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Abstract

Interactions of heavy Majorana neutrinos in the thermal phase of the early universe

may be the origin of the cosmological matter-antimatter asymmetry. This mech-

anism of baryogenesis implies stringent constraints on light and heavy Majorana

neutrino masses. We derive an improved upper bound on the CP asymmetry in

heavy neutrino decays which, together with the kinetic equations, yields an upper

bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at

temperatures above the temperature TB of baryogenesis can erase other, pre-existing

contributions to the baryon asymmetry. We find that these washout processes be-

come very efficient if the effective neutrino mass m̃1 is larger than m∗ ≃ 10−3 eV.

All memory of the initial conditions is then erased. Hence, for neutrino masses

in the range from
√

∆m2
sol ≃ 8 × 10−3 eV to

√
∆m2

atm ≃ 5 × 10−2 eV, which is

suggested by neutrino oscillations, leptogenesis emerges as the unique source of the

cosmological matter-antimatter asymmetry.

http://arxiv.org/abs/hep-ph/0302092v1


1 Introduction

The explanation of the cosmological baryon asymmetry is a challenge for particle physics

and cosmology. In an expanding universe, which leads to departures from thermal equilib-

rium, C, CP and baryon number violating interactions of quarks and leptons can generate

dynamically a baryon asymmetry [1]. The possible realization of these conditions has first

been studied in detail in the context of grand unified theories [2, 3].

The picture of baryogenesis is significantly changed by the fact that already in the

standard model of particle physics baryon (B) and lepton (L) number are not conserved

due to quantum effects [4]. The corresponding non-perturbative ∆B = 3 and ∆L = 3

processes are strongly suppressed at zero temperature. However, at temperatures above

the critical temperature TEW of the electroweak transition they are in thermal equilibrium

[5] and only the difference B − L is effectively conserved.

During the past years data on atmospheric and solar neutrinos have provided strong

evidence for neutrino masses and mixings. In the seesaw mechanism [6] the smallness

of these neutrino masses mν is explained by the mixing mD of the left-handed neutrinos

with heavy Majorana neutrinos of mass M , which yields the light neutrino mass matrix

mν = −mD
1

M
mT

D . (1)

Since mD = O(v), where v ≃ 174 GeV is the electroweak scale, and M ≫ v, the neutrino

masses mν are suppressed compared to quark and charged lepton masses. CP violating

interactions of the heavy Majorana neutrinos can give rise to a lepton asymmetry and,

via the ∆B = 3 and ∆L = 3 sphaleron processes, to a related baryon asymmetry. This

is the simple and elegant leptogenesis mechanism [7].

Leptogenesis is a non-equilibrium process which takes place at temperatures T ∼ M1.

For a decay width small compared to the Hubble parameter, Γ1(T ) < H(T ), heavy

neutrinos are out of thermal equilibrium, otherwise they are in thermal equilibrium. A

rough estimate of the borderline between the two regimes is given by Γ1 = H(M1) (cf. [8]).

This is equivalent to the condition that the effective neutrino mass m̃1 = (m†
DmD)11/M1

equals the ‘equilibrium neutrino mass’

m∗ =
16π5/2

3
√

5
g1/2
∗

v2

Mpl
≃ 10−3 eV , (2)

where we have used Mpl = 1.2 × 1019 GeV and g∗ = 434/4 as effective number of degrees

of freedom. For m̃1 > m∗ ( m̃1 < m∗) the heavy neutrinos of type N1 are in (out of)

thermal equilibrium at T = M1.
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It is very remarkable that the equilibrium neutrino mass m∗ is close to the neutrino

masses suggested by neutrino oscillations,
√

∆m2
sol ≃ 8 × 10−3 eV and

√
∆m2

atm ≃ 5 ×
10−2 eV. This suggests that it may be possible to understand the cosmological baryon

asymmetry via leptogenesis as a process close to thermal equilibrium. Ideally, ∆L = 1

and ∆L = 2 processes would be strong enough at temperatures above M1 to keep the

heavy neutrinos in thermal equilibrium and weak enough to allow the generation of an

asymmetry at temperatures below M1.

An analysis of solutions of the Boltzmann equations shows that this is indeed the

case if light and heavy neutrino masses lie in an appropriate mass range. In general,

the final baryon asymmetry is the result of a competition between production processes

and washout processes which tend to erase any generated asymmetry. Unless the heavy

Majorana neutrinos are partially degenerate, M2,3−M1 ≤ M1, the dominant processes are

decays and inverse decays of N1 and the usual off-shell ∆L = 1 and ∆L = 2 scatterings.

The final baryon asymmetry then depends on just four parameters [9] : the mass M1 of

N1, the CP asymmetry ε1 in N1 decays, the effective neutrino mass m̃1 and, finally, the

sum of all neutrino masses squared, m2 = m2
1 + m2

2 + m2
3, which controls an important

class of washout processes. Together with the two mass squared differences ∆m2
atm and

∆m2
sol, the sum m2 determines all neutrino masses. Using an upper bound on the CP

asymmetry ε1 [10, 11], an upper bound on all light neutrino masses of 0.2 eV has recently

been derived [12].

In this paper we extend the previous analysis in two directions. We derive an improved

upper bound on the CP asymmetry which leads to a more stringent upper bound on light

neutrino masses. In addition, we study in detail the washout of a pre-existing B − L

asymmetry, which yields a lower bound on the effective neutrino mass m̃1. In this way

we obtain a window of neutrino masses for which leptogenesis can explain the observed

cosmological baryon asymmetry, independent of initial conditions.

The paper is organized as follows. In Section 2 we derive an improved upper bound

on the CP asymmetry ε1 and illustrate how it can be saturated for specific neutrino

mass matrices. Theoretical expectations for the range of neutrino masses are discussed

in Section 3. In Section 4 we then derive upper bounds on the light neutrino masses in

the cases of normal and inverted hierarchy, and we discuss the stability of these bounds.

