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Aspects of the color flavor locking phase of QCD in the Nambu–Jona-Lasinio approximation
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We study two aspects of the color flavor locked phase of QCD in the Nambu–Jona-Lasinio approximation.
The first one is the issue of the dependence onm of the ultraviolet cutoff in the gap equation, which is solved
by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark
mass; using high density effective theory we perform an expansion in the parameter (ms /m)2 after checking
that its numerical validity is already very good at first order.
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I. INTRODUCTION

The existence of color superconductivity at very lar
densities and low temperature is an established consequ
of QCD ~for general reviews, see@1# and@2#!. Since at lower
densities one cannot employ perturbative QCD, a pop
approach in this regime is the use of the Nambu–Jo
Lasinio ~NJL! model. The mathematical procedure consi
of solving the mean field gap equation and selecting the
lution that minimizes the free energy. At sufficiently hig
densities, for three massless flavors, the condensation pa
leads to a conserved diagonal subgroup of color plus fla
@color flavor locked~CFL! phase@3,4##; this phase continue
to exist when the strange quark mass is nonvanishing bu
too large @5,6#. An interesting property of the CFL phas
proved by Rajagopal and Wilczek@7#, is its electrical neu-
trality, which implies that the densities ofu, d, ands quarks
are equal. A stable bulk requires not only electromagn
neutrality, but also color neutrality. It should also be a co
singlet; but, according to Ref.@8#, in a color neutral macro-
scopic system imposing this property does not essent
change the free energy. Alford and Rajagopal@9# have shown
that in a neutral CFL phase~with a finite strange quark
mass!, quarks pair with a unique common Fermi momentu
The neutrality result is basic to our calculations below.
allows the use of a well defined approximation of QCD
high density @high density effective theory~HDET!#; see
@10–12# and, for a review,@13#.

In this article we address two aspects of CFL for QC
modeled by a NJL four-fermion interaction. Even though t

*On leave from the Dipartimento di Fisica, Universita` di Firenze,
I-50019 Firenze, Italy.
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NJL approach is only a model, it offers simple expressio
that can be helpful in clarifying physical issues; therefore
better understanding of its dynamics is significant. The t
aspects concern the role of the ultraviolet cutoff in the N
interaction and the relevance of the effects due to the stra
quark mass. As for the first point, the cutoff is usually fix
once for all and considered among the parameters of
model. However, when working at varying large densities
choice of the appropriate cutoff is rather subtle. It is sugg
tive to consider, for instance, a solid where there is natur
a maximum frequency, the Debye frequency. One expe
that when particles become closer together the ultravi
cutoff will extend to larger momenta. The appropriate phy
cal simulation of the real situation would then require a c
off increasing with the chemical potential, rather than
unique fixed cutoff. Our analysis suggests that, in order
get sensible results from the NJL model, the ultraviolet c
off should similarly increase with density. The results w
obtain for the physical quantities, below in this paper, sh
unequivocally that this is indeed the case. In the text we w
explain in more detail the essential difficulties~such as a
decreasing gap for larger densities! into which the theory
would run if taken with a fixed cutoff. We shall propose an
apply a convenient procedure to solve the problem in te
of a redefinition of the NJL coupling constant so as to ma
it cutoff dependent. In Sec. II we discuss this issue in
CFL model with massless quarks and find the optimal cho
for the dependence of the ultraviolet cutoff on the qua
chemical potential.

The second aspect we want to discuss is the role pla
by the nonvanishing strange quark mass. We address
Sec. III, where we provide semianalytical results for the d
pendence of the various gap parameters onms . CFL with a
massive strange quark represents a more realistic cas
which our previous discussion can be applied; we inclu
both the triplet and the sextet gaps and perform a pertu
©2003 The American Physical Society24-1
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tive expansion inms
2/m2, obtaining simple expressions fo

the first nontrivial term in the expansion. We compare t
expansion with the numerical results from the complete
equations and find that indeed the first perturbative term
equately describes the full dependence. We implement f
the very beginning the electrical neutrality for the CFL pha
and, as already observed, this allows the use of the HD
already applied for the 2SC case~the superconducting phas
of QCD with two massless flavors! @14#; for completeness
the simpler massless case is also treated by the same fo
ism. We note that the gap equation with finite strange qu
mass has already been discussed in@5,15#. In addition to the
use of HDET, our main contribution in this context is
provide semianalytical results for the mass dependenc
the CFL gaps. We conclude the paper with an Appen
where we list some results and integrals related to the
equation.

