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We study two aspects of the color flavor locked phase of QCD in the Nambu—Jona-Lasinio approximation.
The first one is the issue of the dependence.aof the ultraviolet cutoff in the gap equation, which is solved
by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark
mass; using high density effective theory we perform an expansion in the parameter)¢ after checking
that its numerical validity is already very good at first order.
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[. INTRODUCTION NJL approach is only a model, it offers simple expressions

that can be helpful in clarifying physical issues; therefore a

The existence of color superconductivity at very largebetter understanding of its dynamics is significant. The two

densities and low temperature is an established consequen@@Pects concern the role of the ultraviolet cutoff in the NJL
of QCD (for general reviews, sdd] and[2]). Since at lower interaction and the relevance of the effects due to the strange

. . uark mass. As for the first point, the cutoff is usually fixed
densities one cannot employ perturbative QCD, a pOpUIacg)nce for all and considered among the parameters of the

apprqach in this regime s the use of the Nambu_‘]c.maﬁwodel. However, when working at varying large densities the
Lasinio (NJL) model. The mathematical procedure consistsyhice of the appropriate cutoff is rather subtle. It is sugges-
of solving the mean field gap equation and selecting the sqjye to consider, for instance, a solid where there is naturally
Iut|0n _that minimizes the free energy. At sufﬁmen'gly high 3 maximum frequency, the Debye frequency. One expects
densities, for three massless flavors, the condensation pattefiilat when particles become closer together the ultraviolet
leads to a conserved diagonal subgroup of color plus flavogutoff will extend to larger momenta. The appropriate physi-
[color flavor locked(CFL) phase 3,4]]; this phase continues cal simulation of the real situation would then require a cut-
to exist when the strange quark mass is nonvanishing but naiff increasing with the chemical potential, rather than a
too large[5,6]. An interesting property of the CFL phase, unique fixed cutoff. Our analysis suggests that, in order to
proved by Rajagopal and WilczdK], is its electrical neu- get sensible results from the NJL model, the ultraviolet cut-
trality, which implies that the densities of d, ands quarks ~ off should similarly increase with density. The results we
are equal. A stable bulk requires not only electromagneti®btain for the physical quantities, below in this paper, show
neutrality, but also color neutrality. It should also be a colorunequivocally that this is indeed the case. In the text we will
Sing'et; but, according to Re[B]' in a Co|or neutra' macro- eXp|a|n .|n more detail the esse-n.“.al d|ff|C.U|t|éSJCh as a
scopic system imposing this property does not essentiallfécreasing gap for larger densitidato which the theory
change the free energy. Alford and Rajagdj@dhave shown would run if takgn with a fixed cutoff. We shall propose and
that in a neutral CFL phaséwith a finite strange quark @PPly @ convenient procedure to solve the problem in terms
mass, quarks pair with a unique common Fermi momentum.Of a redefinition of the NJL coupling constant so as to make

The neutrality result is basic to our calculations below. ItIt cutoff dependent. In Sec. 1l we d'SC.USS this ISSUe In the
allows the use of a well defined approximation of QCD atCFL model with massless quarks and find the optimal choice

, . . : . . for the dependence of the ultraviolet cutoff on the quark
high density[high density effective theoryHDET)]; see chemical potential.

[10—1Z_and,_f0r a review[13) The second aspect we want to discuss is the role played
In this article we address two aspects of CFL for QCDy,y the nonvanishing strange quark mass. We address it in
modeled by a NJL four-fermion interaction. Even though thegec 1, where we provide semianalytical results for the de-
pendence of the various gap parametersmn CFL with a
. massive strange quark represents a more realistic case in
*On leave from the Dipartimento di Fisica, UniversitaFirenze,  which our previous discussion can be applied; we include
1-50019 Firenze, Italy. both the triplet and the sextet gaps and perform a perturba-
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tive expansion inmZ/ 2, obtaining simple expressions for tion. We start by noticing that the phenomenology at zero
the first nontrivial term in the expansion. We compare thistemperature and densitys completely determined by the
expansion with the numerical results from the complete gagneson decay coupling constanj and by the constituent
equations and find that indeed the first perturbative term adgquark mass, or equivalently by the chiral condensate. In the
equately describes the full dependence. We implement frohlJL model these two quantities are fixed by two equations
the very beginning the electrical neutrality for the CFL phase(see[17] for a review, one fixingf . and the other the chiral
and, as already observed, this allows the use of the HDE@ap equation. These equations depend on the citaffid on
already applied for the 2SC caébe superconducting phase the NJL couplingG. Our proposal consists in assuming the
of QCD with two massless flavor$14]; for completeness coupling G to be a function ofA in such a way thaf .