Section 5 deals with the washout of a large initial B − L asymmetry, and a summary of

our results is given in Section 6.
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2 Bounds on the CP asymmetry

Given the masses of heavy and light Majorana neutrinos the CP asymmetry ε1 in the

decays of N1, the lightest of the heavy neutrinos, satisfies an upper bound [10, 11]. In

the following we shall study under which conditions this upper bound is saturated and

how it depends on the effective neutrino mass m̃1 which plays an important role in the

thermodynamic process of leptogenesis.

The standard model with right-handed neutrinos is described by the lagrangian,

Lm = hijlLiνRjφ +
1

2
Mijν

c
RiνRj + h.c. , (3)

where M is the Majorana mass matrix of the right-handed neutrinos, and the Yukawa

couplings h yield the Dirac neutrino mass matrix mD = hv after spontaneous symmetry

breaking, v = 〈φ〉. We work in the mass eigenstate basis of the right-handed neutrinos

where M is diagonal with real and positive eigenvalues M1 ≤ M2 ≤ M3. The seesaw

mechanism [6] then yields the light neutrino mass matrix

mν = −mD
1

M
mT

D , (4)

which can be diagonalized by a unitary matrix U (ν),

U (ν)†mνU
(ν)∗ = −




m1 0 0

0 m2 0

0 0 m3


 , (5)

with real and positive eigenvalues satisfying m1 ≤ m2 ≤ m3.

It is convenient to work in a basis where also the light neutrino mass matrix is diagonal.

In this basis the Yukawa couplings are

h̃ = U (ν)†h . (6)

As a consequence of the seesaw formula the matrix Ω,

Ωij =
v√

miMj

h̃ij , (7)

is orthogonal, ΩΩT = ΩT Ω = I [13]. It is then easy to show that the CP asymmetry ε1

[14]-[16] is given by (cf., e.g., [9])

ε1 =
3

16π

M1

v2

∑

i6=1

∆m2
i1

mi

Im
(
h̃2

i1

)

(
h̃†h̃

)
11

, (8)
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where ∆m2
i1 = m2

i − m2
1.

The CP asymmetry ε1 is bounded by the maximal asymmetry εmax
1 [12],

|ε1| ≤ εmax
1 =

3

16π

M1

v2

(∆m2
atm + ∆m2

sol)

m3
. (9)

As we will now show, this bound holds for arbitrary values of m2, i.e. for normal and for

inverted hierarchy, and it is saturated in the limit m1 → 0.

Consider the normalized Yukawa couplings

zi =
h̃2

i1

(h̃†h̃)11

= xi + iyi , (10)

with

0 ≤ |zi| ≤ 1 ,
∑

i

|zi| = 1 . (11)

The orthogonality condition (ΩT Ω)11 = 1 yields the additional constraint

∑

i

m̃1

mi
zi = 1 . (12)

In the new variables the CP asymmetry reads

ε1 =
3

16π

M1

v2

(
∆m2

21

m2
y2 +

∆m2
31

m3
y3

)
. (13)

Since m3 > m2, one also has ∆m2
31/m3 > ∆m2

21/m2. This suggests that the maximal CP

asymmetry is reached for maximal y3.

Suppose now that 1 − y3 = O(ǫ). Because of Eqs. (11) this implies y2, y1 and all xi

have to vanish in the limit ǫ → 0. The orthogonality condition (ΩT Ω)11 = 1 yields

y1

m1
+

y2

m2
+

y3

m3
= 0 , (14)

m̃1

m1
x1 +

m̃1

m2
x2 +

m̃1

m3
x3 = 1 . (15)

Since m2 > 0, these conditions are satisfied for maximal y3, if y2 = x2 = x3 = 0 and

m1 , y1 ∝ ǫ , (16)

m̃1 ∝ ǫa , x1 ∝ ǫ1−a , 0 ≤ a < 1 . (17)

Note that in the limit ǫ → 0, N1 couples only to l3φ. For a > 0, N1 decouples completely,

since h̃2
i1 = (h̃†h̃)11zi and (h̃†h̃)11 ∝ m̃1.
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An explicit example, which illustrates this saturation of the CP bound, is given by the

following orthogonal matrix,

Ω =




A 0 −B

0 1 0

B 0 A


 , (18)

with

B2 = i
v2

m3M1
bǫa , A2 = 1 − B2 , b > 0 . (19)

The corresponding Yukawa couplings squared are
(
h̃2

i1

)
=

(
m1M1

v2
− i

m1

m3

bǫa, 0, ibǫa

)
. (20)

One obviously has x2 = x3 = y2 = 0, and y3 → 1, x1, y1 → 0 in the limit ǫ → 0. The

matrix of Yukawa couplings,

h̃ =




√
m1M1

v2 − im1

m3
bǫa 0

√
im1M3

m3M1
bǫa

0
√

m2M2

v
0

−
√

ibǫa 0
√

m3M3

v2 − iM3

M1

bǫa


 , (21)

becomes diagonal in the limit ǫ → 0 for a > 0. Hence, in this basis, the large neutrino

mixings are due to the charged lepton mass matrix.

This example illustrates that m̃1 can be arbitrary in the limit m1 → 0. It approaches

b2v2/M1 for a = 0, while it goes to 0 for a > 0. Hence, the maximal CP asymmetry

(9) can be reached for arbitrary values of m2 and m̃1. For a given CP asymmetry, the

maximal baryon asymmetry is reached in the limit m̃1 → 0, assuming thermal initial N1

abundance. The corresponding, model independent lower bound on the heavy neutrino

mass M1 was determined in [9] to be M1 > 4 × 108 GeV. If the Yukawa couplings h̃ are

restricted, a more stringent lower bound on M1 can be derived [17].

