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Abstract

We consider the transverse-momentum (qT ) distribution of Higgs bosons produced at
hadron colliders. We use a formalism that uniformly treats both the small-qT and
large-qT regions in QCD perturbation theory. At small qT (qT ≪ MH , MH being the
mass of the Higgs boson), we implement an all-order resummation of logarithmically-
enhanced contributions up to next-to-next-to-leading logarithmic accuracy. At large
qT (qT ∼>MH), we use fixed-order perturbation theory up to next-to-leading order. The
resummed and fixed-order approaches are consistently matched by avoiding double-
counting in the intermediate-qT region. In this region, the introduction of unjustified
higher-order terms is avoided by imposing unitarity constraints, so that the integral of
the qT spectrum exactly reproduces the perturbative result for the total cross section
up to next-to-next-to-leading order. Numerical results at the LHC are presented.
These show that the main features of the qT distribution are quite stable with respect
to perturbative QCD uncertainties.
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The Standard Model (SM) of electroweak interactions has been spectacularly confirmed by
experimental data. However the mechanism of mass generation remains to be understood. In
its minimal version, the model predicts the existence of a scalar particle, the Higgs boson [1],
as a vehicle of electroweak symmetry breaking, but this particle has so far eluded experimental
discovery. The LEP collaborations have put a lower limit on the mass MH of the SM Higgs boson
at about 114 GeV [2], whereas fits to electroweak data prefer MH ∼< 200 GeV at 95% CL [3].
The next search for Higgs boson(s) will be carried out at hadron colliders, namely the Fermilab
Tevatron [4] and the CERN LHC [5].

The main SM Higgs production mechanism at hadron colliders is the gluon fusion process. At
leading order (LO), O(α2

S), in the QCD coupling αS this process occurs through a heavy-quark
(top-quark) loop and, being a gluon-initiated process, it is expected to receive large radiative
corrections. It is thus important to perform an accurate evaluation of higher-order QCD contri-
butions, together with a reliable estimate of the associated theoretical uncertainty.

The next-to-leading order (NLO) perturbative corrections to the total cross section for Higgs
boson production via gluon fusion were computed in Refs. [6] (in the limit of an infinitely-heavy
top quark) and [7] (including the dependence on the finite mass Mt of the top quark) and were
found to be large (of the order of 80–100%), thus casting doubts upon the reliability of the
perturbative expansion. In the last two years much effort has been devoted to improving the
accuracy of the perturbative calculation. In the large-Mt limit, the next-to-next-to-leading order
(NNLO) contribution has been computed in Ref. [8] and still higher-order contributions have
been evaluated in Ref. [9] by implementing soft-gluon resummation. Since these beyond-NLO
corrections are moderate, the perturbative QCD predictions for the total cross section are under
good control now.

In this letter we consider a less inclusive observable, the transverse-momentum (qT ) distribution
of the Higgs boson. An accurate theoretical prediction of this observable at the LHC [5] can be
important to enhance the statistical significance of the signal over the background and to improve
strategies for the extraction of the Higgs boson signal.

When studying the qT distribution of the Higgs boson in QCD perturbation theory, it is con-
venient to start by considering separately the large-qT and small-qT regions. Roughly speaking,
the large-qT region is identified by the condition qT ∼>MH . In this region, the perturbative series
is controlled by a small expansion parameter, αS(M

2
H), and calculations based on the truncation

of the series at a fixed-order in αS are theoretically justified†. In the small-qT region (qT ≪ MH),
where the bulk of events is produced, the convergence of the fixed-order expansion is spoiled, since
the coefficients of the perturbative series in αS(M

2
H) are enhanced by powers of large logarithmic

terms, lnm(M2
H/q2

T ). To obtain reliable perturbative predictions, these terms have to be system-
atically resummed to all orders in αS [11]. The fixed-order and resummed approaches have then
to be consistently matched at intermediate values of qT , so as to avoid the introduction of ad-hoc
boundaries between the large-qT and small-qT regions.

