverse momentum distribution of low-mass Drell-Yan pairs is cal-

culated in QCD perturbation theory with all-order resummation. We argue

that at LHC energies the results should be reliable for the entire transverse

momentum range. We demonstrate that the transverse momentum distribu-

tion of low-mass Drell-Yan pairs is an advantageous source of constraints on

the gluon distribution and its nuclear dependence.

I. INTRODUCTION

Dilepton production in hadronic collisions is an excellent laboratory for the investiga-

tions of strong interaction dynamics. This channel provides an opportunity for discovery

of quarkonium states and a clean process for the study of parton distribution functions

(PDF). In the Drell-Yan process, the massive lepton-pair is produced via the decay of an

intermediate Z0 boson or a virtual photon γ∗ with mass M . When M ∼MZ , the high mass

dilepton production in heavy ion collisions at LHC energies is dominated by the Z0 channel

and is an excellent hard probe of QCD dynamics [1]. In this letter, we demonstrate that the

transverse momentum distribution of low-mass (ΛQCD � M �MZ) dilepton production at

LHC energies is a reliable probe of both hard and semihard physics at LHC energies and
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is an advantageous source of constraints on gluon distribution in the proton and in nuclei.

In addition, it provides an important contribution to dilepton spectra at the LHC, which is

the appropriate channel to study J/ψ, heavy quarks etc.

II. FULL PT SPECTRUM OF LOW-MASS DRELL-YAN PAIRS

In Drell-Yan production, if both, the physically measured dilepton mass M and the

transverse momentum pT are large, the cross section in a collision between hadrons (or

nuclei) A and B, A(PA) +B(PB) → γ∗(→ ll̄) +X, can be factorized systematically in QCD

perturbation theory and expressed as [2]

dσAB→ll̄(M)X

dM2 dy dp2
T

=
(
αem

3πM2

) ∑
a,b

∫
dx1φa/A(x1, µ)

∫
dx2φb/B(x2, µ)

dσ̂ab→γ∗X

dp2
T dy

(x1, x2,M, pT , y;µ).

(1)

The sum
∑

a,b runs over all parton flavors; φa/A and φb/B are normal parton distributions; and

µ represents the renormalization and factorization scales. The dσ̂ab→γ∗X/dp
2
Tdy in Eq. (1) is

the short-distance probability for partons of flavors a and b to produce a virtual photon of

invariant mass M and is calculable perturbatively in terms of a power series in αs(µ). The

scale µ is of the order of the energy exchange in the reaction, µ ∼
√
M2 + p2

T .

The transverse momentum (pT ) distribution of the dileptons can be divided into three

regions: low pT (� M), intermediate pT (∼ M), and high pT (� M) regions. When both

the physically measured M and pT are large and are of the same order, the short-distance

partonic part dσ̂ab→γ∗X/dp
2
Tdy in Eq. (1) can be calculated reliably in conventional fixed-

order QCD perturbation theory in terms of a power series in αs(µ). However, when pT

is very different from M , the calculation of Drell-Yan production in both low and high

pT regions becomes a two-scale problem in perturbative QCD, and the calculated partonic

parts include potentially large logarithmic terms proportional to a power of ln(M/pT ). As

a result, the higher order corrections in powers of αs are not necessary small. The ratio

σNLO/σLO [∝ αs× (large logarithms)] can be of order 1, and convergence of the conventional
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perturbative expansion in powers of αs is possibly impaired.

In the low pT region, there are two powers of ln(M2/p2
T ) for each additional power of

αs, and the Drell-Yan pT distribution calculated in fixed-order QCD perturbation theory is

known not to be reliable. Only after all-order resummation of the large αn
s ln2n+1(M2/p2

T )

do predictions for the pT distributions become consistent with data [3,4]. We demonstrate

in Sec. III that low-mass Drell-Yan production at pT as low as ΛQCD at LHC energies can

be calculated reliably in perturbative QCD with all order resummation.

When pT ≥ M/2, the lowest-order virtual photon “Compton” subprocess: g + q →
γ∗ + q dominates the pT distribution, and the high-order contributions including all-order

resummation of αn
s lnn−1(M2/p2

T ) preserve the fact that the pT distributions of low-mass

Drell-Yan pairs are dominated by gluon initiated partonic subprocesses [5]. We show in

Sec. IV that the pT distribution of low-mass Drell-Yan pairs can be a good probe of the

gluon distribution and its nuclear dependence. We give our conclusions in Sec. V.