The above discussion can easily be extended to derive the maximal CP asymmetry in

the case of arbitrary m̃1. Since m3 > m2 > m1, one again has x3 = x2 = y2 = 0. From

Eqs. (14),(15) one then concludes

y1 = −m1

m3
y3 , x1 =

m1

m̃1
. (22)

Together with the constraint (cf. (11)),
√

x2
1 + y2

1 + |y3| = 1, these conditions determine

|y3| as function of m1, m3 and m̃1. Inserting the result into Eq. (13) yields the improved

upper bound

εmax
1 =

3

16π

M1m3

v2

[
1 − m1

m3

(
1 +

m2
3 − m2

1

m̃2
1

)1/2
]

. (23)
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For m1 = 0 the result coincides with the previous bound (9). For 0 < m1 ≤ m̃1 the

new bound is more stringent. In particular, εmax
1 = 0 for m̃1 = m1. Note that according

to Eq. (23) the only model independent restriction on the effective neutrino mass is

m̃1 ≥ m1. The improved upper bound on the CP asymmetry implies also a bound on the

light neutrino masses which is more stringent than the one obtained in [12]. This will be

discussed in Section 4.

3 Range of neutrino masses

At present we know two mass squared differences for the light neutrinos, which are deduced

from the measurements of solar and atmospheric neutrino fluxes. In addition we have

information about elements of the mixing matrix U in the leptonic charged current. Since

U could be entirely due to mixings of the charged leptons, this does not constrain the light

neutrino mass matrix in a model independent way. The light neutrino masses m1 < m2 <

m3 can be either quasi-degenerate or hierarchical, with m2 − m1 ≪ m3 − m2 (‘normal

hierarchy’) or m3 − m2 ≪ m2 − m1 (‘inverted hierarchy’). The best information on the

absolute neutrino mass scale comes from neutrinoless double β-decay, which yields an

upper bound on the light Majorana neutrino masses of about 1 eV [18, 19].

A crucial quantity for thermal leptogenesis is the effective neutrino mass m̃1 which is

always larger than m1 [20], as one easily sees from the orthogonality of Ω (cf. (7)),

m̃1 =
v2

M1

∑

i

|h̃2
i1| =

∑

i

mi|Ω2
i1|

≥ m1

∑

i

|Ω2
i1| ≥ m1

∑

i

Re(Ω2
i1) = m1 . (24)

As we saw in the previous Section, the maximal CP asymmetry is reached for m1 = 0,

such that m2 ≃
√

∆m2
sol and m3 ≃

√
∆m2

atm.

There is no model independent upper bound on m̃1. However, if there are no strong

cancelations due to phase relations between different matrix elements, one has

m̃1 ≤ m3

∑

i

|Ω2
i1| ∼ m3|

∑

i

Ω2
i1| = m3 . (25)

Hence, the natural range for the effective neutrino mass is m1 ≤ m̃1 . m3. In fact, we

are not aware of any neutrino mass model where this is not the case.

It is instructive to examine the range of m̃1 also in the special case |ε1| = εmax
1 . As we

saw in the previous section this case is realized for y2 = x2 = x3 = 0, corresponding to
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Re(Ω2
21) = Re(Ω2

31) = Im(Ω2
21) = 0. The orthogonality condition then implies Im(Ω2

11) =

−Im(Ω2
31) and Re(Ω2

11) = 1. Hence, for maximal CP asymmetry one has

m̃1 = m1

√
1 + Im(Ω2

31)
2 + m3 |Im(Ω2

31)| , (26)

showing that the value of m̃1 is tuned by just one quantity. For Im(Ω2
31) = 0, one

has m̃1 = m1, while the case m̃1 ≫ m3 corresponds to a fine tuned situation in which

|Im(Ω2
31)| = |Im(Ω2

11)| ≫ Re(Ω2
11) = 1.

If the observed large mixing angles in the leptonic charged current originate from the

neutrino mass matrix, which appears natural since their Majorana nature distinguishes

neutrinos from quarks, the masses m1 and m̃1 are related to m2 and m3. The seesaw

mechanism together with leptogenesis then also constrains the heavy Majorana neutrino

masses.

Large mixing angles are naturally explained if neutrino masses are quasi-degenerate

[23]. One then has m̃1 ≈ m1 ≈ m2 ≈ m3 > 0.1 eV. However, as shown in [9, 12] and

further strengthened in the following Section, quasi-degenerate neutrinos are strongly

disfavored by thermal leptogenesis. A possible exception is the case where also the heavy

Majorana neutrinos are partially degenerate. One then gets an enhancement of the CP

asymmetry which allows one to increase the neutrino masses and still have successful

leptogenesis. Models with ∆M21/M1 = (M2 − M1)/M1 < 5 × 10−2 and ∆M21/M1 =

5 × 10−7 have been considered in refs. [25] and [26], respectively. Note, however, that in

these examples the light neutrino masses are not quasi-degenerate. We shall pursue this

case further in Section 4.3.

The neutrino mass pattern with inverted hierarchy has also received much attention in

the literature. There is, however, the well known difficulty of this scenario to fit the large

angle MSW solution [27, 28]. We also do not know any model with inverted hierarchy

which incorporates successfully leptogenesis, and we shall therefore not pursue this case

further.

We are then left with the case of neutrino masses with normal hierarchy. There are

many neutrino mass models of this type with successful leptogenesis. The mass hierarchy

is usually controlled by a parameter ǫ ≪ 1. For the effective neutrino mass one can then

have, for instance, m̃1 ∼ m2 (cf. [26, 29]). A simple and attractive form of the light

neutrino mass matrix, which can account for all data, is given by [30, 31],

mν ∼




ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1




v2

M3

, (27)
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where coefficients O(1) have been omitted. This form could follow from a U(1) fam-

ily symmetry [32] or a relation between the hierarchies of Dirac and Majorana neutrino

masses [33]. In the second case one has m1, m2 ∼ ǫm3 and m̃1 ∼ m3, which is compatible

with leptogenesis. The structure of the mass matrix (27) as well as predictions for the

coefficients O(1) can be obtained in seesaw models where the exchange of two heavy Ma-

jorana neutrinos dominates [34]. In all these examples the range of the effective neutrino

mass is m1 ≤ m̃1 . m3.