II. NJL RUNNING COUPLING CONSTANT

When the NJL interaction is used for modeling QCD
vanishing temperature and density, one can fix the UV cu
L so as to get realistic quark constituent masses. Typic
the cutoff is chosen between 600 and 1000 MeV for mas
ranging between 200 and 400 MeV. In any case,L is thought
of as fixed once for all. This gives no problems at zero d
sity, but leads to difficulties when one tries to simulate QC
at finite chemical potential. In fact, at finite density one tak
as relevant degrees of freedom all the fermions with m
menta in a shell around the Fermi surface. The thicknes
the shell is measured by a cutoffd, which is the cutoff for
momenta measured from the Fermi surface. This cutof
chosen to be much smaller than the chemical potentialm and
much larger than the gap;d is related to the NJL cutoffL by
the relationL5m1d, becauseL is the greatest momentum
allowed by the NJL model. This relation is problemat
however, when one is interested in the behavior of the the
for varying m. The constraintL5m1d would force d to
vanish for increasingm, starting fromm,L. In turn, this
gives rise to a vanishing gap. In fact, we recall from t
simplest version of the BCS theory that the gap has the t
cal behaviorD'2d exp@22/(Gr)#, wherer is the density
of states at the Fermi surface (r}m2) and G is the NJL
coupling constant. Therefore decreasing the volume of
shell has the effect of reducing the gap, with a quantitativ
different reduction from the state densityr and the thickness
d. The decreasing ofD with m does not correspond to th
asymptotic (m→`) QCD behavior, which is characterize
by an increase of the gap withm, although with a vanishing
ratio D/m @16#. The incorrect behavior ofD arises because
the model is taken to be valid only for momenta up toL,
which forbids going to values ofm of the order of or higher
thanL. Clearly this constitutes an obstacle in physical si
ations where the typical chemical potential is about 400
500 MeV ~e.g., in compact stellar objects! with a d of the
order of 150 or 200 MeV. In fact, it turns out to be difficul
if not impossible, to explore higher values ofm for any rea-
sonable choice ofL.

In this paper we make a proposal to overcome this sit
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tion. We start by noticing that the phenomenology at ze
temperature and density1 is completely determined by th
meson decay coupling constantf p and by the constituen
quark mass, or equivalently by the chiral condensate. In
NJL model these two quantities are fixed by two equatio
~see@17# for a review!, one fixing f p and the other the chira
gap equation. These equations depend on the cutoffL and on
the NJL couplingG. Our proposal consists in assuming th
coupling G to be a function ofL in such a way thatf p

assumes its experimental value and that the chiral gap e
tion is satisfied for any choice ofL.

To be more explicit, we write the Nambu–Jona-Lasin
equations with a three-dimensional cutoffL @17#; the equa-
tion for thep leptonic decay constant is

f p
2 53m* 2E d3p

~2p!3

1

Ep
3

u~L2upW u!

52
3m* 2

2p2 F L

Am* 21L2
2arcsinh

L

m*
G , ~1!

wherem* is the constituent mass atm50, which is deter-
mined by the self-consistency condition

m* 5m01
4m*

3p2
G~L!E

0

L p2 dp

Ap21m*
2
; ~2!

m0 is the quark current mass which is assumed in this sec
to be zero.G(L) is the NJL coupling having dimensio
(mass)22; it can be understood as the effect of a fictitio
gluon propagator@3#:

iD ab
mn5 i

gmndab

L2
, ~3!

andL2G(L) takes the role of the square of the strong co
pling constant. Equation~1!, with f p593 MeV, implicitly
defines the functionm* 5m* (L) which we use in Eq.~2! to
get the functionG5G(L). The result of this analysis is
shown in Fig. 1.

