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Abstract

We present the complete electroweak one-loop corrections to top-pair production at a lineare+e− collider in the
continuum region. Besides weak and photonic virtual corrections, real hard bremsstrahlung with simple realistic
kinematical cuts is included. For the bremsstrahlung we advocate a semi-analytical approach with a high numerical
accuracy. The virtual corrections are parametrized through six independent form factors, suitable for Monte-
Carlo implementation. Alternatively, our numerical package topfit , a stand-alone code, can be utilized for the
calculation of both differential and integrated cross sections as well as forward–backward asymmetries.
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1 Introduction

At a future lineare+e− collider with a centre-of-mass energy above 350 GeV, one of the most important reactions
will be top-pair production well above the threshold (i.e. in the continuum region),

e+ + e− → t + t̄ . (1.1)

Several hundred thousand events are expected, and the anticipated accuracy of the corresponding theoretical
predictions should be around a few per mille. Of course, it isnot only the two-fermion production process (1.1),
with electroweak radiative corrections (EWRC) and QCD corrections to the final state that has to be calculated with
high precision. Additionally the decay of the top quarks anda variety of quite different radiative corrections such as
real photonic bremsstrahlung and other non-factorizing contributions to six-fermion production and beamstrahlung
have to be considered. Potentially, new physics effects also have to be taken into account. For more details on
the general subject of top physics, we refer the reader to [1]and, for top-pair production, to the recent collider
studies [2,3,4] and references therein.

The electroweak one-loop corrections will be a central building block in any precision study of top-pair
production. Also it might well be that for most of the physicsa phenomenological study of the two-particle
(top-pair) production cross section will be sufficient, thus avoiding to deal too much with many-particle final
states observed in the detectors [5, 6, 7, 8, 9]. For these reasons, we recalculated the complete set of electroweak
contributions, including real hard photon corrections. Several studies on this topic are already available in the
literature. In [10, 11], the completeO(α) corrections, including hard photon radiation, are calculated. The virtual
and soft photon corrections both in the Standard Model and inthe minimal supersymmetric Standard Model are
determined in [12, 13], and (only) in the Standard Model in [14]. Experience proves that so far it was difficult to
get a satisfactory numerical comparison based on articles or computer codes without contacting the corresponding
authors. Due to the importance of the process, for future applications, it is therefore necessary to provide a common
basis and accessible documentation. Thus we aim, with the present write-up, to carefully document the one-loop
radiative corrections for the process (1.1)1, with the publicly available Fortran programtopfit [17, 18], and
with the sample Fortran outputs. In the mean time, we compared our calculations in detail with the results of two
collaborations [19,20].2

In this article, we sketch in short our calculation and present some typical numerical results applicable at
typical Linear Collider energies.

2 Conventions and Cross Sections

In lowest order perturbation theory the processe+e− → tt̄ can be illustrated by the two Feynman diagrams of
Fig. 2.1. For convenience we introduce the following abbreviations:

p5 = p1 + p2 = −p3 − p4, p2
5 = t, (2.1)

p6 = p2 + p3 = −p1 − p4, p2
6 = s, (2.2)

p7 = p2 + p4 = −p1 − p3, p2
7 = u. (2.3)

In the Feynman gauge the matrix elements corresponding to Fig. 2.1 are:
1The situation with massless fermion-pair production is much better due to the efforts related to LEP physics; see [15, 16] and the

references therein.
2Another series of numerical comparisons with the authors of[14] was started in September 2001; see also [21].
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Figure 2.1: Feynman diagrams for the processe+e− → tt̄ in Born approximation.

Mγ =
e2

s
QeQt [ v̄(p4) γµu(p1) ]× [ ū(−p2) γµv(−p3) ], (2.4)

MZ =
e2

s − M2
Z

+ iMZΓZ
[ v̄(p4) γµ (ve − aeγ5)u(p1) ]× [ ū(−p2) γµ (vt − atγ5) v(−p3) ], (2.5)

with

vf =
T 3

f − 2Qf sin2 θw

2 sin θw cos θw
, (2.6)

af =
T 3

f

2 sin θw cos θw
, (2.7)

whereT 3
f is the quantum number corresponding to the third component of the weak isospin,eQf the electromag-

netic charge, andθw the weak mixing angle.
We parametrize the radiative corrections by means of form factors. Defining the following four matrix elements

Mij
1 =

[
v̄(p4) γµ

G
i u(p1)

]
×
[
ū(−p2) γµ G

j v(−p3)
]
, i, j = 1, 5, (2.8)

with G
1 = 1 andG

5 = γ5, the Born amplitude can be written in a compact form:

MB = Mγ + MZ =
∑

i,j=1,5
F ij,B

1 Mij
1 . (2.9)

The form factors are

F 11,B
1 = ve vt

e2

s − M2
Z + iMZΓZ

+ Qe Qt
e2

s
≡ F 11,B,Z

1 + F 11,B,γ
1 , (2.10)

F 15,B
1 = −ve at

e2

s − M2
Z

+ iMZΓZ
, (2.11)

F 51,B
1 = −vt ae

e2

s − M2
Z + iMZΓZ

, (2.12)

F 55,B
1 = ae at

e2

s − M2
Z + iMZΓZ

. (2.13)

Besides (2.8), we find at one-loop level three further basic matrix element structures (in the limit of vanishing
electron mass):

M1loop =
4∑

a=1

∑
i,j=1,5

F ij,1loop
a Mij

a , (2.14)
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with

Mij
1 = γµ

G
i ⊗ γµ G

j , (2.15)

Mij
2 = p/2 G

i ⊗ p/4 G
j , (2.16)

Mij
3 = p/2 G

i ⊗ G
j , (2.17)

Mij
4 = γµ

G
i ⊗ γµ p/4 G

j , (2.18)

and respectively sixteen scalar form factorsF ij
a in total. An alternative notion uses the helicity structures,

MLR
1 = γµ

L ⊗ γµ R (2.19)

etc., withL,R = (1 ∓ γ5)/2. The interferences of these matrix elements with the Born amplitude have to be
calculated. Only six of these interferences are independent, e.g. Mij

1 , M3
11 andM3

51, 3 i.e. we have the
following 10 equivalences :

4 M2
11 ↔ (T − U)M1

11 + s M1
55, (2.20)

4 M2
15 ↔ (T − U)M1

15 + (s − 4m2
t ) M1

51 − 4mtM3
51, (2.21)

4 M2
51 ↔ (T − U)M1

51 + s M1
15, (2.22)

4 M2
55 ↔ (T − U)M1

55 + (s − 4m2
t ) M1

11 − 4mt M3
11, (2.23)

M3
15 ↔ 0, (2.24)

M3
55 ↔ 0, (2.25)

M4
55 ↔ − M4

11 ↔ M3
11 + mt M1

11, (2.26)

M4
15 ↔ −M4

51 ↔ M3
51 + mt M1

51 . (2.27)

In the massless limit (mt → 0) , onlyM1 andM2 will contribute to the cross-section, and it can be expressed in
terms of the Born-like structuresM1 exclusively. We introduce the variables

T = m2
e + m2

t − t ≃ s

2
(1 − β cos θ), (2.28)

U = m2
e + m2

t − u ≃ s

2
(1 + β cos θ), (2.29)

βt = β =
√

1 − 4m2
t /s . (2.30)

Based on the relations (2.20 to 2.27 ) the virtual corrections can be expressed in terms of six independent,
3We are grateful to D. Bardin and P. Christova for drawing our attention to this simplification.
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modified, dimensionless form factorŝF ij
1 , F̂ 11

3 , F̂ 51
3 :

F̂ 11
1 =

[
F 11

1 +
1

4
(u − t) F 11

2 − 1

4
(u + t + 2m2

t ) F 55
2 + mt (F 55

4 − F 11
4 )
]
, (2.31)

F̂ 15
1 =

[
F 15

1 − 1

4
(u + t − 2m2

t ) F 51
2 +

1

4
(u − t) F 15

2

]
, (2.32)

F̂ 51
1 =

[
F 51

1 +
1

4
(u − t) F 51

2 − 1

4
(u + t + 2m2

t ) F 15
2 + mt (F 15

4 − F 51
4 )
]
, (2.33)

F̂ 55
1 =

[
F 55

1 − 1

4
(u + t − 2m2

t ) F 11
2 +

1

4
(u − t) F 55

2

]
, (2.34)

F̂ 11
3 =

[
F 11

3 − F 11
4 + F 55

4 − mt F 55
2

]
, (2.35)

F̂ 51
3 =

[
F 51

3 + F 15
4 − F 51

4 − mt F 15
2

]
. (2.36)

The resulting cross-section formula is:

dσ

d cos θ
=

πα2

2s
ct β 2ℜe

[
(u2 + t2 + 2m2

t s)
(
F̄ 11

1 F̄ 11,B∗
1 + F̄ 51

1 F̄ 51,B∗
1

)

+ (u2 + t2 − 2m2
t s)
(
F̄ 15

1 F̄ 15,B∗
1 + F̄ 55

1 F̄ 55,B∗
1

)

+ (u2 − t2)
(
F̄ 55

1 F̄ 11,B∗
1 + F̄ 15

1 F̄ 15,B∗
1 + F̄ 51

1 F̄ 51,B∗
1 + F̄ 11

1 F̄ 55,B∗
1

)

+ 2mt(tu − m4
t )
(
F̄ 11

3 F̄ 11,B∗
1 + F̄ 51

3 F̄ 51,B∗
1

)]
, (2.37)

where the dimensionless form factors are

F̄ ij,B∗
1 =

s

e2
F ij,B∗

1 , (2.38)

F̄ ij
a =

s

e2

[
1

2
δa,1F

ij,B
1 +

1

16π2
F̂ ij,1loop

a

]
. (2.39)

andct = 3, α = e2/4π. TheF̄ ij
a are defined so that double counting for the Born contributions F ij,B

1 is avoided.
The factor1/(16π2) is conventional.