Thermal leptogenesis also leads to a lower bound on M1, the smallest of the heavy

neutrino masses [35, 11]. In the minimal scenario, where the heavy neutrinos are not

degenerate, one obtains the lower bound M1 > 4×108 GeV [9]. It is reached for maximal

CP asymmetry (m1 = 0), minimal washout (m̃1 → 0), and assuming thermal initial N1

abundance. The bound becomes more stringent for restricted patterns of mass matrices

[17]. It can be relaxed if the heavy neutrinos are partially degenerate [24, 25, 26].

4 Improved upper bounds on neutrino masses

4.1 Maximal asymmetry and CMB constraint

It is useful to recast the maximal CP asymmetry (23) in the following way,

εmax
1 (M1, m̃1, m) = 10−6

(
M1

1010GeV

)
matm

m0

β(m̃1, m) , (28)

where matm =
√

∆m2
atm + ∆m2

sol, m0 = (16 π/3) (v2/1010 GeV) ≃ 0.051 eV, and

β(m̃1, m) =

(
m3 − m1

√
1 +

m2
atm

m̃2

1

)

matm

≤ 1 . (29)

The maximal value, β = 1, is obtained for m1 = 0. Note, that matm = m0 for the

best fit values extracted from the KamLAND data [22], ∆m2
sol = 6.9× 10−5 eV2, and the

SuperKamiokande data [21], ∆m2
atm = 2.5 × 10−3 eV2.

We will calculate particle numbers and asymmetries normalized to the number of

photons per comoving volume before the onset of leptogenesis at t⋆ [9]. For zero initial

B − L asymmetry, i.e. N i
B−L = 0, the final B − L asymmetry produced by leptogenesis

is given by

N f
B−L = −3

4
ε1 κf , (30)

where κf is the ‘efficiency factor’. In the minimal version of thermal leptogenesis one

considers initial temperatures Ti & M1, where M1 is the mass of the lightest heavy

9



neutrino N1. In this case κf ≤ 1, and the maximal value, κf = 1, is obtained for thermal

initial N1 abundance in the limit m̃1 → 0. The heavy neutrinos N1 then decay fully out of

equilibrium at temperatures well below M1, producing a B−L asymmetry which survives

until today since all washout processes are frozen at temperatures T ≪ M1.

In the case of general initial conditions and arbitrary values of m̃1, the efficiency factor

κf has to be calculated by solving the Boltzmann equations [36, 37, 38, 39, 9],

dNN1

dz
= −(D + S) (NN1

− N eq
N1

) , (31)

dNB−L

dz
= −ε1 D (NN1

− N eq
N1

) − W NB−L , (32)

where z = M1/T . There are four classes of processes which contribute to the different

terms in the equations: decays, inverse decays, ∆L = 1 scatterings and processes mediated

by heavy neutrinos. The first three all modify the N1 abundance. Denoting by H the

Hubble parameter, D = ΓD/(H z) accounts for decays and inverse decays, while S =

ΓS/(H z) represents the ∆L = 1 scatterings. The decays are also the source term for

the generation of the B − L asymmetry, the first term in Eq. (32), while all the other

processes contribute to the total washout term W = ΓW/(H z) which competes with the

decay source term.

We take into account only decays of N1, neglecting the decays of the heavier neutrinos

N2 and N3. These decays produce a B − L asymmetry at temperatures higher than M1.

As we shall see in Section 5, the washout processes at T ∼ M1 very efficiently erase

any previously generated asymmetry. Even in the case of very small mass differences the

decays of N2 and N3 do not change significantly the bound on the light neutrino masses,

which is our main interest. This will be discussed in Section 4.3.

The baryon to photon number ratio at recombination, ηB, is simply related to N f
B−L

by ηB = (a/f) N f
B−L, where a = 28/79 [40] is the fraction of B − L asymmetry which is

converted into a baryon asymmetry by sphaleron processes, and f = N rec
γ /N⋆

γ = 2387/86

accounts for the dilution of the asymmetry due to standard photon production from the

onset of leptogenesis till recombination. ηmax
B , the final baryon asymmetry produced by

leptogenesis with maximal CP asymmetry, i.e. ε1 = εmax
1 ), is given by

ηmax
B ≃ 0.96 × 10−2 εmax

1 κf . (33)

This quantity has to be compared with measurements of the CMB experiments

BOOMerANG [41] and DASI [42],

ηCMB
B = (6.0+1.1

−0.8) × 10−10 . (34)

10



The CMB constraint then requires ηmax
B ≥ ηCMB

B , and we will adopt for ηCMB
B the 3σ

lower limit, (ηCMB
B )low = 3.6 × 10−10.

In [9] we showed that ηmax
B depends just on the three parameters m̃1, M1 and m.

Thus, for a given value of m, the CMB constraint determines an allowed region in the

(m̃1, M1)-plane. It was also shown that there is an upper bound for m above which no

allowed region exists. In [12], based on the bound (9) for the CP asymmetry, m < 0.30 eV

was derived as upper bound on the neutrino mass scale. In the following we shall study

the allowed regions in the (m̃1, M1)-plane for different parameters m using the improved

bound on the CP asymmetry (23) and in this way determine a new improved bound on

m.

4.2 Numerical results

The neutrino masses m1 and m3 depend in a different way on m in the cases of normal

and inverted hierarchy, respectively. Hence, also the dependence of the function β on m is

different for these two mass patterns. This leads to different maximal baryon asymmetries

ηmax
B , and therefore to different upper bounds on m, in the two cases which we now study

in turn.