Our choice implies that a NJL model is defined at a
scale by using the appropriateG(L). Whereas in the usua
case we have to keep the momentum smaller than the cu
now, for any given momentum, we can fix the cutoff in su
a way that it is much bigger than the momentum. The p
nomenology of the chiral world is clearly unaffected by th
procedure; in fact it turns out that the constituent mass
quires a weak dependence on the cutoff, and therefore it
be fixed at the most convenient value. Also, the quan

1For the sake of discussion we consider here the ideal cas
massless quarks; the more realistic case of a massive strange
will be considered in the following.
4-2
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G(L)L2 decreases weakly with increasing cutoff. In app
ing these considerations to calculations at finite density,
have only to use the appropriate value of the coupling
given byG(m1d), where nowm1d has nothing to do with
the value ofL chosen to fit the chiral world. Notice tha
since we are restricting our theory to a small shell around
Fermi surface, the coupling is practically constant within t
region. This is in agreement with the behavior dictated by
renormalization group at the Fermi surface. To give an
plicit example, we consider the CFL phase with massl
quarks. There are two independent gapsD[D1 and D9
(D9522D if the pairing is only in the antitriplet channe!
and the gap equations are@3,13#

D52
m2G

6p2 S D9arcsinh
d

uD9u
22D arcsinh

d

uDu D ,

D952
4m2GD

3p2
arcsinh

d

uDu
. ~4!

If one uses a fixed value forL5m1d, as for instance in
Ref. @18#, one gets a nonmonotonic behavior of the gap,
can be seen from Fig. 2~dashed line!; a similar behavior was
found in @18# ~their Fig. 1!, albeit a different choice of the

FIG. 1. The running NJL coupling constantG ~dashed line! and
the running constituent massm* ~in MeV, solid line! as functions of
L ~in MeV!. L is the ultraviolet cutoff. The vertical axis on the le
refers toL2G(L), while the axis on the right refers tom* .

FIG. 2. The CFL gapD for massless quarks, as obtained fro
Eq. ~4!, versus the quark chemical potential for the two cases
cussed in the text. Solid line: running NJL couplingG(m1d) and
cutoff d5cm, with c50.35; dashed line:d5L2m, where L
5800 MeV andG(L)513.3 GeV22. The picture shows the differ
ent qualitative behaviors of the gap withm.
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parameters produces some numerical differences. On
other hand, the solid line shows an increasing behavior of
gap. The difference between the two curves is due to
following reason. Working withL fixed ~dashed curve in
Fig. 2! and increasingm decreases the cutoffd, making the
gap decrease as in the BCS analysis. Of course, this is
ready clear in Ref.@3#, where it was stated that their analys
cannot be extended abovem'L. In our case we have the
possibility of varying the cutoffL, and since we choosed
proportional tom the gap increases. It is interesting to noti
that, although there is no reason for ita priori, in this way
one reproduces qualitatively the behavior found in QCD
the asymptotic chemical potential@16#. This result is ob-
tained by the running NJL couplingG(m1d), with the fol-
lowing choice of the cutoffd:

d5cm, ~5!

with c a fixed constant (c50.35 in Fig. 2!. The reason for
this choice is that, as discussed above, when increasingm,
we do not want to reduce the ratio of the number of relev
degrees of freedom to the volume of the Fermi sphere.
quiring the fractional importance to be constant is equival
to requiring Eq.~5!. In Fig. 2 and in the following we con-
sider the model for values ofm varying from 500 to 1100
GeV. However, the results can easily be extended to lo
values ofm.