the simpler massless case is also treated by the same formaksumes its experimental value and that the chiral gap equa-
ism. We note that the gap equation with finite strange quarkion is satisfied for any choice of.

mass has already been discussefbid5]. In addition to the To be more explicit, we write the Nambu—Jona-Lasinio
use of HDET, our main contribution in this context is to equations with a three-dimensional cutdff[17]; the equa-
provide semianalytical results for the mass dependence daion for the 7 leptonic decay constant is

the CFL gaps. We conclude the paper with an Appendix

where we list some results and integrals related to the gap 3

. d 1 R
equation. fi=3m*2f i — 0(A—|p|)
(2m)® E)
II. NJL RUNNING COUPLING CONSTANT 3m*2 A A
When the NJL interaction is used for modeling QCD at - 272 | Jm*2+ A —arcsmhrF ' @

vanishing temperature and density, one can fix the UV cutoff
A so as to get realistic quark constituent masses. Typically,
the cutoff is chosen between 600 and 1000 MeV for masse¥herem” is the constituent mass at=0, which is deter-
ranging between 200 and 400 MeV. In any cases thought ~ Mined by the self-consistency condition

of as fixed once for all. This gives no problems at zero den-

sity, but leads to difficulties when one tries to simulate QCD Am* A p2dp
at finite chemical potential. In fact, at finite density one takes m* =mg+ _G(A)f —_— 2)
as relevant degrees of freedom all the fermions with mo- 37 0 ‘/p2+m*2

menta in a shell around the Fermi surface. The thickness of

the shell is measured by a cutaff which is the cutoff for . o o .
momenta measured from the Fermi surface. This cutoff idNo IS the quark current mass which is assumed in this section

chosen to be much smaller than the chemical poteptiahd ~ © be zgrq.G(A) is the NJL coupling having dimension
much larger than the gap:is related to the NJL cutoff. by (mass) 4; it can be understood as the effect of a fictitious
the relationA = 1+ 5, because\ is the greatest momentum 9/Uuon propagatof3]:

allowed by the NJL model. This relation is problematic,

however, when one is interested in the behavior of the theory grvsab
for varying u. The constraintA = u+ & would force 6 to iD4p=i > ©)
vanish for increasings, starting fromu<<A. In turn, this A

gives rise to a vanishing gap. In fact, we recall from the

simplest version of the BCS theory that the gap has the typiand A2G(A) takes the role of the square of the strong cou-

cal behaviorA~25exd —2/(Gp)], wherep is the density pling constant. Equatioiil), with f_=93 MeV, implicitly

of states at the Fermi surfacgou?) and G is the NJL  defines the functiom* =m* (A) which we use in Eq(2) to

coupling constant. Therefore decreasing the volume of thget the functionG=G(A). The result of this analysis is

shell has the effect of reducing the gap, with a quantitativelyshown in Fig. 1.

different reduction from the state densjiyand the thickness Our choice implies that a NJL model is defined at any

. The decreasing oA with x does not correspond to the scale by using the appropria@A). Whereas in the usual

asymptotic x—) QCD behavior, which is characterized case we have to keep the momentum smaller than the cutoff,

by an increase of the gap wifl, although with a vanishing now, for any given momentum, we can fix the cutoff in such

ratio A/u [16]. The incorrect behavior oA arises because a way that it is much bigger than the momentum. The phe-

the model is taken to be valid only for momenta upA9  nomenology of the chiral world is clearly unaffected by this

which forbids going to values gk of the order of or higher procedure; in fact it turns out that the constituent mass ac-

thanA. Clearly this constitutes an obstacle in physical situ-quires a weak dependence on the cutoff, and therefore it can

ations where the typical chemical potential is about 400 obe fixed at the most convenient value. Also, the quantity

500 MeV (e.g., in compact stellar objegtaith a § of the

order of 150 or 200 MeV. In fact, it turns out to be difficult,

if not impossible, to explore higher values @ffor any rea- IFor the sake of discussion we consider here the ideal case of

sonable choice oA\. massless quarks; the more realistic case of a massive strange quark
In this paper we make a proposal to overcome this situawill be considered in the following.
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quarks are massless. The three curves are obtained for three values