III. LOW TRANSVERSE MOMENTUM REGION

Resummation of large logarithmic terms at low pT can be carried out in either pT or

impact parameter (b̃) space, which is the Fourier conjugate of pT space. All else being

equal, the b̃ space approach has the advantage that transverse momentum conservation is

explicit. Using renormalization group techniques, Collins, Soper, and Sterman (CSS) [6]

devised a b̃ space resummation formalism that resums all logarithmic terms as singular as

(1/p2
T ) lnm(M2/p2

T ) when pT → 0. This formalism has been used widely for computations

of the transverse momentum distributions of vector bosons in hadron reactions [7].

At low-mass M , Drell-Yan transverse momentum distributions calculated in the CSS b̃-

space resummation formalism strongly depend on the non-perturbative parameters at fixed

target energies. However, it was pointed out recently that the predictive power of perturba-

tive QCD (pQCD) resummation improves with total center-of-mass energy (
√
s), and when

the energy is high enough, pQCD should have good predictive power even for low-mass
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Drell-Yan production [3]. The LHC will provide us a chance to study low-mass Drell-Yan

production at unprecedented energies.

In the CSS resummation formalism, the differential cross section for Drell-Yan production

in Eq. (1) is reorganized as the sum

dσAB→ll̄(M)X

dM2 dy dp2
T

=
dσ

(resum)

AB→ll̄(M)X

dM2 dy dp2
T

+
dσ

(Y)

AB→ll̄(M)X

dM2 dy dp2
T

. (2)

The all-orders resummed term is a Fourier transform from the b-space,

dσ
(resum)

AB→ll̄(M)X

dM2 dy dp2
T

=
1

(2π)2

∫
d2b ei~pT ·~bW (b,M, xA, xB) =

1

2π

∫
db J0(pT b) bW (b,M, xA, xB) , (3)

where J0 is a Bessel function, xA = ey M/
√
s and xB = e−y M/

√
s, with rapidity y and

collision energy
√
s. In Eq. (2), the σ(resum) term dominates the pT distributions when

pT � M , and the σ(Y ) term gives corrections that are negligible for small pT , but become

important when pT ∼M .

The function W (b,M, xA, xB) resums to all orders in QCD perturbation theory the sin-

gular terms that would otherwise behave as δ2(pT ) and (1/p2
T ) lnm(M2/p2

T ) in transverse

momentum space, for all m ≥ 0, and can be calculated perturbatively for small b ,

W (b,M, xA, xB) = e−S(b,M)W (b, c/b, xA, xB) ≡W pert(b,M, xA, xB) , (4)

where all large logarithms from ln(c2/b2) to ln(M2) have been completely resummed into the

exponential factor S(b,M) =
∫ M2

c2/b2 dµ
2/µ2 [ln(M2/µ2)A(αs(µ)) + B(αs(µ))] with functions

A and B given in Ref. [6], and c = 2e−γE with Euler’s constant γE ≈ 0.577. The function

W (b, c/b, xA, xB) in Eq. (4) is given in terms of modified parton distributions from hadron

A and B [6]. With only one large momentum scale 1/b, W (b, c/b, xA, xB) is perturbatively

calculable. Since the perturbatively resummed W pert(b,M, xA, xB) in Eq. (4) is only reliable

for the small b region, an extrapolation to the nonperturbative large b region is necessary in

order to complete the Fourier transform in Eq. (3).

In the original CSS formalism, a variable b∗ and a nonperturbative function

FNP
CSS(b,M, xA, xB) were introduced to extrapolate the perturbatively calculated W pert into

the large b region such that the full b-space distribution was of the form
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WCSS(b,M, xA, xB) ≡W pert(b∗,M, xA, xB)FNP
CSS(b,M, xA, xB) , (5)

where b∗ = b/
√

1 + (b/bmax)2, with bmax = 0.5 GeV−1. This construction ensures that

b∗ ≤ bmax for all values of b.