In Fig. 3, we plot the gap parameterD1 ~the results forD9
are similar! as a function ofc for three different values of the
chemical potential. In general, there exists a window of v
ues forc:

c50.3560.10, ~6!

where the gap parameters are less dependent onc. This is
therefore the range ofc we shall assume below. Notice tha
the decreasing of the gap with increasingc after the maxi-
mum arises because the coupling decreases with increa
cutoff, contrary to the BCS case where it is kept fixed. O
the other hand, we see that for fixedc the gap increases
with m.

It can also be noted that the result for the QCD superc
ducting model we are considering here has its counterpa
solid state physics, where the analysis of@19# shows a linear
increase ofd with m similar to Eq.~5!.

-

FIG. 3. Gap parameterD1 as a function ofc, whered5cm; the
quarks are massless. The three curves are obtained for three v
of the quark chemical potential:m51.0,0.7,0.5 GeV.
4-3
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These results, valid for the massless case, are confir
by a complete numerical analysis including the effect o
strange mass. This will be discussed in the next section.

III. EFFECTIVE LAGRANGIAN FOR GAPLESS QUARKS

The massive case is considerably more involved, and
simple set of equations~4! has to be replaced by a system
five equations@5# that can be solved only numerically. I
@18# the CFL phase with massive strange quark was a
considered. In comparison with@5# the derivation we presen
here has the advantage of offering semianalytical resu
thanks to an expansion in powers ofms /m. We principally
differ from Ref. @18# in the different treatment of the cutoff
as discussed in the previous section, and in the inclusio
pairing in both the antitriplet and the sextet color channe
The possibility of a semianalytical treatment rests on
HDET approximation. This effective Lagrangian approa
was extended in@14# to the 2SC phase with massive quark
and here we treat the three-flavor case.

In the HDET one introduces effective velocity depende
fields, corresponding to the positive energy solutions of
field equations:ca,i ,nW(x) wherea,i are color and flavor in-
dices,nW 5vW /uvW u, andvW is the quark velocity defined by th
equation

pm5mvm1,m ~7!

with vm5(0,vW ). The effective fieldsca,inW(x) are expressed
in terms of Fourier-transformed quark fieldsc̃a,i(p) as fol-
lows:

ca,inW~x!5P1E d4p

~2p!4
ei (p2mv)•xc̃a,i~p!. ~8!

Here P1 is the positive energy projector, defined, togeth
with P2 , by the formula

P65
16~aW •vW 1xig

0!

2
, ~9!

where xi5mi /m and mi is the mass of the quark havin
flavor i. We now change the color flavor basis, introduci
new fieldscnW

A as follows:

ca,i ,nW~x!5 (
A51

9
la i

A

A2
cnW

A
~x!, ~10!

wherelA with A51, . . . ,8 are theusual Gell-Mann matrices
and l95A2/3l0. We also introduce the Nambu-Gor’ko
doublet

xA5
1

A2
S cnW

A

Cc
2nW
A,* D . ~11!

In the xA basis the Lagrangian of the quarks, including t
quark-gluon interaction and the gap term, can be written
momentum space as follows:
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L5L01L11LD . ~12!

L0 is the kinetic term whileL1 describes the quark-gluo
interaction. They are given by

L05(
nW

(
A,B51

9

xA
†S VAB•, 0

0 ṼAB•,
D xB ,

L15 ig(
nW

(
A,B51

9

xA
†S HAB•A 0

0 2H̃AB* •A
D xB .

~13!

We have introduced the symbols

VAB•,5Tr@TATBV m#,m , ṼAB•,5Tr@TATBṼm#,m ,

HAB•A5HAmB
m

•Am
m5

1

A2
Tr@TATmTBV m#Am

m ,

H̃AB•A5H̃AmB
m

•Am
m5

1

A2
Tr@TATmTBṼm#Am

m . ~14!