In the numerical program, helicity form factors are calculated as well. They are defined as follows:

FLL
i =

1

4

[
F 11

i − F 15
i − F 51

i + F 55
i

]
, (2.40)

FLR
i =

1

4

[
F 11

i + F 15
i − F 51

i − F 55
i

]
, (2.41)

FRL
i =

1

4

[
F 11

i − F 15
i + F 51

i − F 55
i

]
, (2.42)

FRR
i =

1

4

[
F 11

i + F 15
i + F 51

i + F 55
i

]
, i = 1 . . . 4. (2.43)

At the end of this introductory section, we would like to givethe relation of our form factors to those used in the
literature for pair production of massless fermions. In that case, only the four form factorŝF ij

1 contribute. They
have to replace, in the massless limit, the form factorsρ andκf , which are conventionally used to renormalize
the muon decay constant and the weak mixing angle and are precisely defined in [22, 23]. We rewrite the
matrix elementM1 in such a way that it gives exactly the BornZ amplitude (2.5) when the four form factors
ρet, κe, κt, κet are set equal to 1:

M1 =
∑

i,j=1,5

F̂ ij
1 Mij

1 ≡
∑

i,j=L,R

F̂ ij
1 Mij

1
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=
4 e2 ae at

s − M2
Z

+ iMZΓZ
ρet

[

(γµ
L ⊗ γµL) − |Qe| sin2 θwκe (γµ ⊗ γµL)

− |Qt| sin2 θwκt (γµ
L ⊗ γµ) + |Qt Qe| sin4 θwκet (γµ ⊗ γµ)

]

. (2.44)

From here, it is easy to derive the relations between the formfactorsF̂ ij
1 in an (L,R) or (1,5) basis andρet, κe, κt, κet,

respectively:

F̂LL
1 =

4 e2 ae at

s − M2
Z + iMZΓZ

ρet

(
1 − |Qe| sin2 θwκe − |Qt| sin2 θw κt + |Qt Qe| sin4 θwκet

)
, (2.45)

F̂LR
1 =

4 e2 ae at

s − M2
Z + iMZΓZ

ρet

(
−|Qt| sin2 θw κt + |Qt Qe| sin4 θwκet

)
, (2.46)

F̂RL
1 =

4 e2 ae at

s − M2
Z

+ iMZΓZ
ρet

(
−|Qe| sin2 θw κe + |Qt Qe| sin4 θwκet

)
, (2.47)

F̂RR
1 =

4 e2 ae at

s − M2
Z + iMZΓZ

ρet

(
|Qt Qe| sin4 θw κet

)
. (2.48)

Three process-dependent effective weak mixing anglessin2 θeff
w and the weak coupling strengthκeff are obtained

by inverting these relations:

κeff = ρet =
s − M2

Z + iMZΓZ

4 e2 ae at

(
F̂LL

1 − F̂LR
1 − F̂RL

1 + F̂RR
1

)
, (2.49)

sin2 θw
eff, e

= κe sin2 θw = − 1

|Qe|

(
F̂RR

1 − F̂RL
1

)

(
F̂LL

1 − F̂LR
1 − F̂RL

1 + F̂RR
1

) , (2.50)

sin2 θw
eff, t

= κt sin2 θw = − 1

|Qt|

(
F̂RR

1 − F̂LR
1

)

(
F̂LL

1 − F̂LR
1 − F̂RL

1 + F̂RR
1

) , (2.51)

(sin2 θw
eff,e t

)2 = κet sin4 θw =
1

|QeQt|
F̂RR

1(
F̂LL

1 − F̂LR
1 − F̂RL

1 + F̂RR
1

) . (2.52)

For the simplest approximations with factorizing, universal weak corrections, theκe, κt, and
√

κet become equal,
real and constant (independent of process and kinematics);for more details see for instance the discussion of the
weak corrections in [15,16] and references therein. There,also the important influence of higher order corrections
is considered.

3 Virtual Corrections

The virtual corrections come from self-energy insertions,vertex and box diagrams, and from renormalization.
A complete list of the contributing diagrams may be found in [19]. By means of the package DIANA [24, 25,
26] we generated useful graphical presentations of the diagrams and the input for subsequent FORM [27, 28]
manipulations. With the DIANA output (FORM input), we performed two independent calculations of the virtual
form factors, both using the ’t Hooft–Feynman gauge.
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For the final numerical evaluations we used two Fortran packages:FF [29] andLoopTools [30]. Both have
been taken from the corresponding homepages, andLoopTools was slightly adapted: one infraredC0 was added
and theDB1 was used only for photon massλ = 0.

In the packageFF, the Passarino–Veltman tensor decomposition of the amplitudes [31] is defined in terms of
the external momenta of the diagrams, while inLoopTools this decomposition is performed in terms of internal
momenta and the latter are later expressed in terms of the external ones. The resulting linear relation between the
corresponding form factors is given in Appendix A. Both the ultraviolet (UV) and the infrared (IR) divergences
are treated by dimensional regularization, introducing the dimensiond = 4−2ǫ and parametrizing the infinities as
poles inǫ. The UV divergences have to be eliminated by renormalization on the amplitude level, while the IR ones
can only be eliminated on the cross-section level by including the emission of soft photons. For the IR divergences
we have alternatively introduced a finite photon mass, as is foreseen inFF, yielding a logarithmic singularity in
this mass. Agreement to high precision was achieved for the two approaches.

Because the calculation of one-loop corrections for two-fermion production is well known, we do not present
a detailed prescription of the calculations. We perform therenormalization closely following [32]. On the other
hand, we want to fix some cornerstones and sketch the renormalization and show the UV-divergent parts of all
the contributing diagrams, such that their cancellations can be deduced. The treatment of the IR divergences will
be discussed in more detail because of the interplay with real photonic corrections. Finally, concerning the finite
parts, we refer to the Fortran programtopfit . We only mention that we did not perform a complete reductionof
the various scalar functions toA0, B0, C0, andD0, since this is not needed for a purely numerical evaluation.

3.1 The self-energy diagrams

We have to renormalize the UV singularities of the self-energies of the photon and theZ boson, and also that of
their mixing. Since the counter terms from wave-function and parameter renormalization must exhibit Born-like
structures, it is clear from the very beginning that a cancellation of UV divergences can only occur in terms of
single propagator poles. The double poles, which originally occur in the self-energy diagrams, are cancelled by
mass renormalization. This we want to stress for the following, by allowing only single poles in the self-energy
contributions. Thus the photon self-energy and theZ self-energy diagrams take the form

Sγ =
Σγγ

s
Mγ , (3.1)

SZ =
ΣZZ

s − M2
Z

MZ . (3.2)

In theγ–Z mixing diagrams, a partial fraction decomposition of the product(1/s)1/(s − M2
Z
) is performed, but

no subtraction:

SγZ = −e2 Qe ΣγZ
1

M2
Z

(
1

s − M2
Z

− 1

s

)
γµ × γµ (vt − atγ5) , (3.3)

SZγ = −e2 QtΣγZ
1

M2
Z

(
1

s − M2
Z

− 1

s
)γµ(ve − aeγ5) × γµ. (3.4)

We give the UV-divergent parts of the renormalized self-energies (for definitions, see Appendix B):

Σren,UV
γγ = e2 s

(
−23

3

)
1

ǫ
, (3.5)

Σren,UV
Zγ = Σren,UV

γZ =
e2

2 sin θw cos θw

(
46

3
cos2 θw s − 4M2

W − 41

3
s

)
1

ǫ
, (3.6)
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Σren,UV
ZZ = e2 (s − M2

Z)

(
23

3
+

6

sin2 θw
− 41

6 cos2 θw sin2 θw

)
1

ǫ
. (3.7)

Three families of fermions are assumed. The UV-divergent terms of the self-energies are independent of the
fermion masses, but this is, of course, not true for the finitecontributions.

The form factors are easily deduced from the above representations. The photon self-energy, for instance,
contributes toF 11

1 only:

F̂ 11,γγ
1 = F 11,B,γγ

1

Σren
γγ

s
≡ Qe Qt

e2

s2
Σren

γγ . (3.8)

3.2 The vertex diagrams

From the initial-state vertex corrections, form factorsF ij,V
1 , V = γ, Z, arise, and from the final verticesF ij,V

1 and
F ij,V

3 , the latter being proportional tomt. There are UV divergences from the vertex diagrams inF ij
1 : again only

Born-like amplitudes are UV-divergent.
The divergent parts of vertices with a photon orZ boson in thes-channel, correspondingly, are:4

V UV
γ =

(
e2

2sW

)2
1

s

1

ǫ

[
f11,γ
1 γµ ⊗ γµ + f15,γ

1 γµ ⊗ γµγ5 + f51,γ
1 γµγ5 ⊗ γµ

]
, (3.9)

V UV
Z =

(
e2

2s2
W cW

)2
1

s − M2
Z

1

ǫ

[
f11,Z
1 γµ ⊗ γµ + f15,Z

1 γµ ⊗ γµγ5 + f51,Z
1 γµγ5 ⊗ γµ + f55,Z

1 γµγ5 ⊗ γµγ5

]
.