For neutrino masses with normal hierarchy one has

m 2
3 − m 2

2 = ∆m2
atm , m 2

2 − m 2
1 = ∆m2

sol , (35)

and the dependence on m is given by

m 2
3 =

1

3

(
m2 + 2∆m2

atm + ∆m2
sol

)
, (36)

m 2
2 =

1

3

(
m2 − ∆m2

atm + ∆m2
sol

)
, (37)

m 2
1 =

1

3

(
m2 − ∆m2

atm − 2∆m2
sol

)
. (38)

These relations are plotted in Fig. 1. Note that there is a minimal value of m, correspond-

ing to m1 = 0, which is given by mmin =
√

∆m2
atm + 2∆m2

sol ≃ 0.051 eV.

Fig. 2 shows the lines of constant maximal baryon asymmetry ηmax
B = (ηCMB

B )low (thick

lines) and ηmax
B = 10−10 (thin lines) in the (m̃1, M1)-plane for different choices of m and

assuming zero initial N1 abundance. The allowed regions (the filled ones) correspond to

the constraint ηmax
B ≥ (ηCMB

B )low. The largest allowed region is obtained for m = mmin,

since in this case the CP asymmetry is maximal, i.e. β = 1 for any value of m̃1, and the

washout is minimal. Note that a different choice for the initial N1 abundance would have

affected the final baryon asymmetry only for m̃1 < m∗. The case of an initial thermal

11
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abundance has been studied in [9]. When m increases different effects combine to shrink

the allowed region until it completely disappears at some value mmax.

We have determined this value with a numerical uncertainly of 0.01 eV. From Fig. 2

one can see that there is a small allowed region for m = 0.19 eV, whereas we found no

allowed region for m = 0.20 eV. Hence, the value of mmax is somewhere in between and

we can conclude that in the case of normal hierarchy,

m < 0.20 eV . (39)

Using the relations (36)-(38), one can easily translate this bound into upper limits on the

individual neutrino masses (cf. Fig. 1),

m1, m2 < 0.11 eV , m3 < 0.12 eV . (40)

The case of an inverted hierarchy of neutrino masses corresponds to

m2
3 − m2

2 = ∆m2
sol , m2

2 − m2
1 = ∆m2

atm , (41)

and the relations between the neutrino masses and m are

m2
3 =

1

3

(
m2 + ∆m2

atm + 2 ∆m2
sol

)
, (42)

m2
2 =

1

3

(
m2 + ∆m2

atm − ∆m2
sol

)
, (43)

m2
1 =

1

3

(
m2 − 2 ∆m2

atm − ∆m2
sol

)
. (44)

We have plotted these relations in Fig. 3. The minimal value of m, corresponding to

m1 = 0, is now mmin =
√

2 ∆m2
atm + ∆m2

sol ≃ 0.072 eV.

The curves of constant ηmax
B are shown in Fig. 4 for different values of m. The largest

allowed region is again obtained for m = mmin. One can see that this time there is a tiny

allowed region for m = 0.20 eV and no allowed region for m = 0.21 eV. Therefore, in the

case of inverted hierarchy the upper bound is slightly relaxed,

m < 0.21 eV . (45)

Using the relations (42)-(44) one can again translate the bound on m into bounds on the

individual neutrino masses,

m1 < 0.11 eV , m2, m3 < 0.12 eV . (46)

Let us now discuss the different effects which combine to shrink the allowed region

when the absolute neutrino mass scale m increases, thus yielding the upper bound. The
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first effect is that away from the hierarchical neutrino case, for m > mmin and m1 > 0, the

maximal CP asymmetry reduces considerably. This can be seen in terms of the function

β (cf. (29)) which is conveniently expressed in the form

β = βmax(m) f(m̃1, m) . (47)

The first factor, βmax = (m3 − m1)/matm = matm/(m3 + m1), is the maximal value of

β for fixed m; βmax decreases ∝ 1/m for m ≫ mmin (cf. Fig. 5). This implies that for

increasing m there is an overall suppression of the maximal baryon asymmetry in the

whole (m̃1, M1)-plane [11]. In particular the lower limit on M1 becomes more stringent.

The factor f(m̃1, m) = 1, for any value of m̃1, if m = mmin (m1 = 0). In the case

m > mmin (m1 > 0) it vanishes for m̃1 = m1 and grows monotonically to 1 with increasing

m̃1 (cf. Fig. 6). Thus for m1 > 0 the function f gives a further suppression of the CP

asymmetry, in addition to the one from βmax < 1. This suppression is strong for m̃1 & m1

and disappears for m̃1 ≫ m1. Hence the decrease of the maximal CP asymmetry for

m > mmin shrinks the allowed region most at small m̃1 & m1 and at small M1. Note that

the difference between the allowed regions for normal and inverted hierarchy is accounted

for by the different values of β for a given value of m. In the case of inverted hierarchy

β is larger for any value of m̃1 and m ≥ minv
min (cf. Figs. 5,6). The effect is maximal for

m = minv
min where β inv = 1 while βnor ≃ 0.6. For larger values of m ≫ minv

min, and also
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m̃1 ≫ mnor
1 , the ratio β inv/βnor becomes very close to 1. This situation is realized when

m approaches its upper bound. This explains why the upper bound on m is only slightly

relaxed in the case of inverted hierarchy.

The second effect, which shrinks the allowed region when m increases, is the enhance-

ment of washout processes. In [9] we showed how the total washout rate can be written

as the sum of two terms, (W − ∆W ) ∝ m̃1 and ∆W ∝ M1 m2. The first term is respon-

sible for the reduction of the allowed region at large m̃1. The second term leads to the

boundary at large M1. The combined effect shrinks the allowed region with increasing m

at large M1 and at large m̃1.