In these equationsTA5lA /A2, Am
m is the gluon field, and

V m denotes the matrix

V i j
m5S V u

m 0 0

0 V d
m 0

0 0 V s
m
D ~15!

with V i
m5(1,vW i) for each flavori; a similar definition holds

for Ṽi j
m , with Ṽi

m5(1,2vW i). In the limit mu5md'0 one has
vu5vd51, vs5A12xs

25A12ms
2/ms

2.
Let us now turn to the gap termLD . We consider CFL

condensation in both the antisymmetric3̄A and the symmet-
ric 6S channels. We assume equal masses~actually zero! for
the up and down quarks and neglect quark-antiquark ch
condensates, whose contribution is expected to negligibl
the very largem limit. The contribution from the repulsive6S
channel is also expected to be small, but we include it
cause the gap equations are consistent only with conde
tion in both the6S and3̄A channels. The condensate we co
sider is therefore

^ca iCg5cb j&;„D i j e
abIe i j I 1Gi j ~da idb j1da jdb i !….

~16!

The first term on the right-hand side accounts for the c
densation in the3̄A channel and the second one describ
condensation in6S channel. As we assumemu5md , we put

Dus5Dds[D, Dud[D12, ~17!

Guu5Gdu5Gud5Gdd[G1 , Gus5Gds[G2 ,

Gss[G3 , ~18!
4-4
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which reduces the number of independent gap paramete
five. We stress that we require electrical and color neutra
which, as shown in Ref.@7#, is indeed satisfied in the colo
flavor locked phase of QCD because in this phase the n
ber densities of the three light quarks are equal,nu5nd
5ns , with no need for electrons, i.e.,ne50. As a conse-
quence, the Fermi momenta of the three quarks are equ

pF,u5pF,d5pF,s[pF , ~19!

which, in terms of the quark chemical potentials and Fe
velocities, can be written as

muuvW uu5mduvW du5msuvW su. ~20!

It follows that the wave function of the quark-quark conde
sate has no dependence on the Fermi energies and the
densation can be described in the mean field approxima
by the following Lagrangian term containing only the effe
tive fieldsca i ,6 :
03402
to
y,
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:
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n

LD52
D i j e

abIe i j I 1Gi j ~da idb j1da jdb i !

2

3(
nW

ca i ,2
T Cg5cb j ,11H.c. ~21!

Using the Nambu-Gor’kov~NG! fields one rewrites Eq.~21!
as follows:

LD5(
nW

(
A,B51

9

xA
† S 0 g5^ DAB

g5^ DAB
† 0 D xB ~22!

where

DAB5DAB~ 3̄!1DAB~6! ~23!

and
e

DAB~ 3̄!5S D12I 3 0 0 0

0 DI 4 0 0

0 0
1

3
~4D2D12!

A2

3
~D2D12!

0 0
A2

3
~D2D12! 2

2

3
~D1212D!

D , ~24!

DAB~6!5S G1I 3 0 0 0

0 G2I 4 0 0

0 0 G12
4

3
~G22G3!

A2

3
~3G122G32G2!

0 0
A2

3
~3G122G32G2!

2

3
~3G112G21G3!

D , ~25!

whereI n indicates then3n identity matrix. The nine eigenvalues of the matrixDAB are reported in the Appendix. From th
Lagrangian

L01LD5(
nW

(
A,B51

9

xA
†S VAB•, g5^ DAB

g5^ DAB
† ṼAB•,

D xB5(
nW

(
A,B51

9

xA
†SAB

21~, !xB , ~26!

the fermionic propagator is obtained:

SAB~, !5S 1

DṼ•,D21V•,2D2
DṼ•,D21 2

1

DṼ•,D21V•,2D2
g5^ D

2
1

DV•,D21Ṽ•,2D2
g5^ D

1

DV•,D21Ṽ•,2D2
DV•,D21D

AB

.

4-5
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The off-diagonal matrixSAB
12 (1,25NG indices! is the

anomalous component of the quark propagator, which
what we need to write down the gap equations. In ma
form they are as follows:

2DAB52
iG~m1d!pF

2

4p3
HAaC

m HDbB
n*

3E
2d

1d
d, i E

2`

1`

d,0dabgmnSCD
12 ~ l !, ~27!

where the color flavor symbolsHAaB
m have been defined in

Eq. ~14! and the running NJL coupling is computed atm
1d, according to the previous discussion. In Eq.~27! d
5cm is the cutoff discussed in Sec. II. The gap equatio
can be solved numerically; results forms5250 MeV andc
50.35 are reported in Fig. 4.