Higgs boson production at large qT has to be accompanied by the radiation of at least one
recoiling parton, so the LO term for this observable is of O(α3

S). The LO calculation was reported
in Ref. [12]; it shows that the large-Mt approximation works well as long as both MH and qT are

†We are not considering the extreme limit qT ≫ MH , where a resummation of enhanced perturbative terms is
required [10].
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smaller than Mt. Similar results on the validity of the large-Mt approximation were obtained in the
case of the associated production of a Higgs boson plus 2 jets (2 recoiling partons at large transverse
momenta) [13]. In the framework of the large-Mt approximation, the NLO QCD corrections to
the transverse-momentum distribution of the Higgs boson were computed first numerically [14]
and later analytically [15, 16]. In the large-qT region, the overall effect of the NLO corrections to
the qT distribution is of the same size as that of the NLO corrections to the total cross section.

The method to systematically perform all-order resummation of logarithmically-enhanced
terms at small qT is known [11, 17–21] (see also the list of references in Sect. 5 of Ref. [22]).
To correctly take into account the kinematics constraint of transverse-momentum conservation,
the resummation procedure has to be carried out in b space, where the impact parameter b is
the variable conjugate to qT through a Fourier transformation. In the case of the Higgs boson,
b-space resummation has been explicitly worked out at leading logarithmic (LL), next-to-leading
logarithmic (NLL) [23, 24] and next-to-next-to-leading logarithmic (NNLL) [25] level. The qT

distribution is then obtained by performing the inverse Fourier (Bessel) transformation with re-
spect to b. Various implementation formalisms [21, 26–31] have been proposed to transform the
resummed expressions back to qT space and to perform the matching with the fixed-order results
at large qT . Phenomenological applications to the Higgs boson qT distribution have been presented
in Refs. [32, 24, 33–37], by combining resummed and fixed-order perturbation theory at different
levels of theoretical accuracy.

In the following we use the formalism described in Ref. [31] to compute the Higgs boson qT

distribution at the LHC. In particular, we combine the most advanced perturbative information
that is available at present: NNLL resummation at small qT and NLO calculations at large qT .
More details will be given elsewhere.

We consider the collision of two hadrons h1 and h2 with centre-of-mass energy
√

s. According
to the QCD factorization theorem (see Ref. [38] and references therein), the transverse-momentum
differential cross section for the production of the SM Higgs boson can be written as

dσ

dq2
T

(qT , MH , s) =
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa/h1
(x1, µ

2
F ) fb/h2

(x2, µ
2
F )

dσ̂ab

dq2
T

(qT , MH , ŝ; αS(µ
2
R), µ2

R, µ2
F ) ,

(1)
where fa/h(x, µ2

F ) (a = q, q̄, g) are the parton densities of the colliding hadrons at the factorization
scale µF , dσ̂ab/dq2

T are the partonic cross sections, ŝ = x1x2s is the partonic centre-of-mass energy,
and µR is the renormalization scale. Throughout the paper we use parton densities as defined in
the MS factorization scheme, and αS(q

2) is the QCD running coupling in the MS renormalization
scheme.

The partonic cross section is computable in QCD perturbation theory and, as discussed above,
it is evaluated by introducing the decomposition

dσ̂ab

dq2
T

=
dσ̂

(res.)
ab

dq2
T

+
dσ̂

(fin.)
ab

dq2
T

. (2)

The first term on the right-hand side contains all the logarithmically-enhanced contributions,
αn

S/q2
T lnm Q2/q2

T , at small qT , and has to be evaluated by resumming them to all orders in αS.
The second term is free of such contributions, and can be computed by fixed-order truncation of
the perturbative series.
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The resummed component dσ̂
(res.)
ac of the partonic cross section is written as

dσ̂
(res.)
ac

dq2
T

(qT , MH , ŝ; αS(µ
2
R), µ2

R, µ2
F ) =

1

2

∫ ∞

0

db b J0(bqT ) Wac(b, MH , ŝ; αS(µ
2
R), µ2

R, µ2
F ) , (3)

where J0(x) is the 0th-order Bessel function. The factor W embodies the all-order dependence on
the large logarithms L = ln M2