(3.10)

The explicit expressions from the initial and final photonicvertices are:

f11,γ
1 =

(
−17

27

1

c2
W

− 64

27
− m2

t

M2
W

− 1

3

m2
b

M2
W

)

fin

−
(

5

3

1

c2
W

+
2

3

)

ini

, (3.11)

f15,γ
1 =

(
32

9
− 5

9

1

c2
W

− 1

3

m2
t

M2
W

+
1

3

m2
b

M2
W

)

fin

, (3.12)

f51,γ
1 =

(
10

3
− 1

c2
W

)

ini

. (3.13)

For theZ boson in thes-channel we only give the sum of the initial- and final-state fermion vertices:

f11,Z
1 =

973

216
− 25

18

1

c2
W

− 9

16

m2
t

M2
W

− 1

16

m2
b

M2
W

− c2
W

m2
t

M2
Z

− 1

3
c2
W

m2
b

M2
Z

− 157

108
c2
W − 82

27
c4
W +

3

2

m2
t

M2
Z

+
1

3

m2
b

M2
Z

,

(3.14)

f15,Z
1 =

21

8
− 1

c2
W

− 7

16

m2
t

M2
W

+
1

16

m2
b

M2
W

− 1

3
c2
W

m2
t

M2
Z

+
1

3
c2
W

m2
b

M2
Z

− 137

36
c2
W +

32

9
c4
W +

5

6

m2
t

M2
Z

− 1

3

m2
b

M2
Z

,

(3.15)

f51,Z
1 =

665

216
− 95

108

1

c2
W

− 3

16

m2
t

M2
W

− 1

48

m2
b

M2
W

− 449

108
c2
W +

10

3
c4
W +

1

4

m2
t

M2
Z

+
1

12

m2
b

M2
Z

, (3.16)

f55,Z
1 =

97

72
− 7

12

1

c2
W

− 7

48

m2
t

M2
W

+
1

48

m2
b

M2
W

− 77

36
c2
W +

1

12

m2
t

M2
Z

− 1

12

m2
b

M2
Z

. (3.17)

The resulting form factors can be extracted, e.g.

F̂ ij,γ,UV
1 = (e4)/(4s2

W sǫ) f ij,γ
1 . (3.18)

4To compactify the following formula we introduce the abbreviations:sin θw = sW andcos θw = cW .
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3.3 The box diagrams

ZZ, Zγ andγZ box diagrams contribute to all form factorsF ij
1 to F ij

4 introduced in (2.14) to (2.18), while the
WW box diagram contributes only toF ij

1 . The pure photonic box diagrams contribute only toF 11
a andF 55

a .
Simple power counting shows that there are no UV divergencesfrom the boxes. The IR divergences will be
discussed in Section 3.5 and Appendix C.

3.4 The counter-term contributions

Finally we have to take into account the contribution from the counter terms of Appendix B, where we also
introduce some of the notation to be used in the following. With these the photon exchange becomes:

Cγ =

[
γµ ⊗ γµ (za,t + zb,tγ5) + γµ (za,e + zb,eγ5) ⊗ γµ + γµ ⊗ γµ 2

δe

e

]
QeQt

e2

s
. (3.19)

Analogously, for theZ exchange

CZ =

{
γµ(ve − aeγ5) ⊗ γµ(vt − atγ5)(za,t + zb,tγ5) + γµ(ve − aeγ5)(za,e + zb,eγ5) ⊗ γµ(vt − atγ5)

− γµ ⊗ γµ (vt − atγ5)
Qe

sW cW
δs2

W − γµ(ve − aeγ5) ⊗ γµ
Qt

sW cW
δs2

W

+ γµ(ve − aeγ5) ⊗ γµ(vt − atγ5)

[
2
δe

e
+

(
1

c2
W

− 1

s2
W

)
δs2

W

]}
e2

s − M2
Z

. (3.20)

It is again easy to collect from the above expressions the corresponding contributions to the form factorsF 11
1 to

F 55
1 . The contributions to, say,F 11

1 from the counter terms are:

F̂ 11,ct
1 =

[
2
δe

e
+ za,t + za,e

]
F 11,B,γ

1 +

[
2
δe

e
+ za,t + za,e +

(
1

c2
W

− 1

s2
W

)
δs2

W

]
F 11,B,Z

1

− (vtQe + veQt)
δs2

W

sW cW

e2

s − M2
Z

. (3.21)

The resulting1/ǫ terms may be read off in Appendix B.

The sum of all the1/ǫ terms listed in the foregoing subsections for the form factors F ij
1 , i, j = 1, . . . , 4, has

been shown to finally vanish separately for the photon and theZ pole of the s-channel propagator:

F̂ ij,UV
1 =

[
F̂ ij,γγ

1 + F̂ ij,γZ
1 + F̂ ij,Zγ

1 + F̂ ij,ZZ
1 + F̂ ij,γ

1 + F̂ ij,Z
1 + F̂ ij,ct

1

]

UV
= 0. (3.22)

3.5 Infrared divergences

In topfit , we have incorporated two weak libraries. One uses the packageLoopTools [30], and the other one
the packageFF [29]. With these two options, we have a variety of internal cross checks at our disposal.

The photonic virtual corrections contain infrared divergences. They appear as singular behaviour of classes of
one-loop functions. One may follow several strategies to handle them in a numerical calculation. The simplest one
is to blindly give the task to the library for numerical calculation of the one-loop functions and then control the
infrared stability numerically in the Fortran program. Both packages allow for this approach;LoopTools with
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dimensional regularization or with a finite photon mass, while FF treats loop functions with finite photon mass
only.

In addition, we checked the IR stability in two ways explicitly. In the library based onFF, we simply took a
small but finite photon mass and directly appliedFF without simplifying any tensor functions. Several analytic
checks were also performed. In the other one, we isolated in all the scalar functions the IR divergence explicitly
and the cancellations with the divergences from bremsstrahlung corrections (see Section 4.3) were controlled both
analytically and numerically.

In Appendix C, we fix the notation and discuss the basics of thetreatment of IR divergences. In the rest of this
section, we simply give a list of the divergent parts of the form factors:

From the renormalization of the fermion self-energies (wave function renormalization factors) :

F̂
ij,Zf ,IR
1 = −4 e2Q2

fm2
f DB1(m

2
f ;m2

f , 0) F ij,B
1 . (3.23)

From the vertex corrections (indexf = e, t):

F̂
ij,Vf ,IR
1 = −2 e2Q2

f (s − 2m2
f ) C0(m

2
f , s,m2

f ; 0,m2
f ,m2

f ) F ij,B
1 . (3.24)

These form factors combine in the cross-section with the initial- and final-state soft photon corrections to an
infrared-finite contribution. For instance, the pure photonic parts contribute only tōF 11

1 . The resulting IR-divergent
cross-section contribution in (2.37),

dσf,IR

d cos θ
=

dσB

d cos θ

α

π
Q2

f δIR
f , (3.25)

with

δIR
f = 2 ln

mf

λ

(
1 +

s − 2m2
f

sβf
ln

1 − βf

1 + βf

)
, (3.26)

is compensated with (4.76) and (4.77).
A little more involved are the box diagram contributions. Asa typical example, we show the photonic box

parts. The direct box gives:

F 11,dγ,IR
1 = −F 55,dγ,IR

1 = (t − u − s) Gd, (3.27)

F 11,dγ,IR
2 = F 55,dγ,IR

2 = −4 Gd, (3.28)

F 55,dγ,IR
4 = −4mt Gd, (3.29)

with

Gd = −e2 QeQt C0(m
2
e, t,m

2
t ; 0,m

2
e ,m

2
t ) F 11,B,γ

1 . (3.30)

From these expressions, the form factors (2.31) to (2.35) get contributions:

F̂ 11,dγ,IR
1 = +4T e2 QeQt C0(m

2
e, t,m

2
t ; 0,m

2
e,m

2
t ) F 11,B,γ

1 , (3.31)

and all the others vanish. Analogously, from the crossed photonic box diagram:

F 11,cγ,IR
1 = +F 155,cγ,IR

1 = −2(u − m2
t ) Gc, (3.32)

F 11,cγ,IR
2 = −F 55,cγ,IR

2 = −4 Gc, (3.33)

F 55,cγ,IR
4 = +4mt Gc, (3.34)
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with

Gc = −e2 QeQt C0(m
2
e, u,m2

t ; 0,m
2
e ,m

2
t ) F 11,B,γ

1 . (3.35)

From these expressions, the form factors (2.31) to (2.35) get contributions:

F̂ 11,dγ,IR
1 = −4U e2 QeQt C0(m

2
e, u,m2

t ; 0,m
2
e,m

2
t ) F 11,B,γ

1 , (3.36)

and again all the others vanish.
The resulting cross-section contributions become

dσγ,IR

d cos θ
=

dσB

d cos θ
4

α

π
QeQt ln

1

λ

(
ln

memt

T
− ln

memt

U

)
, (3.37)

and are compensated with (4.78).
In Appendix C we show the relevant scalar functions explicitly.