A semianalytical solution can be found by performing
expansion in the strange quark mass:

xs5
ms

ms
'

ms

m
!1. ~28!

Here m5mu5md , ms5m1dm with dm5O(ms /m)2. We
define

D15D121G1[D1
01e1xs

2 ,

D9522D1214G1[D9
01e9xs

2 ,

D[
4D1

02D9
0

6
2j1xs

2 , G2[
2D1

01D9
0

6
2j2xs

2 ,

G3[
2D1

01D9
0

6
2j3xs

2 , ~29!

whereD1
0 ,D9

0 are the values for massless quarks and can
obtained from Eqs.~4!. For msÞ0 the number of gaps in

FIG. 4. The five gap parameters vs the chemical potentialm;
results obtained by the numerical solution of the exact gap eq
tions, for ms5250 MeV andd50.35m. The upper curve refers to
D12, while the middle one refers toD. The lower curves are the
data obtained for the three sextet gap parametersuG1u, uG2u, and
uG3u. Gaps andm are expressed in MeV.
03402
is
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e

creases from 2 to 5, but Eqs.~29! immediately give the so-
lutions for any value ofms ~with the proviso thatxs

5ms
2/m2!1) if one knows the parameters j

5(e1 ,e9 ,j1 ,j2 ,j3). They can be obtained by solving th
system of five linear algebraic equations

A•j5f. ~30!

The matricesA and f are reported in the Appendix. Numer
cal results for the parametersj are in Table I. For a strange
mass of 250 MeV we find the rateD9 /D1 equal to22.365
for m5500 MeV and22.33 form51000 MeV.

From these results we can compute the dependence o
various gaps onm. For D1 it is reported~for two values of
the strange quark mass! in Fig. 5. We stress that the approx
mation we consider here is indeed very good in the range
parameters we have considered in the present paper,
ms5150–250 MeV andm5500–1000 MeV. As an ex-
ample, Fig. 6 shows the approximate solution forD1 ~solid
line!, which differs only by a few percent from the exa
solution ~dashed line!, except in the lower region ofm.
These results are obtained for a mass of 250 MeV;
smaller values the effect is even less relevant.

IV. CONCLUSIONS

A main point in this work has been to clarify the issue
the dependence onm of the ultraviolet cutoff in the NJL
model and its application to the CFL phase of QCD. A co
venient procedure consists of redefining the NJL coupling
as to make it cutoff dependent. The application to the C
model with msÞ0 leads, in the approximation of the hig
density effective theory, to an expansion in the parame
(ms /m)2 whose numerical validity is already very good
first order. Both triplet and sextet gaps are included. The

a-

TABLE I. Values of thej components obtained by means of th
535 system of linear equations. In the gap equations we have m
the choiced50.35m. All the gaps andm ’s are expressed in MeV.

m e1 e9 j1 j2 j3

500 235.29 90.48 33.63 22.06 26.20
700 244.86 102.93 41.16 23.10 28.72
1000 261.21 135.08 55.69 24.42 212.23

FIG. 5. Gap parameterD15D121G1 as a function ofm. Left
panel: results for two different values of the strange quark m
ms5150, 250 MeV~curves are obtained by means of the perturb
tive gap equations!. Right panel: relative variationdD1 /D1

5@D1(ms)2D1(0)#/D1(0). In this plot d50.35m. Gaps andm ’s
are expressed in MeV.
4-6
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parameters are obtained as functions of the chemical po
tial and their behavior is consistent with the expec
asymptotic limits.
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FIG. 6. This diagram shows the difference between the ex
numerical calculation of the gapD1 for ms5250 MeV ~solid line!
and the approximate result obtained through the expansion inms

~dashed line!. Units are MeV.
03402
n-
d

APPENDIX

Eigenvalues of the gap matrix

The eigenvalues of the gap matrix for CFL with a mass
strange quark are as follows:D15•••5D55D121G1 , D6

5D75D1G2 , D8/95
1
2 @x2z6A(x1z)214y2#, where

x,y,z are given by

x5
1

3
~4D2D12!1G12

4

3
~G22G3!, ~A1!

y5
A2

3
~D2D12!1A2S G12

G2

3
2

A2G3

3 D ,

~A2!

z5
2

3
~D1212D!2

2

3
~3G112G21G3!.