Hb2 at large b, which corresponds to the qT -space terms ln M2
H/q2

T

that are logarithmically enhanced at small qT (the limit qT ≪ MH corresponds to MHb ≫ 1,
because b is the variable conjugate to qT ). Resummation of these large logarithms is better
expressed by defining the N -moments WN of W with respect to z = M2

H/ŝ at fixed MH :

Wac, N(b, MH ; αS(µ
2
R), µ2

R, µ2
F ) ≡

∫ 1

0

dz zN−1 Wac(b, MH , ŝ = M2
H/z; αS(µ

2
R), µ2

R, µ2
F ) . (4)

The resummation structure of Wac, N can indeed be organized in exponential form as follows:

WN(b, MH ; αS(µ
2
R), µ2

R, µ2
F ) = HN

(
αS(µ

2
R); M2

H/µ2
R, M2

H/µ2
F

)

× exp{GN (αS(µ
2
R), bMH ; M2

H/µ2
R, M2

H/µ2
F )} , (5)

where the subscripts denoting the flavour indices are understood‡.

All the large logarithmic terms αn
SLm = αn

S lnm MHb with 1 ≤ m ≤ 2n are included (actually,
the complete dependence on b is included) in the form factor exp{G}. More importantly, all the
logarithmic contributions to G with n + 2 ≤ m ≤ 2n are vanishing. Thus, the exponent G can
systematically be expanded as

GN(αS, bMH ; M2
H/µ2

R, M2
H/µ2

F ) = L̃ g(1)(αSL̃) + g
(2)
N (αSL̃; M2

H/µ2
R)

+ αS g
(3)
N (αSL̃; M2

H/µ2
R, M2

H/µ2
F ) + . . . , (6)

where αS = αS(µ
2
R) and the functions g(n)(αSL̃) are defined such that g(n) = 0 when αSL̃ = 0.

Thus the term L̃g(1) collects the LL contributions αn
SL̃n+1; the function g(2) resums the NLL

contributions αn
SL̃n; g(3) controls the NNLL terms αn

SL̃n−1, and so forth. Note that in the expansion
(6) the logarithmic variable L has been replaced by

L̃ = ln
(
M2

Hb2/b2
0 + 1

)
, (7)

where b0 = 2e−γ. In the resummation region MHb ≫ 1, the replacement is fully legitimate since
L̃ ∼ L. The reason for using L̃ rather than L is discussed below.

The function HN in Eq. (5) does not depend on b and, hence, its evaluation does not require
resummation of large logarithmic terms. It can be expanded in powers of αS = αS(µ

2
R) as

HN(αS; M
2
H/µ2

R, M2
H/µ2

F ) = σ0 α2
S

[
1 +

αS

2π
H(1)

N (M2
H/µ2

R, M2
H/µ2

F )

+
(αS

2π

)2

H(2)
N (M2

H/µ2
R, M2

H/µ2
F ) + . . .

]
, (8)

‡More precisely, we are presenting the resummation formulae in a simplified form which is valid when there is
a single species of partons. In general, the exponential is replaced by an exponential matrix with respect to the
flavour indices of the partons.
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where σ0 = GF/(288π
√

2) is the Born level cross section in the large-Mt approximation, and
GF = 1.16639 × 10−5 GeV−2 is the Fermi constant.

The ‘finite’ component dσ̂
(fin.)
ab of the partonic cross section does not require resummation of

large logarithmic terms either. We compute it as follows:

dσ̂
(fin.)
ab

dq2
T

=
[dσ̂ab

dq2
T

]

f.o.
−

[dσ̂
(res.)
ab

dq2
T

]

f.o.
. (9)

The first term on the right-hand side is the usual perturbative series for the partonic cross section
truncated at a given fixed order in αS. The second term is obtained by truncating the resummed
component in Eq. (3) at the same fixed order in αS. The (small-qT ) resummed and (large-qT ) fixed-
order approaches are thus consistently matched by avoiding double-counting in the intermediate-qT

region. This procedure guarantees that the right-hand side of Eq. (2) contains the full information
of the perturbative calculation up to the fixed order specified by Eq. (3) plus resummation of
logarithmically-enhanced contributions from higher orders.