In terms of the b∗ formalism, a number of functional forms for the FNP
CSS have been

proposed. A simple Gaussian form in b was first proposed by Davies, Webber, and Stirling

(DWS) [8],

FNP
DWS(b,M, xA, xB) = exp

{
−(g1 + g2 ln(M/2M0))b

2
}
, (6)

with the parameters M0 = 2 GeV, g1 = 0.15 GeV2, and g2 = 0.4 GeV2. In order to take into

account the appearent dependence on collision energies, Ladinsky and Yuan (LY) introduced

a new functional form [9],

FNP
LY (b,M, xA, xB) = exp

{
−(g1 + g2 ln(M/2M0))b

2 − g1 g3 ln(100xAxB)b
}
, (7)

with M0 = 1.6 GeV, g1 = 0.11+0.04
−0.03 GeV2, g2 = 0.58+0.1

−0.2 GeV2, and g3 = −1.5+0.1
−0.1 GeV−1.

Recently, Landry, Brook, Nadolsky, and Yuan proposed a modified Gaussian form [10],

FNP
BLNY (b,M, xA, xB) = exp

{
− [g1 + g2 ln(M/2M0) + g1 g3 ln(100xAxB)] b2

}
, (8)

with M0 = 1.6 GeV, g1 = 0.21+0.01
−0.01 GeV2, g2 = 0.68+0.01

−0.02 GeV2, and g3 = −0.6+0.05
−0.04. All

these parameters were obtained by fitting low energy Drell-Yan and high energy W and Z

data. Note, however that the b∗ formalism introduces a modification to the perturbative

calculation, and the size of the modifications strongly depends on the non-perturbative

parameters in FNP (b,M, xA, xB), the intermediate boson mass M , and collision energy
√
s

[7].

A remarkable feature of the b-space resummation formalism is that the resummed expo-

nential factor exp[−S(b,M)] suppresses the b-integral when b is larger than 1/M . It can be

shown using the saddle point method that, for a large enough M , QCD perturbation theory

is valid even at pT = 0 [6]. For high energy heavy boson (W , Z, and Higgs) production, the

integrand of b-integration in Eq. (3) at pT = 0 is proportional to bW (b, Q, xA, xB), which
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has a saddle point bsp well within the perturbative region (bsp < bmax), and therefore, the

b-integration in Eq. (3) is dominated by the perturbatively resummed calculation. The un-

certainties from the large-b region have very little effect on the calculated pT distributions,

and the resummation formalism is of a good predictive power.

On the other hand, in the low energy Drell-Yan production, there is no saddle point in the

perturbative region for the integrand in Eq. (3), and therefore the dependence of the final

result on the non-perturbative input is strong [3,4]. However, as discussed in Ref.s [3,7,11],

the value of the saddle point strongly depends on the collision energy
√
s, in addition to its

well-known M2 dependence.

Figure 1 shows the integrand of the b-integration in Eq. (3) at pT = 0 for production

of Drell-Yan pairs of mass M = 5 GeV in proton-proton collisions at
√
s = 5.5 TeV and

bmax = 0.5 GeV−1. Different curves represent different extrapolations to the large-b region.

The three curves (dashed, dotted, and dot-dashed) are evaluated using the b∗ formalism

with the DWS, LY, and BLNY nonperturbative functions, respectively. Although these

three nonperturbative functions give similar b-space distributions for heavy boson produc-

tion at Tevatron energies, they predict very different b-space distributions for low-mass

Drell-Yan production at LHC energies even within the perturbative small-b region. Since

the b-distribution in Fig. 1 completely determines the resummed pT distribution through

the b-integration weighted by the Bessel function J0(pT b), we need to be concerned with the

uncertainties of the resummed low-mass pT distributions calculated with different nonper-

turbative functions. We use the CTEQ5M parton distribution function [12] throughout.

In order to improve the situation, a new formalism of extrapolation (QZ) was proposed

[3],

W (b,M, xA, xB) =



W pert(b,M, xA, xB) b ≤ bmax

W pert(bmax,M, xA, xB)FNP (b,M, xA, xB; bmax, α) b > bmax

, (9)

where the nonperturbative function FNP is given by

FNP = exp
{
− ln(M2b2max/c

2)
[
g1

(
(b2)α − (b2max)

α
)

+g2

(
b2 − b2max

)]
− ḡ2

(
b2 − b2max

)}
. (10)
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Here, bmax is a parameter to separate the perturbatively calculated part from the non-

perturbative input, and its role is similar to the bmax in the b∗ formalism. The term pro-

portional to g1 in Eq. (10) represents a direct extrapolation of the resummed leading power

contribution to the large b region; and the parameters g1 and α are determined by the con-

tinuity of the function W (b,M, xA, xB) at bmax. On the other hand, the values of g2 and ḡ2

represent the size of nonperturbative power corrections. Therefore, sensitivity on the g2 and

ḡ2 in this formalism clearly indicates the precision of the calculated pT distributions.