One can see how this second effect reduces the allowed region, independent of the

maximal CP asymmetry decrease, by comparing the two largest allowed regions for normal

and inverted hierarchy; they correspond to the two different values of mmin (cf. Fig. 2

and Fig. 4). Since β = 1 in both cases, the entire difference is due to the different

washout effects. They are larger in the case of inverted hierarchy because mmin is about

∼
√

2 higher than in the normal hierarchy case. One can see how, for a fixed value of

m̃1, the maximal value of M1 is approximately halved in the inverted hierarchy case.

Correspondingly, the maximal allowed value of m̃1 is lower for inverted hierarchy than for

normal hierarchy.
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In summary, within the theoretical uncertainties, leptogenesis cannot distinguish be-

tween normal and inverted hierarchical neutrino mass patterns. However, our new analysis

confirms and strengthens the results of [9, 12] that quasi-degenerate neutrino masses are

strongly disfavored by leptogenesis, by putting the stringent upper bound of 0.12 eV on

all neutrino masses.

4.3 Stability of the bound

The numerical results can be very well reproduced analytically [43]. This procedure is not

only able to yield the correct value of mmax but also reveals some general features which

in the numerical analysis may appear accidental.

For m = mmax, at the peak value of maximal asymmetry, such that ηmax
B = ηCMB

B , one

has

m̃1|max = mmax + O
(

m2
atm

m2
max

)
, (48)

M1|max ≃ 1.6 × 1013 GeV

(
0.2 eV

mmax

)2

. (49)

The value of mmax is slightly different for normal and inverted hierarchy, respectively,

(mnor
max)

2 = (m0
max)

2 − 1

8
m2

atm + O(m4
atm/m4

max) , (50)

(minv
max)

2 = (m0
max)

2 +
7

8
m2

atm + O(m4
atm/m4

max) , (51)

where m0
max is the zero-th order approximation. This implies

(minv
max)

2 − (mnor
max)

2 = m2
atm + O(m4

atm/m4
max) . (52)

Besides gaining more insight into the numerical results, the analytic procedure also

allows to find the dependence of the bound on the involved physical parameters and to

study in this way its stability.

Consider first the dependence on the experimental quantities ηCMB
B , ∆m2

atm and ∆m2
sol.

Since ∆m2
sol ≪ ∆m2

atm, the dependence on ∆m2
sol is so small that it can be neglected,

yielding matm ≃
√

∆m2
atm. The analytic procedure shows that mmax ∝ (m2

atm/ηCMB
B )1/4.

From the numerical result, found for ηCMB
B = 3.6×10−10 and matm = m0 ≃ 0.051 eV, and

one then obtains in general

m0
max ≃ 0.175 eV

(
6 × 10−10

ηCMB
B

) 1

4

(
matm

m0

) 1

2

. (53)
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Using Eq. (53) one immediately gets the central value of mmax. Note also that for

ηCMB
B = 10−10 and matm = m0, one has m0

max ≃ 0.275 eV. This is confirmed by the

numerical results. We still find iso-lines ηCMB
B = 10−10 for m = 0.27 eV, whereas this is

not the case anymore for m = 0.28 eV. From Eq. (53) one obtains as estimate for the

relative error,

δmmax =
1

4

(
δηCMB

B + δm2
atm

)
. (54)

According to Eq. (34) the 1σ standard error on ηCMB
B is about 15% while δm2

atm ≃ 25%

[21]. We thus obtain δmmax ≃ 10%, which corresponds to the absolute error ∆mmax ≃
0.02 eV. In the coming years the errors on ηCMB

B and m2
atm will be greatly reduced by

the satellite experiments MAP [44] and Planck [45], and by the long baseline experiments

Minos [46] and CNGS [47], respectively, and consequently the error on mmax will be

considerably reduced.

Another important question concerns the enhancement of the maximal CP asymmetry

when ∆M21 = M2 −M1, where M1 and M2 are the masses of the heavy neutrinos N1 and

N2, becomes comparable to or smaller than M1 itself. As long as the mass splitting is

larger than the decay widths, the enhancement is given by [15, 16],

ξ(x) =
2

3
x

[
(1 + x) ln

(
1 + x

x

)
− 2 − x

1 − x

]
, (55)

where x = (M2/M1)
2. Note, that ξ approaches 1 for x ≫ 1. The value of mmax increases

like ξ1/4 [43], and it is therefore easy to see how the bound on m gets relaxed for small

values of the mass difference ∆M21.

In Fig. 7 we have plotted the enhancement ξ−1 and the central value of mmax, together

with its 1σ limits, as function of ∆M21/M1. For ∆M21/M1 & 1 the bounds (39),(45) are

recovered. Only for values ∆M21/M1 . 0.1 the bound gets relaxed in an appreciable

way. An increase of mmax by a factor ∼ 3, allowing quasi-degenerate neutrino masses of

0.4 eV, which could be detected with the KATRIN experiment [48], requires degeneracies

∆M21/M1, ∆M31/M1 . 10−3.

In the regime ∆M21 . M1 also decays of N2 have to be taken into account. As we

shall see in the next section, for larger mass splittings an asymmetry generated in N2

decays would be washed out before T ∼ M1, and it is then sufficient to consider only N1

decays. However, even for ∆M21/M1 . 0.1, it is easy to see that the effect of such an

additional asymmetry on the bound is small compared to the effect of the CP asymmetry

enhancement described above. The largest effect would be obtained for εmax
2 = εmax

1 and

m̃2 ≪ m̃1, corresponding to a doubled heavy neutrino abundance without any washout

enhancement. In this extreme case the bound is relaxed at most by a factor 21/4 ≃ 1.2.
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max for

normal hierarchy (solid and dashed lines) as functions ∆M21/M1.

Even for three degenerate neutrinos, with both ∆M21/M1 ≪ 1 and ∆M31/M1 ≪ 1,

the effect could relax the bound not more than by a factor 31/4 ≃ 1.3. Hence, the CP

enhancement represents the dominant effect and we can conclude that the bound on m can

only be evaded in case of an extreme degeneracy among the heavy Majorana neutrinos.