FIG. 1. The running NJL coupling consta@t(dashed lingand ; '
of the quark chemical potentigh=1.0,0.7,0.5 GeV.

the running constituent mass* (in MeV, solid line) as functions of

A (in MeV). A is the ultraviolet cutoff. The vertical axis on the left ) )
refers toA2G(A), while the axis on the right refers fo* . parameters produces some numerical differences. On the

other hand, the solid line shows an increasing behavior of the
G(A)A? decreases weakly with increasing cutoff. In apply-gap. The difference between the two curves is due to the
ing these considerations to calculations at finite density, wéollowing reason. Working withA fixed (dashed curve in
have only to use the appropriate value of the coupling a§ig. 2 and increasing. decreases the cutoff, making the
given byG(u+ &), where nowu + & has nothing to do with  gap decrease as in the BCS analysis. Of course, this is al-
the value of A chosen to fit the chiral world. Notice that, ready clear in Ref.3], where it was stated that their analysis
since we are restricting our theory to a small shell around théannot be extended aboye~A. In our case we have the
Fermi surface, the coupling is practically constant within thispossibility of varying the cutoffA, and since we choosé
region. This is in agreement with the behavior dictated by thegproportional tou the gap increases. It is interesting to notice
renormalization group at the Fermi surface. To give an exthat, although there is no reason foritpriori, in this way
plicit example, we consider the CFL phase with masslesone reproduces qualitatively the behavior found in QCD for
quarks. There are two independent gapsA; and A,  the asymptotic chemical potentigl6]. This result is ob-
(Ag=—2A if the pairing is only in the antitriplet channel tained by the running NJL couplinG(u+ 6), with the fol-

and the gap equations ai&,13] lowing choice of the cutof:
A p?G A 0 oA arcsi 5 o=Cu, )
== garcsmw— —2A arcsin ,
6 Aol W with ¢ a fixed constantd=0.35 in Fig. 3. The reason for

) this choice is that, as discussed above, when incregsjng
_ A GA arcsin g @ we do not want to reduce the ratio of the number of relevant
° 372 W degrees of freedom to the volume of the Fermi sphere. Re-
quiring the fractional importance to be constant is equivalent
If one uses a fixed value fok = u+ 8, as for instance in  to requiring Eq.(5). In Fig. 2 and in the following we con-
Ref. [18], one gets a nonmonotonic behavior of the gap, asider the model for values qf varying from 500 to 1100
can be seen from Fig. @ashed ling a similar behavior was GeV. However, the results can easily be extended to lower
found in[18] (their Fig. 1), albeit a different choice of the values ofu.
In Fig. 3, we plot the gap paramet&y (the results for\g

A(MeV) 100 are similay as a function ot for three different values of the

chemical potential. In general, there exists a window of val-

80 ues forc:

60 N

/ \ c=0.35+0.10, (6)

40 \\

20 where the gap parameters are less dependemt diis is
therefore the range af we shall assume below. Notice that
the decreasing of the gap with increasiogfter the maxi-

400 500 600 700 800 900 10&?3&2 mum arises because the coupling decreases with increasing
cutoff, contrary to the BCS case where it is kept fixed. On
FIG. 2. The CFL gap\ for massless quarks, as obtained from the other hand, we see that for fixedthe gap increases
Eq. (4), versus the quark chemical potential for the two cases diswith .

cussed in the text. Solid line: running NJL coupliid .+ 5) and It can also be noted that the result for the QCD supercon-
cutoff =cu, with ¢=0.35; dashed lines=A—u, where A ducting model we are considering here has its counterpart in

=800 MeV andG(A)=13.3 GeV 2. The picture shows the differ- solid state physics, where the analysig§ 18] shows a linear
ent qualitative behaviors of the gap with increase ofs with w similar to Eq.(5).
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These results, valid for the massless case, are confirmed L=Lo+ L1+ Ly . (12
by a complete numerical analysis including the effect of a
strange mass. This will be discussed in the next section. L, is the kinetic term while,; describes the quark-gluon
interaction. They are given by
Ill. EFFECTIVE LAGRANGIAN FOR GAPLESS QUARKS