A few distinctive features of the formalism described so far require some comments.

We implement perturbative QCD resummation at the level of the partonic cross section. In
the factorization formula (1), the parton densities are thus evaluated at the factorization scale
µF , as in the customary perturbative calculations at large qT . The central value of µF and µR

has to be set equal to MH , the typical hard scale of the process, and the theoretical accuracy of
the resummed calculation can be investigated as in fixed-order calculations, by varying µF and
µR around this central value.

The variables L and L̃ are equivalent to organize the resummation formalism in the region
MHb ≫ 1. The use of the variable L̃ is inspired by the procedure introduced in Ref. [39] to
deal with kinematical constraints when performing soft-gluon resummation in e+e− event shapes.
When MHb ≪ 1, L̃ → 0 and exp{G} → 1. Therefore, using the definition in Eq. (7), we avoid
the introduction of all-order contributions in the small-b region, where the use of the large-b
resummation formalism is not justified. In particular, exp{G} = 1 at b = 0. This implies that
the integral over qT of dσ/dqT exactly reproduces the fixed-order calculation of the total cross
section. Note that the bulk of the qT distribution is in the region qT ∼<MH . Since resummed and
fixed-order perturbation theory controls the small-qT and large-qT regions respectively, the total
cross section constraint mainly acts on the size of the higher-order contributions introduced in the
intermediate-qT region by the matching procedure.

It is known [26–28, 40, 41] that non-perturbative effects have an increasing role in the qT

distribution as qT decreases. However, we do not include non-perturbative contributions. The
main goal of the quantitative study presented below is to investigate the predictivity of QCD
within a purely perturbative framework. In particular, we want to examine how the Higgs boson
qT distribution is affected by perturbative QCD uncertainties, such as its dependence on scale
variations and on higher-order contributions.

The functions g
(k)
N (αSL̃) and the coefficients H(k)

N in Eqs. (6) and (8) can be expressed (see for
instance Ref. [29]) in terms of perturbative coefficients known as A(n), B(n), C(n) [21] and H(n) [31].

In particular, g(1) depends on A(1), g
(2)
N also depends on B(1) and A(2) [23], g

(3)
N also depends on

H(1), C(1) [24], B(2) [25,16] and A(3), H(1)
N depends on H(1) and C(1), H(2)

N also depends on H(2) and
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C(2). We also observe that the functions g
(2)
N and g

(3)
N receive additional contributions respectively

from the LO and NLO anomalous dimensions that control the evolution of the parton densities.
The NNLL coefficient A(3) is not yet known. In the following we assume that its value is the same
as the one [42] that appears in resummed calculations of soft-gluon contributions near threshold.

The coefficient H(2)
N is not known in analytic form either. However, within our formalism we

can exploit the property that the integral of the qT distribution exactly matches the fixed-order
calculation of the total cross section. From the known NNLO result for the total cross section [8],

we thus extract H(2)
N in (approximate) numerical form. As pointed out in Ref. [31], the coefficients

B(n), C(n) and H(n) cannot separately be defined without fixing a resummation scheme. Note,
however, that the dependence on the choice of the resummation scheme cancels by recasting the
resummed formulae in the form of Eq. (5): the functions g

(k)
N (αSL̃) and the coefficients H(k)

N in
Eqs. (6) and (8) are explicitly resummation-scheme independent.

The functions g
(k)
N (αSL̃) are singular when λ = β0αSL̃ → 1 (β0 is the first coefficient of the

QCD β-function). The singular behaviour is related to the presence of the Landau pole in the
perturbative running of the QCD coupling αS(q

2). To properly define the b integration in Eq. (3),
a prescription to deal with these singularities has to be introduced. Here we follow Ref. [43] and
deform the integration contour in the complex b space, as an extension of the minimal prescription
of Ref. [44].