A further important issue is the effect of supersymmetry on the bound. In this case

the maximal CP asymmetry is about twice as large which could relax the bound by a

factor 21/4 ∼ 1.2. However, washout processes are also considerably enhanced [38]. This

effect goes into the opposite direction and is actually stronger, so that one can expect a

slightly more stringent bound on m. A detailed calculation will be presented in [43].

We conclude that the leptogenesis upper bound on neutrino masses is very stable.

The essential reason is that, at m = mmax, the peak value ηmax
B ∝ 1/m4

max. Hence, any

variation of the final asymmetry results into change of mmax which is almost one order

of magnitude smaller. The same argument applies also to the theoretical uncertainties.

Although the various corrections to the Boltzmann equations still remain to be calculated,

we do not expect a relaxation of mmax by more than 20%. In fact, we expect that the

corrections will go in the direction of lowering the prediction on the final asymmetry,

which will make the bound on m more stringent.

For particular patterns of neutrino mass matrices stronger bounds on the light neutrino
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masses can be obtained. For instance, one can study how the upper bound changes if

M1 is required to be smaller than some cut-off value M⋆
1 . For M⋆

1 > M1|max ≃ 1013 GeV

(cf. (49)) the bound does not change. For smaller values of M1 the bound becomes more

stringent. For example, from Figs. 2 and 4 one can see that the cut-off M1 < 5×1012 GeV

leads to the bound m < 0.15 eV, which corresponds to m1 < 0.08 eV. For a restricted

mass pattern, and neglecting ∆W ∝ M1 m2 washout terms, less stringent bounds have

been found in [17] for the same cut-off value of M1.

5 Dependence on initial conditions

A very important question for leptogenesis, and baryogenesis in general, is the dependence

on initial conditions. This includes the dependence on the initial abundance of heavy

Majorana neutrinos, which has been studied in detail in [9], and also the effect of an

initial asymmetry which may have been generated by some other mechanism. In the

following we shall study the efficiency of the washout of a large initial asymmetry by

heavy Majorana neutrinos.

For simplicity, we neglect the small asymmetry generated through the CP violating

interactions of the heavy neutrinos, i.e. we set ε1 = 0. The kinetic equation (32) for the

asymmetry then becomes
dNB−L

dz
= −W NB−L , (56)

where −NB−L is the number of lepton doublets per comoving volume. The final B − L

asymmetry is then given by

N f
B−L = ω(zi)N

i
B−L , (57)

with the washout factor

ω(zi) = e
−

∫
∞

zi
dz W (z)

. (58)

In Eq. (56) W (z) = ΓW (z)/H(z)z is the rescaled washout rate, where H(z) is the

temperature-dependent Hubble parameter. ΓW receives contributions from inverse decays

(ΓID), ∆L = 1 processes (Γφ,t, Γφ,s) and ∆L = 2 processes (ΓN , ΓN,t) (cf. [9]),

ΓW =
1

2
ΓID + 2

(
Γ

(l)
N + Γ

(l)
N,t

)
+ 2Γ

(l)
φ,t +

nN1

neq
N1

Γ
(l)
φ,s . (59)

The inverse decay rate is given by

ΓID =
neq

N1

neq
l

ΓD , ΓD =
1

8π

(
h†h

)
11

M1
K1(z)

K2(z)
, (60)
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where neq
N1

and neq
l are the equilibrium number densities of heavy neutrinos and lepton

doublets, respectively, and K1,2(z) are modified Bessel functions of the third kind. The

quantities Γ
(X)
i are thermally averaged reaction rates per particle X. They are related by

Γ
(X)
i = γi/n

eq
X to the reaction densities γi [36]. Our calculations are based on the reduced

cross sections given in ref. [38].

It is very instructive to consider analytical approximations to the various washout

contributions. Both, the inverse decay rate and the resonance part of Γ
(l)
N (cf. [9]) are

proportional to K1(z),

Γ
(1)
W =

1

2
ΓID + 2Γ

(l)
N,res =

1

16πζ(3)

(
h†h

)
11

M1z
2K1(z) . (61)

The integral in Eq. (56) can be analytically performed. The corresponding washout factor

can be written in the form

ω(1)(zi) = exp

{
− 1

2ζ(3)

m̃1

m∗

(
3π

2
+ z3

i K2(zi) −
3π

2
zi (K2(zi)L1(zi) + L2(zi)K1(zi))

)}
,(62)

where m∗ is the equilibrium mass (2), and L1,2(z) are modified Struve functions [49].

Rather accurate approximations are, for small and large values of zi respectively,

ω(1)(zi) =





exp
{
− 1

2ζ(3)
m̃1

m∗

(
3π
2
− 1

3
z3

i + O(z5
i )

)}
, zi < 1

exp
{
− 1

2ζ(3)
m̃1

m∗

√
π

2zi
e−zi

(
z3

i + 23
8
z2

i + 537
128

zi + 2253
1024

+ O( 1
zi

)
)}

, zi > 1 .

(63)

The non-resonant contribution of N1 exchange to the washout is proportional to m2,

Γ
(2)
W = 2

(
Γ

(l)
N,nonres + Γ

(l)
N,t

)

=
1

π3ζ(3)

M3
1 m2

v4

1

z3
, (64)

which yields the washout factor

ω(2)(zi) = exp

{
− 8

π2ζ(3)

M1m
2

m∗v2

1

zi

}
. (65)

Finally, we have to consider N1-top scatterings. The rate is dominated by t-channel

Higgs exchange if the infrared divergence is cut off by a Higgs mass mφ ∼ 1 TeV ≪ T .