9 Vag- € 0
The massive case is considerably more involved, and the Lo=2, > xk A8 - X8 »
simple set of equation@) has to be replaced by a system of n AB=1 0 Vag- €
five equationg5] that can be solved only numerically. In
[18] the CFL phase with massive strange quark was also . o ; Hag- A 0
considered. In comparison wifb] the derivation we present £1=IgZ Agil XAl o CHr LA XB -
here has the advantage of offering semianalytical results, noom AB (13)

thanks to an expansion in powers of/wx. We principally

differ from Ref.[18] in the different treatment of the cutoff, \ve have introduced the symbols

as discussed in the previous section, and in the inclusion of

pairing in both the antitriplet and the sextet color channels. Vag- =T TATgVA]e Vag- =T TATgV%]€
The possibility of a semianalytical treatment rests on the ®e e
HDET approximation. This effective Lagrangian approach 1

was extended ip14] to the 2SC phase with massive quarks, .. A=H# . Al=—TH{ ToT,TgV*]AT,

and here we treat the three-flavor case. ﬁ
In the HDET one introduces effective velocity dependent

fields, corresponding to the positive energy solutions of the 5 1 _

field eguafiorlsz,/;a,i,r;(}) wherea,i are color and flavor in- Hag-A=HAmp AZ‘zETr[TATmTBW]AZ‘. (14

dices,n=v/|v|, andv is the quark velocity defined by the

equation In these equation s=\/+2, AZ‘ is the gluon field, and

pH= o+ O+ (7) V" denotes the matrix

with v#:(o,z?). The effective fields/, ;;(x) are expressed vi 0 0

in terms of Fourier-transformed quark fiel?j@,i(p) as fol- Vii= 0 Vi O (15)

lows: 0 0 e
4 . ~ -

wmi,;(x)=7hf 2n el (P=r) Xy (p). (8)  with V¥=(1p;) for each flavori; a similar definition holds

77 P

for V¥, with V= (1,—v;). In the limit m,=my~0 one has

Here P, is the positive energy projector, defined, togethervu=va=1, vs=1-x5=1-mZ/u;.
with P_, by the formula Let us now turn to the gap terri, . We consider CFL
o condensation in both the antisymmet8¢ and the symmet-
1+ (a-v+x%79°) ric 6g channels. We assume equal magsesually zero for
Pi:f' ©  the up and down quarks and neglect quark-antiquark chiral
condensates, whose contribution is expected to negligible in
wherex;j=m;/x and m; is the mass of the quark having the very largeu limit. The contribution from the repulsivés
flavor i. We now change the color flavor basis, introducingchannel is also expected to be small, but we include it be-

new fieldsd/r? as follows: cause the gap equations are consistent only with condensa-
o tion in both the6g and3, channels. The condensate we con-
=S \A A o sider is therefore
P X = —_— - X ,
VasdX)= 2 Ui

(aiCrsibipy) ~ (A e &) +Gyj (84 671+ 64 67)).
where\ , with A=1,...,8 are thaisual Gell-Mann matrices (16
and Ng=2/3\,. We also introduce the Nambu-Gor'kov The first term on the right-hand side accounts for the con-

doublet densation in thé?A channel and the second one describes
condensation ibg channel. As we assunm,=my, we put

Ve
cy*

1

XA:E

In the y basis the Lagrangian of the quarks, including the Guu=Gau=Gy4=Gya=G1, Gus=Gy=G,,
quark-gluon interaction and the gap term, can be written in
momentum space as follows: G =Gg3, (18

(11)

Aus=Ags=A4, A=Ay, (17)
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which reduces the number of independent gap parameters to Aije“ﬁ' €iji +Gij(5"i 5P 4 541 5P

five. We stress that we require electrical and color neutrality, Ly=— 2

which, as shown in Ref.7], is indeed satisfied in the color

flavor locked phase of QCD because in this phase the num- T

ber densities of the three light quarks are equgl=ng X2 i -Cysihg,« +H.c. (21)
=ng, with no need for electrons, i.en,=0. As a conse- :
guence, the Fermi momenta of the three quarks are equal:

Using the Nambu-Gor’koyNG) fields one rewrites Eq21)

Pr.u=PF.d=PF,s=PF, (199  as follows:
which, in terms of the quark chemical potentials and Fermi 9 0 ¥5® Apg
velocities, can be written as £A=E E X/JR ‘ s (22
n AB=1 Ys®Apg 0
/-Lu|vu|:ﬂd|vd|::“s|vs|- (20
, where
It follows that the wave function of the quark-quark conden-
sate has no dependence on the Fermi energies and the con- —
densation can be described in the mean field approximation Apng=Ans(3) +App(6) (23
by the following Lagrangian term containing only the effec-
tive fields ¢, - : and
|
Apls O
0 Aly, 0 0
_ 1 J2
Apg(3)= 0 0 5(4A—A12) ?(A_AlZ) ) (24)
2 2
0 0 £(A_Alz) — 7 (Ap+24)
3 3
Gz O
0 Gyly
4 V2
App(B)=| O 0 Gi— §(Gz_G3) ?(361_2G3_G2) , (29