The solid line in Fig. 1 is the result of the QZ parameterization with bmax = 0.5 GeV−1

and g2 = ḡ2 = 0. Unlike in the b∗ formalism, the solid line represents the full perturbative

calculation and is independent of the nonperturbative parameters for b < bmax. The differ-

ence between the solid line and the other curves in the small b region, which can be as large

as 40%, indicates the uncertainties introduced by the b∗ formalism.

It is clear from the solid line in Fig. 1 that there is a saddle point in the perturbative

region even for the dilepton mass as low as M = 5 GeV in Drell-Yan production at
√
s = 5.5

TeV. At that energy, xA, xB ∼ 0.0045. For such small values of x, the PDFs have very strong

scaling violation, which leads to a large parton shower. It is the large parton shower at the

small x that strongly suppresses the function W (b, c/b, xA, xB) in Eq. (4) as b increases.

Therefore, for a bmax ∼(a few GeV)−1, the predictive power of the b-space resummation

formalism depends on the relative size of contributions from the small-b (b < bmax) and

large-b (b > bmax) regions of the b-integration in Eq. (3). With a narrow b distribution

peaked within the perturbative region for the integrand, the b-integration in Eq. (4) is

dominated by the small-b region, and therefore, we expect pQCD to have good predictive

power even for low M Drell-Yan production at LHC energies.

Figure 2 presents our prediction to the fully differential cross section dσ/dM2dydp2
T for

Drell-Yan production in pp collisions at
√
s = 5.5 TeV. Three curves represent the different

order of contributions in αs to the perturbatively calculated functions A(αs), B(αs), and

C(αs) in the resummation formalism [13]. The solid line represents a next-to-next-to-leading-

logarithmic (NNLL) accuracy corresponding to keeping the functions, A(αs), B(αs), and
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C(αs) to the order of α3
s, α

2
s, and α1

s, respectively. The dashed line has a next-to-leading-

logarithmic (NLL) accuracy with the functions, A(αs), B(αs), and C(αs) at the α2
s , αs, and

α0
s, respectively, while the dotted line has the lowest leading-logarithmic (LL) accuracy with

the functions, A(αs), B(αs), and C(αs) at the αs, α
0
s, and α0

s, respectively. Similar to what

was seen in the fixed order calculation, the resummed pT ditribution has a K-factor about

1.4-1.6 around the peak due to the inclusion of the coefficient C(1).

In Eq. (10), in addition to the g1 term from the leading power contribution of soft

gluon showers, the g2 term corresponds to the first power correction from soft gluon showers

and the ḡ2 term is from the intrinsic transverse momentum of the incident parton. The

numerical values of g2 and ḡ2 have to be obtained by fitting the data. From the fitting

of low energy Drell-Yan data and heavy gauge boson data at the Tevatron, we found that

the intrinsic transverse momentum term dominates the power corrections and it has a weak

energy dependence. For convenience, we combine the parameters of the b2 term as G2 =

g2 ln(M2b2max/c
2) + ḡ2. For M = 5 GeV and y = 0, we use G2 ∼ 0.25 in the discussion here

[3]. To test the G2 dependence of our calculation, we define

RG2(pT ) ≡
dσ

(G2)

AB→ll̄(M)X
(pT )

dM2 dy dp2
T

/
dσAB→ll̄(M)X(pT )

dM2 dy dp2
T

, (11)

where the numerator represents the result with finite G2, and the denominator contains no

power corrections (G2 = 0).

The result for RG2 is shown in Fig. 3. RG2 deviates from unity less than 1%. The

dependence of our result on the non-perturbative input is indeed very weak.

Since the G2 terms represent the power corrections from soft gluon showers and partons’

intrinsic transverse momentum, the smallness of the deviation of RG2 from unity also means

that leading power contributions from gluon showers dominate the dynamics of low-mass

Drell-Yan production at LHC energies. Even though the power corrections will be enhanced

in nuclear collisions, we expect it to be still less than several percent [11]. The isospin effects

are also small here, because xA and xB are small.