4 Real Photonic Radiative Corrections

4.1 The three-particle phase space

The reaction
e+(p4) + e−(p1) → t(q2) + t̄(q3) + γ(p) (4.1)

with

dσ =
1

2sβ0
|M|2 · (2π)4δ4(p1 + p4 − q2 − q3 − p)

d3~q2

(2π)32Et

d3~q3

(2π)32Et̄

d3~p

(2π)32Eγ
(4.2)

is the one which in reality always takes place, even if for soft photons the ‘elastic’ Born cross-section can be a
good approximation without taking into account the radiated photons. Here we introduce the final-state phase-
space parametrization: for convenience of notation, the top physical momentaq2 = −p2, q3 = −p3 are used here.
We will not neglect the electron mass systematically,p2

1 = p2
4 = m2

e, andβ0 =
√

1 − 4m2
e/s. Our semi-analytical

integration approach with physically accessible observables as integration variables may be used to set benchmarks
and to control the numerical precision to more than four digits. Their choice is constrained by the observables we
want to predict, notably the angular distribution and certain cross-section asymmetries. Basically we follow the
approach proposed in [33,34] and extend the required formulae to the massive fermion case.

There is not too much found in the literature for the radiative production of massive fermion pairs. Thus, we
will discuss the kinematical details with some care, since they define the integration boundaries of our numerical
integration program.

In (2.1) and (2.3) we definedt andu for two-particle production. With the additional photon inthe final state,
we have to be more specific and will use the following definitions:

T = 2p4q3, (4.3)

U = 2p1q3. (4.4)

Additionally, the following invariants will be used:

s′ = (q2 + q3)
2 , (4.5)

Z1,2 = 2pp1,4 , (4.6)
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V1,2 = 2pq2,3. (4.7)

The squares of all three-momenta in the centre-of-mass system can be expressed in terms of a set ofλ functions:

4s |~q2|2 = λ1 ≡ λ[(p1 + p4)
2, (q3 + p)2, q2

2 ] = (s − V2)
2 − 4m2

t s , (4.8)

4s |~q3|2 = λ2 ≡ λ[(p1 + p4)
2, (q2 + p)2, q2

3 ] = (s′ + V2)
2 − 4m2

t s , (4.9)

4s |~p1|2 = 4s |~p4|2 = λs ≡ λ[(p1 + p4)
2, p2

1, p
2
4] = s2 − 4m2

es , (4.10)

4s |~p|2 = λp ≡ λ[(p1 + p4)
2, (q2 + q3)

2, p2] = (s − s′)2, (4.11)

where we useλ(x, y, z) = x2+y2+z2−2(xy+xz+yz) and the relation4p2
A|~pB |2 = λ[(pA+pB)2, p2

A, p2
B ]|~pA=0

for pA = (p1 + p4) = (
√

s, 0, 0, 0).
The phase space of three particles in the final state is five-dimensional. This means that only five of the ten

scalar products (those introduced already:s, T, U, s′, Zi, Vi, plusW1,2 = 2p1,4q2) built from the five momenta are
independent. In fact, the following relations hold

s = s′ + V1 + V2 = s′ + Z1 + Z2 = V2 + W1 + W2 (4.12)

= V1 + U + T = Z1 + W1 + U. (4.13)

We use the first of relations (4.12) in order to substituteV1 everywhere in favour ofV2 as already done in
(4.9). Since we do not consider transversally polarized initial particles, an integration of the cross section over
the corresponding rotation angle is trivially giving a factor 2π and we are left with four non-trivial phase space
variables.

For the calculation of the forward–backward asymmetry, theangleθ between the three-momenta oft̄ ande+

is used, in accordance with (4.3). Further, the energiesEt, Et̄, andEγ are ‘good’ variables. As mentioned before,
they can be expressed in terms of the invariantss′ andV2:

Et̄ =
s′ + V2

2
√

s
, (4.14)

Eγ =
s − s′

2
√

s
, (4.15)

Et =
√

s − Eγ − Et̄ =
s − V2

2
√

s
. (4.16)

The scattering angle in the centre-of-mass system may now beexpressed by invariants:

T =
s′ + V2

2
− β0

√
λ2

2
cos θ. (4.17)

As will be seen later, the two invariantss′ andV2 also describe the angles between any pair of final-state particles.
Therefore, we choose them to parametrize the phase space. Finally, the fourth integration variable will be the
azimuthal angle of the photonφγ .

The coordinate system is chosen such that thet̄ moves along thez axis and the beam axis is in they–z plane.
The four-momenta of all particles can then be written as follows:

p1 =

√
s

2
(1, 0,−β0 sin θ,−β0 cos θ), (4.18)

p4 =

√
s

2
(1, 0, β0 sin θ, β0 cos θ), (4.19)

p = Eγ(1, sin θγ cos φγ , sin θγ sin φγ , cos θγ), (4.20)
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q3 = (Et̄, 0, 0, |~q3|), (4.21)

q2 = p1 + p4 − p − q3. (4.22)

Theφγ andθγ are the azimuthal and polar angles of the photon. The expression for cos θγ (and also that for|~q3|)
can be obtained from(~p + ~q2)

2 = (~q3)
2,

cos θγ =
λ1 − λ2 − λp

2
√

λpλ2

=
s′(s − s′) − V2(s + s′)

(s − s′)
√

λ2
, (4.23)

and again depends only ons′ andV2. The differential bremsstrahlung cross section (4.2) takes the form

dσ =
1

(2π)5
1

2sβ0
|M|2 · π

16s
dφγds′dV2dcos θ

≡ 1

(2π)5
1

2sβ0
|M|2 · πs

16
dφγdrdxdcos θ. (4.24)

In the last step, dimensionless variables are introduced:

x =
V2

s
, (4.25)

r =
s′

s
, (4.26)

rm =
4m2

t

s
. (4.27)

The integration boundaries are either trivial (φγ andcos θ) or can be found from the condition that the three three-
vectors~p, ~q2, ~q3 form a triangle with the geometrical constraintcos2 θγ ≤ 1. The four integration variables vary
within the following regions:

0 ≤ φγ ≤ 2π, (4.28)
x

2x + rm/2

(
1 + x −

√
(1 − x)2 − rm

)
≤ 1 − r ≤ x

2x + rm/2

(
1 + x +

√
(1 − x)2 − rm

)
, (4.29)

0 ≤ x ≤ 1 −√
rm, (4.30)

−1 ≤ cos θ ≤ +1. (4.31)

If the order of integrations overr andx is interchanged, their boundaries are

1 − r

2

(
1 −

√
1 − rm

r

)
≤ x ≤ 1 − r

2

(
1 +

√
1 − rm

r

)
, (4.32)

rm ≤ r ≤ 1. (4.33)

13



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

rm=0

A

B
C

x

r

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

rm=0.2

A

B C

x

r

rω=0.9
rγ=0.3

t: rE=0.5
t(bar): rE=0.5

Figure 4.1: Kinematic region ofr andx for (a) rm = 4m2
t /s = 0 and (b)rm = 0.2. The energetic cuts are also

shown; it isrE = 2Emin
t /

√
s, rĒ = 2Ēmin

t /
√

s, rω = 1− 2ω/
√

s = 1− 2Emin(γ)/
√

s, rγ = 1− 2Emax(γ)
√

s.

The kinematic regions ofr andx are shown in Fig. 4.1(a) for massless (rm = 0) and in Fig. 4.1(b) for massive
(rm 6= 0) final fermions. At the kinematic boundaries, the three-momenta~p, ~q2, ~q3 are parallel. Further, there are
three special points where exactly one of the three three-momenta vanishes

A =

( √
rm

2 −√
rm

, 1 −√
rm

)
, (4.34)

B =

( √
rm

2 −√
rm

, (1 −√
rm)

√
rm

2 −√
rm

)
, (4.35)

C = (1, 0) . (4.36)

At point C the soft photons are located. Section 4.3 is devoted to theirtreatment. Thet (t̄) are at rest inA (B).
In the massless case,rm = 0, the three pointsA, B andC are located at the corners of the kinematic triangle,
A = (0, 1), B = (0, 0), C = (1, 0). From (4.14)–(4.16) it follows that the photon energy is maximal at the left
edge, coinciding with thex-axis; the fermion energy is maximal at the lower edge, coinciding with ther-axis; and
finally the energy of the anti fermion is maximal at the third edge.

4.1.1 Energy cuts

Cuts on the energy of the final state particles are of importance for two reasons: they are being applied in the
experimental set-ups, and for the photon we have to identifythe soft photon terms in order to combine them with
virtual corrections for a finite net elastic cross section. The lower hard photon energy (being also the upper soft
photon energy) is

ω = Emin
γ . (4.37)

All three energy cuts are deduced from (4.14) to (4.16). The photon energy is related tor by

r = 1 − 2Eγ/
√

s (4.38)
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Figure 4.2: Triangle of the three-momenta of fermion, anti fermion and photon.

and the limits to be imposed are

rγ = 1 − 2Emax
γ /

√
s ≤ r ≤ 1 − 2ω/

√
s = rω. (4.39)

Constraining the fermion energies leads to cuts onx:

rĒ − r ≡ 2Emin
t̄ /

√
s − r ≤ x ≤ 1 − rE ≡ 1 − 2Emin

t /
√

s. (4.40)

All the energy cuts are independent of the mass of the final fermions and ofcos θ. They are illustrated in Fig.4.1.
From (4.40) it can be seen that the derivatives of the kinematic border at pointsA andB in Fig. 4.1(b) (for their
definitions see (4.34) and (4.35)) are0 and−1.