In terms of the reduced cross section one has (cf. [38]),

Γ
(l)
φ,t =

M1z
2

96π2ζ(3)

∫ ∞

1

dx
√

xσ̂φ,t(x)K1(z
√

x) . (66)
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Figure 8: Washout factor as function of the initial temperature zi = M1/Ti for different

values of m̃1 and M1 = 108 GeV; N1-top scatterings are neglected.

For small and large values of zi, respectively, analytic expressions are given by

ω(3)(zi) =






exp
{
− αu

2ζ(3)
m̃1

m∗

(ln (4aφ) − 1)
}

, zi < 1

exp
{
− αu

2ζ(3)
m̃1

m∗

√
2zi

π
e−zi

(
ln

(
aφ

z2

i

) (
11
8

+ zi

)
+ 5

8
− zi

)}
, zi > 1 ,

(67)

where αu = g2
t /(4π) and aφ = M2

1 /m2
φ.

The total washout factor

ω(zi) =
N f

B−L

N i
B−L

= ω(1)(zi)ω
(2)(zi)ω

(3)(zi) (68)

depends exponentially on the parameters m̃1 (ω(1),ω(3)) and M1m
2 (ω(2)). For not too

large M1 and not too small zi (cf. Figs. (8)-(10)), ω(2) ≃ 1 whereas ω(1) reaches a plateau

for zi ≤ 1 at

ω(1)(zi) ≃ exp

(
− 3π

4ζ(3)

m̃1

m∗

)
. (69)

At smaller values of zi, and correspondingly higher temperatures Ti, eventually ω(2) de-

creases rapidly. When Ti reaches M2, the mass of N2, a new plateau will be reached. The

larger M1, the larger the value of zi where the decrease of ω(2) sets in. This behaviour is
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Figure 9: Washout factor as function of the initial temperature zi = M1/Ti for different

values of m̃1 and M1 = 1010 GeV; N1-top scatterings are neglected.

Figure 10: Washout factor as function of the initial temperature zi = M1/Ti for different

values of m̃1 and M1 = 1012 GeV; N1-top scatterings are neglected.
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Figure 11: Washout factor as function of the initial temperature zi = M1/Ti for different

values of m̃1 and M1 = 1014 GeV; N1-top scatterings are neglected.

clearly visible in Figs. (8)-(10). At very large M1, the decrease of ω(2) is effective already

at large values of zi (cf. Fig. (11)).

The factor ω(3) is very sensitive to the value of aφ, i.e. the choice of the infrared cutoff

mφ. For mφ = 1 TeV, ω(3) significantly improves the washout of ω(1)ω(2), but it does

not change the qualitative picture. This is illustrated by Fig. (12) where the cases with

and without N1-top scatterings are compared. On the other hand, for mφ ∼ M1, ω(3) is

always negligible compared to ω(1). The issue of the correct choice of the infrared cutoff is

theoretically not yet settled. There is a corresponding, though less important uncertainty

in the generation of the baryon asymmetry for small values of m̃1 [39]. The washout

factors ω(1)ω(2) shown in Figs. (8)-(11) can be regarded as conservative upper bounds on

the full washout factors ω = ω(1)ω(2)ω(3).

It is remarkable that the washout of an initial asymmetry at zi ∼ 1, i.e. Ti ∼ M1,

becomes very efficient for m̃1 ≥ m∗ ≃ 10−3 eV. Since the efficiency increases exponentially

with increasing m̃1, already at m̃1 = 5 × 10−3 eV one has ω(zi = 1) < 10−4. Hence,

for neutrino masses of order or larger than
√

∆m2
sol, ∆L = 1 processes are very likely

to erase any previously generated baryon asymmetry to a level below the asymmetry

produced by leptogenesis. As shown in [9], for these values of m̃1 the final asymmetry is
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Figure 12: Comparison of the washout factors as function of zi = M1/Ti without (full

line) and with (dashed line) N1-top scatterings; M1 = 1010 GeV.

also independent of the initial N1 abundance. Hence, a complete independence of initial

conditions is achieved.

6 Summary

We have extended our previous work on the minimal version of thermal leptogenesis where

interactions of N1, the lightest of the heavy Majorana neutrinos, are the dominant source

of the baryon asymmetry. Based on the seesaw mechanism, we have derived an improved

upper bound on the CP asymmetry ε1, which depends on M1, the mass of N1, the light

neutrino masses m1 and m3, and the effective neutrino mass m̃1. Given the two mass

splittings ∆m2
atm and ∆m2

sol, the neutrino masses m1 and m3 can depend on the absolute

neutrino mass scale m in two ways, corresponding to normal and inverted mass hierarchy,

respectively.

From the numerical solution of the Boltzmann equations we have obtained an upper

bound on all light neutrino masses of 0.12 eV, which holds for normal as well as inverted

neutrino mass hierarchy. This is about a factor of two below the recent upper bound of

0.23 eV obtained by MAP [50]. The leptogenesis bound is remarkably stable with respect
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to changes of ηCMB
B , ∆m2

atm, the effect of supersymmetry, and theoretical uncertainties

of ηmax
B . Quasi-degenerate neutrinos are only allowed if the CP asymmetry is strongly

enhanced by a degeneracy of the heavy Majorana neutrinos. For instance, in order to

relax the upper bound to 0.4 eV, degeneracies ∆M21/M1, ∆M31/M1 . 10−3 are required.

We have also studied the washout of a large, pre-existing B −L asymmetry. It is very

interesting that a washout by several orders of magnitude takes place at temperatures

T close to M1, if the effective neutrino mass m̃1 is larger than the equilibrium mass

m∗ ≃ 10−3 eV. All memory of the initial conditions is then erased.

We conclude that for neutrino masses in the range from 10−3 eV to 0.1 eV leptoge-

nesis naturally explains the observed baryon asymmetry, independent of possible other

pre-existing asymmetries. It is very remarkable that the data on solar and atmospheric

neutrinos indicate neutrino masses precisely in this range.
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