Since the leading power contributions from initial-state parton showers dominate the
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production dynamics, the important nuclear effect is the modification of parton distribu-

tions. Because the xA and xB are small for low-mass Drell-Yan production at LHC energies,

shadowing is the only dominant nuclear effect. In order to study the shadowing effects, we

define [11]

Rsh(pT ) ≡
dσ

(sh)

AB→ll̄(M)X
(pT , ZA/A, ZB/B)

dM2 dy dp2
T

/
dσAB→ll̄(M)X(pT )

dM2 dy dp2
T

. (12)

We plot in Fig. 4 the ratio Rsh as a function of pT in pPb and PbPb collisions at
√
s = 5.5 TeV

for M = 5 GeV and y = 0. The EKS parameterizations of nuclear parton distributions [14]

were used to evaluate the cross sections in Eq. (12). Fig. 4 shows that Rsh decreases about

30% from pPb to PbPb collisions. It is clear that low-mass Drell-Yan production at pPb

and PbPb can be a good probe of nuclear shadowing.

IV. HIGH TRANSVERSE MOMENTUM REGION

The gluon distribution plays a central role in calculating many important signatures

at hadron colliders because of the dominance of gluon initiated subprocesses. A precise

knowledge of the gluon distribution as well as its nuclear dependence is absolutely vital for

understanding both hard and semihard probes at LHC energies.

It was pointed out recently that the transverse momentum distribution of massive lepton

pairs produced in hadronic collisions is an advantageous source of constraints on the gluon

distribution [15], free from the experimental and theoretical complications of photon isolation

that beset studies of prompt photon production [16,17]. Other than the difference between

a virtual and a real photon, the Drell-Yan process and prompt photon production share the

same partonic subprocesses. Similar to prompt photon production, the lowest-order virtual

photon “Compton” subprocess: g+q → γ∗+q dominates the pT distribution when pT > M/2,

and the next-to-leading order contributions preserve the fact that the pT distributions are

dominated by gluon initiated partonic subprocesses [15].

There is a phase space penalty associated with the finite mass of the virtual photon, and

the Drell-Yan factor αem/(3πM
2) < 10−3/M2 in Eq. (1) renders the production rates for
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massive lepton pairs small at large values of M and pT . In order to enhance the Drell-Yan

cross section while keeping the dominance of the gluon initiated subprocesses, it is useful

to study lepton pairs with low invariant mass and relatively large transverse momentum

[5]. With the large transverse momentum pT setting the hard scale of the collision, the

invariant mass of the virtual photon M can be small, as long as the process can be identified

experimentally, and the numerical value M � ΛQCD. For example, the cross section for

Drell-Yan production was measured by the CERN UA1 Collaboration [18] for virtual photon

mass M ∈ [2mµ, 2.5] GeV.

When p2
T � M2, the perturbatively calculated short-distance partonic parts,

dσ̂ab→γ∗X/dp
2
Tdy in Eq. (1), receive one power of the logarithm ln(p2

T/M
2) at every order

of αs beyond the leading order. At sufficiently large pT , the coefficients of the perturbative

expansion in αs will have large logarithmic terms, and these high order corrections may not

be small. In order to derive reliable QCD predictions, resummation of the logarithmic terms

lnm(p2
T/M

2) must be considered. It was recently shown [5] that the large lnm(p2
T/M

2) terms

in low-mass Drell-Yan cross sections can be systematically resummed into a set of pertur-

batively calculable virtual photon fragmentation functions [19], and similar to Eq. (2), the

differential cross section for low-mass Drell-Yan production at large pT can be reorganized

as

dσAB→ll̄(M)X

dM2 dy dp2
T

=
dσ

(resum)

AB→ll̄(M)X

dM2 dy dp2
T

+
dσ

(Dir)

AB→ll̄(M)X

dM2 dy dp2
T

, (13)

where σ(resum) includes the large logarithms and can be factorized as [5]

dσ
(resum)

AB→ll̄(M)X

dM2 dy dp2
T

=
(
αem

3πM2

) ∑
a,b,c

∫
dx1φa/A(x1, µ)

∫
dx2φb/B(x2, µ)

×
∫
dz

z2

dσ̂ab→cX

dp2
cT
dy

(pcT
= pT/z) Dc→γ∗X(z, µ2

F ;M2) , (14)

with the factorization scale µ and fragmentation scale µF , and the virtual photon fragmenta-

tion functions Dc→γ∗(z, µ
2
F ;Q2). The σ(Dir) term plays the same role as σ(Y ) term in Eq. (2),

and it dominates the cross section when pT → M .
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Figure 5 presents the fully resummed transverse momentum spectra of low-mass Drell-

Yan production in pp collisions with M = 5 GeV at y = 0 and
√
s = 5.5 TeV (solid).