J2 2
5 (3G172G3—G;)  3(3G1+2G,+Gy)

wherel,, indicates thenx n identity matrix. The nine eigenvalues of the matlixg are reported in the Appendix. From the
Lagrangian

> § + Vag € v5®Apg > i R
Lot L= ~ = Sxg(€) xs» 26
0T LA = 51 XA 75®ALB Vg € XB = A%t XaSae(€)xB (26)
the fermionic propagator is obtained:
AV. (A1 ! ®A
AV €AV (— A2 AV (A V. (—A2 7"
Sa(€)= 1 1

AV.-¢A?

— — A —
AV (A 1. 0—a2"® AV- (A1 ¢ — A2 s
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TABLE I. Values of the¢ components obtained by means of the
5X5 system of linear equations. In the gap equations we have made
the choices=0.35u. All the gaps andu’s are expressed in MeV.

“ €1 €9 &1 & &3

500 —35.29 90.48 33.63 —2.06 —-6.20
700 —44.86 102.93 41.16 -—-3.10 —-8.72
1000 -61.21 135.08 55.69 —4.42 —12.23

creases from 2 to 5, but Eq&9) immediately give the so-
lutions for any value ofmg (with the proviso thatxg
=m§/,u2< 1) if one knows the parametersé¢
=(€1,€9,¢1,&-,&3). They can be obtained by solving the

results obtained by the numerical solution of the exact gap equasystem of five linear algebraic equations
tions, formg=250 MeV andé=0.35«. The upper curve refers to

A4, while the middle one refers td. The lower curves are the
data obtained for the three sextet gap paramet@§ |G,|, and

|Gs|. Gaps angu are expressed in MeV.

The off-diagonal matrixSy% (1,2=NG indice$ is the

anomalous component of the quark propagator, which $or 11=500 MeV and—2.33 for = 1000 MeV

what we need to write down the gap equations. In matrix

form they are as follows:

T AaBT T
473

A-£=1.

(30

The matricesA andf are reported in the Appendix. Numeri-

cal results for the parametefsare in Table |. For a strange
.mass of 250 MeV we find the rat®y/A; equal to—2.365

iG(u+ d)pE

" 1%
HAaCH DbB

+6 + o
X f de f d€o6%g,, S, (27
—) —

where the color flavor symbold 4,z have been defined in
Eqg. (14) and the running NJL coupling is computed @at

+ 8, according to the previous discussion. In Eg@7) &

=cu is the cutoff discussed in Sec. Il. The gap equations

can be solved numerically; results for,=250 MeV andc

=0.35 are reported in Fig. 4.

From these results we can compute the dependence of the
various gaps omu. For A, it is reported(for two values of

the strange quark mass Fig. 5. We stress that the approxi-
mation we consider here is indeed very good in the range of
parameters we have considered in the present paper, i.e.,
my=150—250 MeV andu=500-1000 MeV. As an ex-
ample, Fig. 6 shows the approximate solution 4or (solid

line), which differs only by a few percent from the exact
solution (dashed ling except in the lower region of.
These results are obtained for a mass of 250 MeV, for
smaller values the effect is even less relevant.

IV. CONCLUSIONS

A main point in this work has been to clarify the issue of

A semianalytical solution can be found by performing anthe dependence op of the ultraviolet cutoff in the NJL
expansion in the strange quark mass:

ms Mg

Xe=—~ —<1. (28)

Ms M

Here == g, ms=p+ou with su=0(mgs/w)2. We

define

— —AO 2
Al—A12+ G1=Al+ Elxs,

Ag=—2A1,+ 4G =A%+ X2,

4A9—AS
A= —6 glxg, G,=
209+ A9
Ge=—"%6—" &5,

model and its application to the CFL phase of QCD. A con-
venient procedure consists of redefining the NJL coupling so
as to make it cutoff dependent. The application to the CFL
model withmg#0 leads, in the approximation of the high
density effective theory, to an expansion in the parameter
(ms/x)? whose numerical validity is already very good at
first order. Both triplet and sextet gaps are included. The gap