~A3!

Matrices j, A, f

We write down explicitly the matricesj, A, f defined in
the text:

ct
jT5~e1e9j1j2j3!; ~A4!

A51
a b 2

2

9
b~2g112g92g19!

2

9
b~2g112g92g19!

2

9
b~g12g912g19!

a b 212
b

9
~7g114g91g19! 211

b

9
~g114g91g19! 2

b

9
~4g112g912g19!

a b 2
4

3
2

2b

9
~5g112g91g19!

4

3
2

2b

9
~7g122g92g19! 2

4

3
2

2b

9
~2g11g912g19!

0 0 2
A2

3 S 11
b

3
~5g12g19! D A2

3 S 12
b

3
~g12g19! D 2

2A2

3 X11
b

3
~g12g19! C

g 1
4

3
2

2b

9
4g1 2

4

3
2

16b

9
g1

2

3
1

4b

9
g1

2 ; ~A5!

where we have definedb5G(m1d)m2/2p2, a512 2
3 bh1 , b5 1

3 bh9 , g5(8b/3)h1; finally,

f51
bX2

Ĩ 1
0

3
1

Ĩ 9
0

6
2

1

18
~ f 11 f 924 f 19! C

bX2
Ĩ 1

0

2
1

Ĩ 9
0

4
2

1

18
~5 f 12 f 922 f 19! C

bX 5

18
~22 Ĩ 1

012 Ĩ 9
0!1

1

18
~11f 12 f 924 f 19! C

bF 1

18A2
~27 Ĩ 1

02 Ĩ 9
0!1

A2

18 S 17

2
f 11 f 19D G

bS 16

9
Ĩ 1

01
10

18
f 1D

2 . ~A6!
4-7



ls

CASALBUONI et al. PHYSICAL REVIEW D 68, 034024 ~2003!
The values of the parametersf j ,gj , Ĩ j
0 ,hk are listed below:

f 15
1

2p i
D1

0Jd~D1
0!, f 95

1

2p i
D9

0Jd~D9
0!,

f 195
1

2p i
D1

0Jd~D1
0 ,D9

0!,

g15
1

2p i
I d~D1

0!, g95
1

2p i
I d~D9

0!,

g195
1

2p i
I d~D1

0 ,D9
0!, ~A7!

Ĩ j
05D j

0arcsinhU d

D j
0U , hk5arcsinhU d

D j
0U21.

~A8!

In this expression we use the following parametric integra

I d~x!5E
2d

d
d2l

V• lṼ• l 1x2

D~x!2

52p i S 2arcsinhUdxU1 d

Ad21x2D , ~A9!
ys

ys

03402
:

I d~x1 ,x2!5E
2d

d
d2l

V• lṼ• l 1x1x2

D~x1!D~x2!

5
2p

i FarcsinhU d

x2
U1 x1~x11x2!

x2
22x1

2

3S arcsinhU d

x2
U2arcsinhU d

x1
U D G , ~A10!

Jd~x!5E
2d

d
d2l

l i
2

D~x!2
5 ipS arcsinhUdxU2 d

Ad21x2D ,

~A11!

Jd~x1 ,x9!5E
2d

d
d2l

l i
2

D~x1!D~x9!

5
ip

2~x1
22x9

2!
F22d~Ax1

21d22Ax9
21d2!

12x1
2 arcsinhU d

x1
U22x9

2 arcsinhU d

x9
UG .

~A12!
M.
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