In the following we present quantitative results at NLL+LO and NNLL+NLO accuracy. We
implement Eqs. (2) and (9). At NLL+LO accuracy, we compute dσ(res.) at NLL accuracy (we

include the coefficient H(1)
N and the functions g

(1)
N and g

(2)
N ), and we match it with [dσ]f.o. evaluated

at LO (i.e. at O(α3
S)). At NNLL+NLO accuracy, we also include H(2)

N and g
(3)
N in the resummed

component and we evaluate [dσ]f.o. at NLO (i.e. at O(α4
S)). As for the evaluation of [dσ]f.o.,

we use the Monte Carlo program of Ref. [14]. The numerical results are obtained by using the
MRST2001 set of parton distributions [45] and choosing MH = 125 GeV. At NLL+LO we use LO
parton densities and 1-loop αS, whereas at NNLL+NLO we use NLO parton densities and 2-loop
αS.

The NLL+LO results at the LHC are shown in Fig. 1. In the left-hand side, the full NLL+LO
result (solid line) is compared with the LO one (dashed line) at the default scales µF = µR = MH .
We see that the LO calculation diverges to +∞ as qT → 0. The effect of the resummation is
relevant below qT ∼ 100 GeV. In the right-hand side we show the NLL+LO band that is obtained
by varying µF = µR between 1/2MH and 2MH . The scale dependence increases from about ±10%
at the peak to about ±20% at qT = 100 GeV. The integral of the resummed curve is in good
agreement with the value of the NLO total cross section evaluated with LO parton densities and
1-loop αS, the small difference being due to the (improvable) numerical precision of our code.

The NNLL+NLO results at the LHC are shown in Fig. 2. In the left-hand side, the full result
(solid line) is compared with the NLO one (dashed line) at the default scales µF = µR = MH .
The NLO result diverges to −∞ as qT → 0 and, at small values of qT , it has an unphysical peak
(the top of the peak is above the vertical scale of the plot) which is produced by the numerical
compensation of negative leading logarithmic and positive subleading logarithmic contributions.
It is interesting to compare the LO and NLL+LO curves in Fig. 1 and the NLO curve in Fig. 2. At
qT ∼ 50 GeV, the qT distribution sizeably increases when going from LO to NLO and from NLO
to NLL+LO. This implies that in the intermediate-qT region there are important contributions

5



Figure 1: LHC results at NLL+LO accuracy.

that have to be resummed to all orders rather than simply evaluated at the next perturbative
order. The qT distribution is (moderately) harder at NNLL+NLO than at NLL+LO accuracy.
The height of the NNLL peak is a bit lower than the NLL one. This is mainly due to the fact that
the total NNLO cross section (computed with NLO parton densities and 2-loop αS), which fixes
the value of the qT integral of our resummed result, is slightly smaller than the NLO one, whereas
the high-qT tail is higher at NNLL order, thus leading to a reduction of the cross section at small
qT . We find that the contribution of A(3) (recall that we are using an educated guess on the value

of the coefficient A(3)) can safely be neglected. The coefficient H(2)
N contributes significantly, and

enhances the qT distribution by roughly 20% in the region of intermediate and small values of
qT . The resummation effect starts to be visible below qT ∼ 100 GeV, and it increases the NLO
result by about 40% at qT = 50 GeV. The right-hand side of Fig. 2 shows the scale dependence
computed as in Fig. 1. The scale dependence is now about ±6% at the peak and increases to ±20%
at qT = 100 GeV. Comparing Figs. 1 and 2, we see that the NNLL+NLO band is smaller than the
NLL+LO one and overlaps with the latter at qT ∼< 100 GeV. This suggests a good convergence of
the resummed perturbative expansion.

We have considered perturbative QCD predictions for the Higgs boson qT distribution at
the LHC. We have shown that the main features of the qT distribution are quite stable with
respect to perturbative uncertainties (scale variations, inclusion of higher orders in the resummed
expansion). More details about the formalism and our numerical results will be presented in a
future publication, where we shall also consider the inclusion of non-perturbative contributions.
Available studies [35–37] of non-perturbative contributions at the LHC estimate effects (at most)
of the order of a few per cent when qT ∼> 10 GeV. These effects are smaller than the resummation
effects examined here.
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Figure 2: LHC results at NNLL+NLO accuracy.
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