4.1.2 Angular cuts

The scattering angleθ
is the angle between̄t ande+. This angle is one of the integration variables and is constrained directly:

cmin ≤ c ≡ cos θ ≤ cmax. (4.41)

Additional angular cuts deserve a study of the (r, x) parameter space. To be definite, we will always consider the
kinematic bound ofr for an arbitrarily chosen value ofx.

The directions of the final-state particles define three angles θtt̄, θtγ , andθt̄γ ; as shown In Fig. 4.2. The
acollinearity angleξ is defined by

ξ = π − θtt̄. (4.42)

The conditionξ ≪ 1 restricts the events to a Born-like kinematics: the fermions are back to back and only soft
photons or photons collinear to one of the final fermions are allowed. Using the above formulae, the acollinearity
angleξ is expressed in terms of the invariantsx andr:

cos ξ =
λ1 + λ2 − λp

2
√

λ1λ2
=

r(1 + x) − x(1 − x) − rm√
(1 − x)2(r + x)2 − rm[(1 − x)2 + (r + x)2] + r2

m

. (4.43)

Equation (4.43) can readily be derived considering the scalar productq2q3 or alternatively the triangle of the three-
momenta of the final particles in Fig. 4.2, with account of therelations (4.11) betweenλ functions and absolute
values of three-momenta.
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Figure 4.3: The kinematic region ofr andx for different values of the acollinearity angleξ for (a)rm = 4m2
t /s = 0

and (b)rm = 0.2.

For massless fermions, Eq. (4.43) is much simpler and describes a hyperbola with a symmetry axis rotated by
an angle of−π/8 relative to ther axis. The kinematic regions for different values of the acollinearity angle are
shown in Fig. 4.3. All lines intersect at the pointsA andB. For moderate cuts on the maximum acollinearity angle,
the kinematic area is only constrained for values ofx above the pointB, i.e. forx >

√
rm(1−√

rm)/(2−√
rm).

In this case only the lower bound ofr is changed. The constraint to the kinematic region acts in a way similar
to a cut to hard photons. This is clear from the topology of events with high acollinearity: the fermion and anti
fermion fly approximately in one direction and must recoil against a hard photon. For stronger acollinearity cuts,
constraints of the kinematic area arise also for values ofx below the pointB. In this case the allowed range for
r splits in two regions. The first region extends from the lowerkinematic border to the smaller solution of (4.43),
while the second region extends from the larger solution of (4.43) to the upper kinematic border.

The analytic treatment of the acollinearity cut for themasslesscase was also discussed in [35,36,23,37].
In a similar way as explained for the acollinearity angle, the two anglesθtγ andθt̄γ can be expressed in terms

of the two invariantsr andx:

cos θtγ =
λ2 − λ1 − λp

2
√

λ1λp

=
r(1 + x) − (1 − x)

(1 − r)
√

(1 − x)2 − rm

, (4.44)

cos θt̄γ ≡ cos θγ =
λ1 − λ2 − λp

2
√

λ2λp

=
−x(1 + r) + r(1 − r)

(1 − r)
√

(x + r)2 − rm

. (4.45)

Although physically the situation for a cut onθtγ is equivalent to a cut onθt̄γ , the symmetry is broken because we
had to make a choice betweenV1 andV2. The constraint onθtγ leads to a quadratic equation inx and r, while
that forθt̄γ is quadratic inx and of fourth order inr. In the massless case, the constraints toθtγ become a bilinear
equation inr andx, describing a hyperbola with a symmetry axis, which is rotated by an angleπ/4 relative to the
r axis. The massless limit of (4.45) leads to a constraint onθt̄γ , which is linear inx and quadratic inr, describing
a hyperbola with a symmetry axis, which is rotated by an angleof π/8 relative to thex axis.

The kinematic regions for different values of the angleθtγ are shown in Fig. 4.4. All lines intersect at the points
A andC. The exclusion of events with small anglesθtγ excludes regions near the edgex = 1−r. These kinematic
regions correspond to events with large anti fermion energies, (compare Fig. 4.1). Technically, a constraint of the
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Figure 4.4: The kinematic region ofr andx for different values of the angleθtγ and for (a)rm = 4m2
t /s = 0 and

(b) rm = 0.2.

angleθtγ from below changes the upper bound ofr in the kinematic region for a fixedx. The lower bound ofr is
unchanged by this cut.

Finally, the kinematic regions for different values of the angle θt̄γ are shown in Fig. 4.5. All lines intersect
at the pointsB andC. The exclusion of events with small anglesθt̄γ excludes regions near ther axis. These
kinematic regions correspond to events with large fermion energies, (compare Fig. 4.2). Technically, a constraint
of the angleθt̄γ from below affects the kinematic region only for somex below a certain value. For thesex and
for masslessfermions, the integration region ofr is split into two regions. The first region extends from the lower
kinematic border to the smaller solution of (4.45), and the second one extends from the larger solution of (4.45)
to the upper kinematic border. For massive fermions, the cutting out of small anglesθt̄γ changes only the lower
bound ofr as far asx is below the pointB. For a harder cut onθt̄γ , the kinematic region is also affected for values
of x, larger than thex coordinate of the pointB. For a fixedx and finitemt, two regions ofr near the kinematic
border are then allowed, while some region in the “middle” iscut out by the constraint. This is similar to the
situation in the massless case.

4.2 Radiative differential cross sections

For massless fermions, typically a threefold analytical integration of the radiative contributions to fermion pair
production with realistic cuts may be performed, see [36, 23, 35] and references quoted therein. For massive
pair production, everything becomes non-trivial and, in the end, we decided to perform only the first integration
analytically, that overφγ . This leaves three integrations at most for a numerical treatment. Our practice proved
that the accuracy and speed are absolutely satisfactory forour needs of calculating benchmarks and physics case
studies.

For this reasons, and in order to make everything well-defined, we now have to collect the singly analytically
integrated contributions to be used in a subsequent numerical calculation.

We will use a notation for the couplings with some flexibilitynot needed in the Born case:

V (s, s′) =
1

2
ℜe

{
∑

m,n

[χm(s)χ∗
n(s′) + χm(s′)χ∗

n(s)]
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Figure 4.5: The kinematic region ofr andx for different values of the angleθt̄γ and for (a)rm = 4m2
t /s = 0 and

(b) rm = 0.2.

× [ve(m)v∗e(n) + ae(m)a∗e(n)] · [vf (m)v∗f (n) + af (m)a∗f (n)]

}
, (4.46)

A(s, s′) =
1

2
ℜe

{
∑

m,n

[χm(s)χ∗
n(s′) + χm(s′)χ∗

n(s)]

× [ve(m)a∗e(n) + ae(m)v∗e (n)] · [vf (m)a∗f (n) + af (m)v∗f (n)]

}
, (4.47)

C(s, s′) = 2ℜe

{
∑

m,n

[χm(s)χ∗
n(s′) + χm(s′)χ∗

n(s)]

× [ve(m)v∗e(n) + ae(m)a∗e(n)] · af (m)a∗f (n)

}

, (4.48)

Ĉ(s, s′) = ℜe

{
∑

m,n

[χm(s)χ∗
n(s′) − χm(s′)χ∗

n(s)]

× [ve(m)a∗e(n) + ae(m)v∗e(n)] · [vf (m)a∗f (n) − af (m)v∗f (n)]

}

, (4.49)

where we usevf (γ) = Qf , af (γ) = 0, vf (Z) = vf , andaf (Z) = af and

χZ(s) =
s

s − M2
Z + iΓZMZ

, (4.50)

χγ(s) = 1. (4.51)

With these conventions, the Born cross section becomes

dσBorn(s)

dc
=

πα2Ncβ

2s

[
V (s, s)(2 − β2 + c2β2) + 2cβA(s, s) − 1 − β2

2
C(s, s)

]
. (4.52)
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The cross section fore+e− → tt̄γ subdivides in the gauge-invariant subsets of initial-state radiation, final-state
radiation and the interference between them. Explicit expressions for the totally differential cross section may be
found in [37]. The integration overφγ is not too complicated and in fact we could simply use existing tables of
integrals [33, 34, 37]. This first integration is unaffectedby the cuts discussed and has to be performed with an
exact treatment of bothme andmt.