For comparison, we also plotted the leading order spectra calculated in conventional fixed

order pQCD. The fully resummed distribution is larger in the large pT region and smoothly

convergent as pT → 0. In addition, as discussed in Ref. [5], the resummed differential

cross section is much less sensitive to the changes of renormalization, factorization, and

fragmentation scales, and should be more reliable than the fixed order calculations.

To demonstrate the relative size of gluon initiated contributions, we define the ratio

Rg =
dσAB→γ∗(M)X(gluon-initiated)

dp2
T dy

/
dσAB→γ∗(M)X

dp2
T dy

. (15)

The numerator includes the contributions from all partonic subprocesses with at least one

initial-state gluon, and the denominator includes all subprocesses.

In Fig. 6, we show Rg as a function of pT in pp collisions at y = 0 and
√
s = 5.5 TeV

with M = 5 GeV. It is clear from Fig. 6 that gluon initiated subprocesses dominate the low-

mass Drell-Yan cross section and that low-mass Drell-Yan lepton-pair production at large

transverse momentum is an excellent source of information on the gluon distribution [5].

The slow falloff of Rg at large pT is related to the reduction of phase space and the fact that

cross sections are evaluated at larger values of the partons’ momentum fractions.

V. CONCLUSIONS

In summary, we present the fully differential cross section of low-mass Drell-Yan pro-

duction calculated in QCD perturbation theory with all-order resummation. For pT � M ,

we use CSS b-space resummation formalism to resum the large logarithmic contributions as

singular as lnm(M2/p2
T )/p2

T to all orders in αs. We show that the resummed pT distribution

of low-mass Drell-Yan pairs at LHC energies is dominated by the perturbatively calculable

small b-region and thus reliable for pT as small as ΛQCD. Because of the dominance of small

x PDFs, the low-mass Drell-Yan cross section is a good probe of the nuclear dependence
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of parton distributions. For pT � M , we use a newly derived QCD factorization formal-

ism [5] to resum all orders of lnm(p2
T/M

2) type logarithms. We show that almost 90% of

the low-mass Drell-Yan cross sections at LHC energies is from gluon initiated partonic sub-

processes. Therefore, the low-mass Drell-Yan cross section at pT > M is an advantageous

source of information on the gluon distribution and its nuclear dependence — shadowing.

Unlike other probes of gluon distributions, low-mass Drell-Yan does not have the problem

of isolation cuts associated with direct photon production at collider energies, and does not

have the hadronization uncertainties of J/ψ and charm production. Moreover, the precise

information on dilepton production from the Drell-Yan channel is critical for studying charm

production at LHC energies.
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FIG. 1. The b-space resummed functions bW (b) in Eq. (3) for Drell-Yan production of dilepton

mass M = 5 GeV at
√

s = 5.5 TeV with the ZQ (solid), DWS (dashed), LY (dotted), and BNLY

(dotdashed) formalism of nonperturbative extrapolation.
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FIG. 2. Differential cross section dσ/dM2dydp2
T for production of Drell-Yan pairs of M = 5 GeV

in pp collisions at the LHC with y = 0, and
√

s = 5.5 TeV with the NNLL (solid), NLL (dashed),

and LL (dotted) accuracy.
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FIG. 3. The ratio RG2 defined in Eq. (11) with G2 = 0.25 GeV2 for the differential cross section

shown in Fig. 2.
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FIG. 4. Rsh as a function of pT using EKS shadowing in PbPb collisions at
√

s = 5.5 TeV.
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FIG. 5. Differential cross section dσ/dM2dydp2

T for production of Drell-Yan pairs of M = 5 GeV

in pp collisions at
√

s = 5.5 TeV with low and high pT resummation (solid), in comparison to

conventional lowest result (dashed).
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FIG. 6. Ratio of gluonic over total contributions to Drell-Yan production at the LHC, Rg,

defined in Eq. (15) with M = 5 GeV at
√

s = 5.5 TeV.
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