A, 100 8_A1 (%) 20
90| m,(MeV)=150 = A, 1751 mg(MeV) =250
80 \ A N
70 =4 %3 <o m, (MeV) = 150
60 —==" N\ 75 S~
sol m(MeV) = 250 22 ~——

500600 700 80090010001100

n

50060070080090010001100

n

FIG. 5. Gap parametek,=A,+ G, as a function ofw. Left
(29 panel: results for two different values of the strange quark mass
ms=150, 250 MeV(curves are obtained by means of the perturba-

tive gap equations Right panel: relative variationsA,/A;

whereA? ,Ag are the values for massless quarks and can be-[A;(my)—A;(0)]/A;(0). In this plot §=0.35.. Gaps andu's
obtained from Eqs(4). For mg#0 the number of gaps in- are expressed in MeV.
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A, 100 APPENDIX
920 Eigenvalues of the gap matrix
80 The eigenvalues of the gap matrix for CFL with a massive
70 — strange quark are as followa ;= --=Ag=A;,+ Gy, Ag
60 /// =A;=A+G,, Ago=i[x—z* (x+2)?+4y?], where
- X,y,z are given b
50 y 9 y
1 4
500 600 700 800 900 1000 1100 x:§(4A—A12)+Gl—§(GZ—GS), (A1)
1l
FIG. 6. This diagram shows the difference between the exact
numerical calculation of the gaf¢; for mg=250 MeV (solid line) _ \/—E(A—A )+ \/5 G.— %_ \/EGS
and the approximate result obtained through the expansiongin y 3 1 13 3 )
(dashed ling Units are MeV. (A2)

parameters are obtained as functions of the chemical poten-
tial and _thgir_ behavior is consistent with the expected z=E(A12+ 2A)—z(3G1+ 2G,+G3).
asymptotic limits. 3 3

(A3)
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|
£'=(€169816583); (A4)
2 2 2
a B _§b(_91+299_919) §b(_91+299_919) §b(91_99+2919)
b b b
@ B —1-5(791+499+ 019  —1+5(011499+ 010 — 5(491% 209+ 2019)
4 2b 4 2b 4 2b
A= a B —3=5(501t20et 010 3~ 5 (7917200= 019 — 3~ 5 (~01+0e+2019 [; (A5
V2 b V2 b 2\2( b
0 0 _?(1"’5(591_919)) ?<1_§(91_919)) 3 1+§(91_919))
1 4 2b4 4 16b 2 4b
4 3 9t "3 9% 3 9%

where we have defingol= G(u+ 8) u?/27%, a=1—3%bh;, B=3ibhy, y=(8b/3)h;; finally,
913 1

b - +__1_(fl+f9_4f19)
913 1

b _E+Z_l_8(5fl_f9_2flg)

5 o o 1
f=| bl g(—218+219)+ 5(11f1—fo—4t1g)| |- (A6)

b{i(—ﬂ‘;—TgH i—g(%?fl-i-flg”

182
16., 10
b 3' 1+ _fl
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The values of the parametefs,g; 17 ,hy are listed below: s 5 V- IV -1+ %1%,
1°(X1,%)= | Al
1 0510 1 050 -5 D(x1)D(xz)
fi1= ﬁAlJ (A2, fgzﬁAgJ (Ag),
27T 3 5 Xl(X1+X2)
1 0n5/ A0 a0 = ——| arcsin X_ +ﬁ
flg:ﬁAl\] (A ,Ag), 2 X2_Xl -
1 1 X i +5 i +5 ) (A10)
arcsinh—| — arcsinlh—
_ S A0 _ 8 AO X X '
J1 27”' (Al)! Jdo 27T|| (Ag)y 2 1/
1 s 12 5 5
O10=5—1°(A2,A9), (A7) Jo(x =f =i arcsin+— e —
27 0= ) N INF
(A11)
o o |6 s
Ij=Ajarcsinh—;|, he=arcsinh—|—1.
A A 2

s I
A8 J2(xq,X =J Al —
(A8) (X1 %) -5 D(X1)D(Xo)
In this expression we use the following parametric integrals:

i
- 5 -
VAV 1 +x 2(x2—x3)

s —28( X2+ 82— x5+ 6%
S(y) — 2
1°(x) f—ad I D)7 17 %9

6}.

—-2%3 arcsin+x—

o
+2x3 arcsin+x—

. . +6 5 ) : 5
=2qi| —arcsinh—| + — |, (A9)
( X 51 x2 (A12)
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