The cross section forinitial-state radiationafter the integration overφγ is

d3σini

dcds′dV2
=

α3NcQ
2
e

2ss′2

{

V (s′, s′)

[

−2
m2

eζ1√
D1

3 (2T 2 − 2Ts′ + s′2 + 2m2
t s

′)

−2
m2

eζ2√
D2

3 (2U2 − 2Us′ + s′2 + 2m2
t s

′)

+
2s′

s − s′

(
1√
D1

+
1√
D2

)
(T 2 − Ts′ + U2 − Us′ + s′2 + 2m2

t s
′)

+
1√
D1

(−2Us′ + ss′ + s′2 + 2m2
t (s + s′)) +

1√
D2

(−2Ts′ + ss′ + s′2 + 2m2
t (s + s′))

−2s′ − 4m2
t

]

+A(s′, s′)s′

[
−2

m2
eζ1√
D1

3 (s′ − 2T ) + 2
m2

eζ2√
D2

3 (s′ − 2U)

+
2s′

s − s′

(
1√
D1

+
1√
D2

)
(U − T ) − 1√

D1
(s + s′ − 2U) +

1√
D2

(s + s′ − 2T )

]

+C(s′, s′)m2
t

[
2s′m2

e

(
ζ1√
D1

3 +
ζ2√
D2

3

)
− 2s′2

s − s′

(
1√
D1

+
1√
D2

)

−(s + s′)

(
1√
D1

+
1√
D2

)
+ 2

]}
, (4.53)

with

ζ1,2 =
s − s′

2
(1 ± β0cct) , (4.54)

ct =
V1(s + s′) − s(s − s′)

(s − s′)
√

λ2
, (4.55)

β0 =

√
1 − 4m2

e

s
, (4.56)

D1,2 =
1

λ2
C1,2 =

1

λ2

{
1

4

[
2ss′ − (V2 + s′)(s + s′) ± cβ0(s − s′)

√
λ2

]2

+ 4m2
e

[
s′V2(s − s′ − V2) − (s − s′)2m2

t

]}
. (4.57)

The cross section forfinal-state radiationafter the integration overφγ is

d3σfin

dcds′dV2
=

α3NcQ
2
f

2s3

{
V (s, s)

[
−2m2

t

V 2
1

(−2UT + s2 + 2m2
t s)
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−2m2
t

V 2
2

(−2(UT + Uζ2 + Tζ1 + ζ12) + s2 + 2m2
t s)

4m2
t

V1V2

(
U(T + ζ2) + T (U + ζ1) − 2m2

t s
)
− 2s

V1V2
(2UT + tζ2 + Tζ1 + ζ12 − 2s2)

+
s

V1
(V2 − 4m2

t ) +
s

V2
(V1 − 2s − 4m2

t )

]

+A(s, s)s

[
2m2

t

V 2
1

(T − U) +
2m2

t

V 2
2

(T + ζ2 − U − ζ1)

+
1

V1V2
(s′ − 2m2

t )(2U + ζ1 − 2T − ζ2) +
U − T

V1
+

U + ζ1 − T − ζ2

V2

]

+C(s, s)2m2
t

[
m2

t s

(
1

V 2
1

+
1

V 2
2

)
+

1

V1V2
(ζ12 − ss′ + 2m2

t s)

]}
, (4.58)

with

ζ12 = ζ1ζ2 −
1

8
(s − s′)2β2

0(1 − c2)(1 − c2
t ). (4.59)

The cross section for theinterference between initial- and final-state radiationafter the integration overφγ is

d3σint

dcds′dV2
=

α3NcQeQf

2s2s′

{
V (s, s′)

[
1√

D1V1
(s − U)(2T 2 − 2Ts′ + s′2 + 2m2

t s
′ − 2UT + s2 − 2m2

t s)

− 1√
D2V1

(s − T )(2U2 − 2Us′ + s′2 + 2m2
t s

′ − 2UT + s2 − 2m2
t s)

+
1√

D2V2
(s′ − U)(2T 2 − 2Ts + s2 + 2m2

t s − 2UT + s′2 − 2m2
t s

′)

− 1√
D1V2

(s′ − T )(2U2 − 2Us + s2 + 2m2
t s − 2UT + s′2 − 2m2

t s
′)

+
1

V1

(
(ζ1 − ζ2)s + (U − T )(3s − s′ − 4m2

t )
)

− 1

V2

(
(ζ1 − ζ2)(s

′ + 4m2
t ) + (U − T )(3s′ − s + 4m2

t )
)

+

(
1√
D2

− 1√
D1

)(
s2 + s′2 + 2m2

t (s + s′)
)]

+A(s, s′)s

[
1√

D1V1
(s − U)[−2Ts′ + s′2 + s(U − T )]

+
1√

D2V1
(s − T )[−2Us′ + s′2 + s(T − U)] +

1√
D2V2

(s′ − U)[−2Ts + s2 + s′(U − T )]

+
1√

D1V2
(s′ − T )[−2Us + s2 + s′(T − U)]

+
1

V1

(
2ss′ + 2m2

t (V2 − 2s)
)

+
1

V2

(
−2ss′ + 2m2

t (V1 − 2s)
)

+
1√
D1

(s′T − sU) +
1√
D2

(s′U − sT ) + 2(s + s′) + 4m2
t

]

+C(s, s′)m2
t

[
(s + s′)

(
− 1√

D1V1
(s − U) +

1√
D2V1

(s − T ) − 1√
D2V2

T +
1√

D1V2
U

)
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+(ζ1 − ζ2)

(
1

V2
− 1

V1

)]

+Ĉ(s, s′)m2
t (s + s′)

[
1

V1
+

1

V2

]}
. (4.60)

4.3 Soft photon corrections

The four-dimensional integration of the bremsstrahlung contributions is divergent in the soft-photon part of the
phase-space and is treated ind dimensions. One starts from a reparametrization of the photonic phase-space part
with Born-like kinematics for the matrix element squared. To obtain a soft photon contribution we have to take the
terms of the bremsstrahlung amplitude withoutp0 ≡ Eγ ≤ ω in the numerators. In this limit,s′ approachess and
the soft contribution to the differential cross section takes the form

dσsoft

d cos θ
=

α

π
δsoft dσBorn

d cos θ
(4.61)

with

δsoft = 4π2

∫
d3~p

(2π)32Eγ

[
Qe

(
2p4

Z2
− 2p1

Z1

)
+ Qt

(
2q2

V1
− 2q3

V2

)]2

θ(ω − Eγ)

=
1

4π

∫
d3~p

E3
γ

θ(ω − Eγ)Isoft (4.62)

and

Isoft

4E2
γ

= Q2
e

(
m2

e

Z2
1

+
m2

e

Z2
2

− s − 2m2
e

Z1Z2

)
+ QeQt

(
T

Z1V1
+

T

Z2V2
− U

Z1V2
− U

Z2V1

)

+ Q2
t

(
m2

t

V 2
1

+
m2

t

V 2
2

− s − 2m2
t

V1V2

)
. (4.63)

The scalar products have to be taken according to Born kinematics, i.e. the expressions (4.6) and (4.7) become

Z1 = 2pp1 = 2Eγ

[
p0
1 + |~p1| cos θp

]
, (4.64)

Z2 = 2pp4 = 2Eγ

[
p0
4 − |~p4| cos θp

]
, (4.65)

V1 = 2pq2 = 2Eγ

[
q0
2 + |~q2| cos θq

]
, (4.66)

V2 = 2pq3 = 2Eγ

[
q0
3 − |~q3| cos θq

]
. (4.67)

From here we see thatIsoft is constructed to be independent ofEγ . Substitute now, withd = 4 − 2ǫ, ǫ < 0,

δsoft → (2πµ)2ǫ

4π

∫ ω

0
E−(1+2ǫ)

γ dEγ

∫
dΩ(d−2)I

soft

=
1

2

∫ 1

−1
dξ

[
PIR + ln

ω

µ
+

1

2
ln(1 − ξ2)

]
Isoft. (4.68)

We introduce the abbreviation for the infrared divergence

PIR = − 1

2ǫ
+

γE

2
− ln(2

√
π). (4.69)

The infrared divergence can also be regularized by introducing a finite photon massλ:

PIR − ln µ = ln
1

λ
. (4.70)
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The last integral overξ = cos θγ is trivial for the productsZiZj andViVj, since they contain only one angle;
one may thus identify eitherξ = cos θp or ξ = cos θq. In the initial–final interference, one may introduce a
Feynman parameter

1

ZiVj
=

1

4

1

ppi pqj
=

1

4

∫ 1

0
dα

1

(pkij)2
(4.71)

with

kij = αpi + (1 − α)qj . (4.72)

Then,(pkij)
2 = E2

γs(1 − βij cos θij)
2/4 and identify nowξ = cos θij. Further,

(1 − β12)
2 = (1 − β43)

2 = (1 − βT )2 =
4

s

[
α(1 − α)T + α2m2

e + (1 − α)2m2
t

]
, (4.73)

(1 − β13)
2 = (1 − β42)

2 = (1 − βU )2 =
4

s

[
α(1 − α)U + α2m2

e + (1 − α)2m2
t

]
. (4.74)

The final result is

δsoft = Q2
e δsoft

ini + QeQt δsoft
int + Q2

t δsoft
fin (4.75)

with

δsoft
ini (me, ω, ǫ, µ) = 2

(
PIR + ln

2ω

µ

)[
−1 +

s − 2m2
e

sβ0
ln

(
1 + β0

1 − β0

)]

+
1

β0
ln

(
1 + β0

1 − β0

)
− s − 2m2

e

sβ0

[
1

2
ln2

(
2β0

1 − β0

)

+ Li2(1) + Li2

(
β0 − 1

2β0

)
+ Li2

(
2β0

β0 + 1

)]

, (4.76)

δsoft
fin (mt, ω, ǫ, µ) = δsoft

ini (mt, ω, ǫ, µ), (4.77)

δsoft
int (me,mt, ω, ǫ, µ) = 2

(
PIR + ln

2ω

µ

)(
T√
λT

ln
T +

√
λT

T −
√

λT
− U√

λU
ln

U +
√

λU

U −
√

λU

)

+
1

2
[T F(T ) − U F(U)] , (4.78)

and

λT = T 2 − 4m2
em

2
t , (4.79)

F(T ) = −4

s

∫ 1

0
dα

1

βT (1 − β2
T )

ln
1 + βT

1 − βT
, (4.80)

and analogue definitions forT ↔ U . We calculate the finite interference part given in (4.78) numerically, but have
shown the agreement with Eq. (3.64) of [38]:

T F(T ) − U F(U) = −2

[
Li2

(
1 − 1 − β

1 − β cos θ

)
+ Li2

(
1 − 1 + β

1 − β cos θ

)

− Li2

(
1 − 1 − β

1 + β cos θ

)
− Li2

(
1 − 1 + β

1 + β cos θ

)]
. (4.81)
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5 Results

In this section we present the numerical results of the electroweak one-loop calculation to the processe+e− → tt̄ .
We have performed a fixed-orderα calculation, i.e. no higher order corrections such as photon exponentiation
have been taken into account.

For the numerical evaluation we assume the following input values [20,19,18]:

ΓZ = 2.49977GeV , α = e2

4 π = 1/137.03599976 , Emax
γ =

√
s/105 ,

MW = 80.4514958GeV , MZ = 91.1867GeV , MH = 120GeV ,

me = 0.00051099907GeV , mt = 173.8GeV , mb = 4.7GeV ,

mµ = 0.105658389GeV , mu = 0.062GeV , md = 0.083GeV ,

mτ = 1.77705GeV , mc = 1.5GeV , ms = 0.215GeV .

(5.1)

Two packages, namelyFF [29] andLoopTools [30] have been used for the numerical evaluation of the loop
integrals.

In Fig. 5.1, we present the differential cross section for various generic values of
√

s.

Figure 5.1: Top-pair production: Differential cross sections in Born approximation (solid lines), with full
electroweak corrections (dashed lines), with ans′ = 0.7 s cut (dash-dotted lines); also shown: pure weak
corrections (dotted lines, photonic corrections and running ofα excluded); all for

√
s = 0.5, 1, 3 TeV.
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It can be seen that for rather high centre-of-mass energies the characteristic features of a massive fermion
pair production become less prominent. At

√
s = 3 TeV the differential cross section of electroweak radiative

corrections starts to exhibit collinear mass singularities at the edges of phase space. Those are cured by applying a
cut ons′. In general it can be seen that the effects of radiative corrections are more dramatic for top-pairs produced
close to the direction of the beam. For the TESLA range of centre-of-mass energies, backward scattered top quarks
give rise to slightly larger corrections than forward scattered ones [19]. For higher energies this effect is more or
less washed out.

In Table 5.1 to 5.3 we present a complete set of form factors entering the cross-section calculation. The form
factors given correspond to the minimal set of independent form factors possible for a two-to-two process with two
massless and two massive fermions in the initial and final state respectively, and are defined with respect to the
‘naturally’ arising form factors in Eq. (2.31). For completeness we also give the corresponding Born form factors.
The numerical values given are obtained for a characteristic centre-of-mass energy of

√
s = 500 GeV and a fixed

scattering anglecos θ = 0.7.

f.f. Born weak 1-loop contributions

Re Im Re Im

F̂ 11
1 −2.5092647 10−7 6.0265891 10−12 1.1805990 10−8 −3.2896119 10−9

F̂ 15
1 1.5620083 10−8 −1.4732119 10−11 −1.0507915 10−8 −8.4627303 10−9

F̂ 51
1 5.6239963 10−8 −5.3042857 10−11 −7.7050611 10−9 −5.8986660 10−9

F̂ 55
1 −1.3747972 10−7 1.2966433 10−10 −4.8821798 10−10 7.47501965 10−9

mt F̂ 11
3 0.0 0.0 9.0882705 10−10 −8.9067902 10−10

mt F̂ 51
3 0.0 0.0 −9.5315102 10−10 5.0995117 10−10

Table 5.1: Real and imaginary parts of the six independent form factorsF̂ jk
i = e2

s F̄ jk
i for weak, non-photonic

corrections to the processe+e− → tt̄ at
√

s = 500 GeV for a fixed scattering anglecos θ = 0.7. For reference we
also give the corresponding Born form factors.

f.f. Born weak 1-loop contributions

Re Im Re Im

F̂ 11
1 −6.2691435 10−8 3.5795119 10−13 5.1890459 10−9 −3.1198281 10−10

F̂ 15
1 3.8067962 10−9 −8.7501891 10−13 −3.7904260 10−9 −2.4180451 10−9

F̂ 51
1 1.3706334 10−8 −3.1504975 10−12 −3.0253509 10−9 −1.8567076 10−9

F̂ 55
1 −3.3505411 10−8 7.7014546 10−12 1.0657621 10−9 2.3331039 10−9

mt F̂ 11
3 0.0 0.0 1.2278260 10−10 −5.8408953 10−11

mt F̂ 51
3 0.0 0.0 −9.9306672 10−11 4.2452469 10−11

Table 5.2: Same as Table 5.1 for
√

s = 1 TeV.
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f.f. Born weak 1-loop contributions

Re Im Re Im

F̂ 11
1 −6.9644350 10−9 4.3540072 10−15 1.0150162 10−9 5.649373 10−12

F̂ 15
1 4.1984821 10−10 −1.0643459 10−14 −6.7526508 10−10 −3.4236400 10−10

F̂ 51
1 1.5116596 10−9 −3.8321674 10−14 −6.0751808 10−10 −2.6754958 10−10

F̂ 55
1 −3.6952823 10−9 9.3678104 10−14 3.5632400 10−10 3.4974067 10−10

mt F̂ 11
3 0.0 0.0 2.9895163 10−12 −6.6708986 10−13

mt F̂ 51
3 0.0 0.0 −2.4939160 10−12 9.1292861 10−13

Table 5.3: Same as Table 5.1 for
√

s = 3 TeV.

In Fig. 5.2 we present the total integrated cross section as afunction of
√

s. From the previous discussion it is
clear that the effect of radiative corrections is less dramatic in the total cross section, since the effects above and
below the Born cross section are averaged out.

Figure 5.2: Total cross-section for top-pair production asa function ofs. Born (solid lines), electroweak (dashed
lines), electroweak withs′ = 0.7 s-cut (dotted lines) and electroweak withs′ = 0.7 s- and cos θ = 0.95-cut
(dash-dotted lines).

Finally the forward–backward asymmetry of the total integrated cross section can serve as a good observable
to determine the effects of radiative corrections. Towardshigher energies, the effects become distinctively.
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Figure 5.3: Forward–backward asymmetry for top-pair production as a function ofs. Born (solid lines),
electroweak (dashed lines), electroweak withs′-cut (dotted lines) and electroweak withs′ = 0.7 s- andcos θ =
0.95-cut (dash-dotted lines).

In summary our calculation shows that for the next generation of linear colliders with centre-of-mass energies
above

√
s = 500 GeV, electroweak radiative corrections modify the differential as well as the integrated cross

section within the experimental precision of a few per mille. The packagetopfit provides the means to calculate
those corrections and allows predictions for various realistic cuts on the scattering angle as well as on the energy
of the photon.
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Appendices

A Translation of Tensor Decompositions

On the left-hand side we give the Passarino-Veltman functions, used in [29], according to the tensor decomposition
of Feynman diagrams with respect to external momenta as systematically introduced in [31]. On the right-hand
side we follow the corresponding notation in theLoopTools package [30], withλ 6= 0. There are also sign
differences reflecting different notions of metrics.

C0 = −C0 (A.1)

C11 = −C1 − C2 (A.2)

C12 = −C2 (A.3)

C24 = C00 (A.4)

C21 = −C11 − 2C12 − C22 (A.5)

C22 = −C22 (A.6)

C23 = −C12 − C22 (A.7)

D11 = D1 + D2 + D3 (A.8)

D12 = D2 + D3 (A.9)

D13 = D3 (A.10)

D21 = D11 + 2D12 + 2D13 + 2D23 + D22 + D33 (A.11)

D22 = 2D23 + D22 + D33 (A.12)

D23 = D33 (A.13)

D24 = D12 + D13 + 2D23 + D22 + D33 (A.14)

D25 = D13 + D23 + D33 (A.15)

D26 = D23 + D33 (A.16)

D27 = −D00 (A.17)

B Renormalization

A detailed formulation of renormalization of fermion pair production can be found in various textbooks, e.g. [39].
To complete the documentation of our calculation we presentsome relations resulting from the application of an
on-mass-shell renormalization, closely following [32]. They had been used to derive the formulae given in Section
3.

After the renormalization of the boson self-energies: we have to use the following expressions:

Σren
Z (p2) = ΣZ(p2) − Re ΣZ(M2

Z) ≡ ΣZ(p2) − δM2
Z (B.1)

Σren
γ (p2) = Σγ(p2) (B.2)

Σren
γZ (p2) = ΣγZ(p2) (B.3)

The divergent parts of those renormalized self-energies were given in (3.7). For the mixing angle renormaliza-
tion Re ΣZ(M2

Z
) = δM2

Z
andRe ΣW (M2

W
) = δM2

W
are needed:

δ sin2 θw = cos2 θw

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
. (B.4)
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Among the free parameters of the theory we have, only one coupling constante, using

g sin θw = g′ cos θw = e =
√

4παem(0) (B.5)

The electric charge renormalization differs in pure QED andelectroweak theory

e2,ren = 4παem(0)

(
1 + 2

δe

e

)
(B.6)

δe

e

QED

= −1

2
δZγ =

1

2

∂

∂ p2
Σγ(p2)∣∣∣∣ p2=0

(B.7)

δe

e

weak

=
1

2

∂

∂ p2
Σγ(p2)∣∣∣∣ p2=0

− sin θw

cos θw

ΣZ γ(0)

M2
Z

(B.8)

The wav-function renormalization factorZf is obtained from the fermion self-energyΣf , with

Σf (p) = A(p2) + B(p2) (p/ − mf ) + C(p2) p/γ5 (B.9)

The resultingZ factor is:

Zf = 1 + za,f + zb,f γ5 .

= 1 + B(m2
f ) + 2mfA′(p2)|m2

f
+ C(m2

f ) γ5 . (B.10)

For QED, the axial terms vanish, of course. Explicitly, the UV-divergent parts are given by :

zUV
a,f = − e2

sin2 θw

1

ǫ

(
3

8

m2
f

M2
W

+
1

8

m2
f ′

M2
W

)
− e2 1

ǫ
(Q2

f + a2
f + v2

f ) (B.11)

zUV
b,f = − e2

sin2 θw

1

ǫ

(
−1

4
+

1

8

m2
f

M2
W

− 1

8

m2
f ′

M2
W

)
+ e2 1

ǫ
(2 af vf ) (B.12)

δeweak ,UV

e
= e2 11

6

1

ε
(B.13)

δ sin2 θUV
w = e2

(
41

6
− 21

2
cos2 θw +

11

3
cos4 θw

)
1

sin2 θw

1

ε
= e2

(
41

6
− 11

3
cos2 θw

)
1

ǫ
(B.14)

with f ′ denoting the isospin partner off .
The above relations define the complete renormalization procedure needed for our reaction. A vertex renor-

malization, e.g. resulting from terms such aseΨ̄γµAµΨ in the Lagrangian, traces back toδe andZf . Explicit
formulae may be found in the Fortran code [17].

C Infrared Divergences

The conventions of the one-loop functions and related ones are those used in the packageLoopTools [30]. In
particular the normalization of the one-loop integration is used as in the following simplest example:

A0(m
2) =

(2πµ)4−d

iπ2

∫
ddk

k2 − m2
= −(4πµ2)2−

d
2

1

(m2)1−
d
2

Γ(1 − d

2
)
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= m2

[
1 − ln

m2

µ2
+

1

ǫ
− γE + ln(4π)

]
+ O(ǫ). (C.1)

In the Fortran program, we leave the treatment of IR divergences to the packages used for the calculation of
one-loop integrals. Additionally, we checked analytically their cancellation. For this purpose, we isolated them in
the few IR-divergent scalar integrals contributing to the processe+e− → tt̄ .

One-loop infrared divergences are due to the exchange of a photon between two massive particles, which occur
also as external (on-shell) ones.

Wave function renormalization yields IR-divergent contributionsDB0 andDB1, the on-mass-shell derivatives
of B0 andB1 (w.r.t. the external momentum squared). From5 With the representation

B1(p
2;m2

1,m
2
2) =

1

2p2

[
(m2

2 − m2
1 − p2) B0(p

2,m2
1,m

2
2) + A0(m

2
1) − A0(m

2
2)
]

(C.2)

one arrives at

DB1(m
2;m2, 0) ≡ ∂

∂ p2
B1(p

2;m2, 0)∣∣∣ p2=m2

=
1

2m4

[
−A0(m

2) + m2 B0(m
2;m2, 0) − 2m4DB0(p

2;m2, 0)∣∣∣ p2=m2

]
. (C.3)

The UV divergences cancel at the right-hand side and the IR divergence is traced back toDB0. We men-
tion for completeness that the similar functionDB1(m

2; 0,m2) ≡ ∂
∂ p2 B1(p

2 = m2; 0,m2) = [A0(m
2) −

m2B0(m
2; 0,m2)]/(2m4), arising from the charged current self-energy with a massless neutrino, is finite.

An explicit calculation gives

DB0(p
2;m2, 0)∣∣∣ p2=m2

=
1

(m2)3−d/2

Γ(3 − d/2)

(d − 3)(d − 4)
(2
√

πµ)4−d

= − C0(m
2, 0,m2; 0,m2,m2)

d − 3
, (C.4)

C0(m
2, 0,m2; 0,m2,m2) ≃ − 1

m2
ln

m

λ
. (C.5)

Assigning the loop-momentumk to the photon line in the initial- and final-state vertex diagrams ensures that
the divergent part is exclusively contained in one scalar three-point functionC0 :

C0(m
2, s,m2; 0,m2,m2) =

−1

sβ

{
ln(y)

[
2 ln(1 + y) − 1

2
ln(y) − ln

λ2

m2

]
+

π2

6
+ 2Li2(−y)

}

(C.6)

with

y ≡ y(s,m,m) =

√
1 − 4m2/s − 1√
1 − 4m2/s + 1

=
β − 1

β + 1
+ iε. (C.7)

The finite, small photon massλ is defined according to (4.70).
Finally, IR-divergent functions from the photonic box diagrams,D0, , Dµ, andDµν , have to be considered. We
indicate for the direct two-photon box, shown in Fig. .4, howthe singularities can be isolated.

5In FF, there is noDB1 foreseen, while inLoopTools this function was numerically unstable forλ 6= 0. This might be improved
now.
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Figure .4: An infrared-divergent box diagram.

The key ingredient for this method [31] is the following identity:

D0 ∝
∫

d4k

[(k − q1)2 − m2
1] [(k − q2)2 − m2

2] [(k − q3)2 − m2
3] [k

2 − m2
4]

(C.8)

=
−1

s − m2
1 − m2

3

[∫
2 (k − q1) (k − q3) d4k

[(k − q1)2 − m2
1] [(k − q2)2 − m2

2] [(k − q3)2 − m2
3] [k

2 − m2
4]

− d4k

[(k − q2)2 − m2
2] [(k − q3)2 − m2

3] [k
2 − m2

4]
− d4k

[(k − q1)2 − m2
1] [(k − q2)2 − m2

2][k
2 − m2

4]

]
.

For m1 = m3 = 0, evidently the numerator of the first of the three terms makesit an IR-finite contribution and
the other two areC0 functions. To demonstrate more explicitely the procedure we select the above diagram (see
Fig. .4) and obtain (see also [40]):

s D0 ∝ s

∫
d4k

[(k − q1)2] [(k − q2)2 − m2
t ] [(k − q3)2] [k2 − m2

e]

IR−→
∫

d4k

[(k − q2)2 − m2
t ] [(k − q3)2] [k2 − m2

e]
+

∫
d4k

[(k − q1)2] [(k − q2)2 − m2
t ][k

2 − m2
e]

IR−→ C0(q
2
2 , (q3 − q2)

2, q2
3;m

2
e,m

2
t , 0) + C0(q

2
1, (q1 − q2)

2, q2
2 ;m

2
e, 0,m

2
t )

= 2 C0(t,m
2
t ,m

2
e;m

2
e,m

2
t , 0). (C.9)

Only one scalar function has to be calculated, and in the limit of vanishingme we find

C0(m
2
e, t,m

2
t ; 0,m

2
e,m

2
t ) =

1

T

[
− ln

memt

T
ln

λ2

memt
+ Li2

(
1 − m2

t

T

)
− 1

2
ln

m2
e

T
ln

m2
t

T

]
. (C.10)

From the crossed box diagram, we get another function,D0, with t in Eq. (C.10) replaced byu. When combining
virtual and soft corrections, the singularities of these functions are cancelled against the divergent parts of (4.78).

The vector and tensor functions may be treated quite similarly:

s Dµ ∝
∫

kµ d4k

[(k − q1)2] [(k − q2)2 − m2
2] [(k − q3)2] [k2 − m2

4]
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IR−→
∫

[(kµ − q3 µ) + q3µ]d4k

[(k − q2)2 − m2
2] [(k − q3)2] [k2 − m2

4]
+

∫
[kµ − q1 µ) + q1µ]d4k

[(k − q1)2] [(k − q2)2 − m2
2][k

2 − m2
4]

IR−→ (q1 µ + q3 µ ) C0(m
2
e, t,m

2
t ; 0,m

2
e,m

2
t ), (C.11)

s Dµν ∝
∫

kµ kνd4k

[(k − q1)2] [(k − q2)2 − m2
2] [(k − q3)2] [k2 − m2

4]
IR−→ (q1 µ q1 ν + q3 µ q3 ν ) C0(m

2
e, t,m

2
t ; 0,m

2
e,m

2
t ). (C.12)

To cross-check the result, we isolated the IR-divergent parts also with another approach, where the tensor
integrals are reduced to scalar ones by means of recurrence relations [41, 42]. The divergent contributions hidden
in the tensor integrals manifest themselves in the form of the three IR-divergent scalar functionsC0 introduced
above, namely (C.5) for self-energies, (C.6) for vertices,and (C.10) for boxes, correspondingly.
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