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Abstract

We study two aspects of the CFL phase of QCD in the NJL approximation. The

first one is the issue of the dependence on µ of the ultraviolet cutoff in the gap

equation, which is solved allowing a running coupling constant. The second one

is the dependence of the gap on the strange quark mass; using the high density

effective theory we perform an expansion in the parameter (ms/µ)2 after checking

that its numerical validity is very good already at first order.

1 Introduction

The existence of color superconductivity at very large densities and low temperature is

an established consequence of QCD (for general reviews see [1], and [2]). Since at lower

1On leave from the Dipartimento di Fisica, Universita’ di Firenze, I-50019 Firenze, Italia
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densities one cannot employ perturbative QCD, a popular approach in this regime is

the use of a Nambu-Jona Lasinio (NJL) model. The mathematical procedure consists in

solving the mean field gap equation and selecting the solution which minimizes the free

energy. At sufficiently high densities, for three massless flavors, the condensation pattern

leads to a conserved diagonal subgroup of color plus flavor (color-flavor locked phase,

briefly CFL phase [3, 4]); this phase continues to exist when the strange quark mass is

non vanishing, but not too large [5, 6]. An interesting property of the CFL phase, proved

by Rajagopal and Wilczek [7], is its electrical neutrality, which implies that the densities

of u, d and s quarks are equal. A stable bulk requires not only e.m. neutrality, but also

color neutrality. It should also be a color singlet, but according to ref. [8] in a color

neutral macroscopic system imposing this property does not essentially change the free

energy. Alford and Rajagopal [9] have shown that in neutral CFL (with finite strange

quark mass) quarks pair with a unique common Fermi momentum. The neutrality result

is basic to our calculations below. It allows the use of a well defined approximation of

QCD at high density (high density effective theory HDET), see [10, 11, 12] and, for a

review, [13].

In this letter we address two aspects of CFL for QCD modeled by a NJL four fermion

interaction. Even though NJL is only a model, it offers simple expressions that can

be helpful in clarifying physical issues; therefore a better understanding of its dynamics

is significant. The two aspects concern the role of the ultraviolet cutoff in the NJL

interaction and the relevance of the effects due to the strange quark mass. As for the first

point, the cutoff is usually fixed once for all and considered among the parameters of the

model. However, when working at varying large densities the choice of the appropriate

cutoff is rather subtle. It is suggestive to consider, for instance, a solid where there is

naturally a maximum frequency, the Debye frequency. One expects that when particles

become closer the ultraviolet cutoff extends to larger momenta. The appropriate physical

simulation of the real situation would then require a cutoff increasing with the chemical

potential, rather than a unique fixed cutoff. Our analysis suggests that, in order to get

sensible results from the NJL model, the ultraviolet cutoff should similarly increase with

density. The results we obtain for the physical quantities, below in this paper, show

unequivocally that this is indeed the case. In the text we will explain in more detail the

essential difficulties (such as a decreasing gap for larger densities) in which the theory
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would run into if taken with a fixed cutoff. We shall propose and apply a convenient

procedure to solve the problem in terms of a redefinition of the NJL coupling constant

such as to make it cutoff dependent. In Section 2 we discuss this issue in the CFL model

with massless quarks and we find the optimal choice for the dependence of the ultraviolet

cutoff on the quark chemical potential.

The second aspect we want to discuss is the role played by the non vanishing strange

quark mass. We address it in Section 3, where we provide semi-analytical results for

the dependence of the various gap parameters on ms. CFL with a massive strange quark

represents a more realistic case in which our previous discussion can be applied; we include

both the triplet and the sextet gaps and perform a perturbative expansion in m2
s/µ

2,

obtaining simple expressions for the first non trivial term in the expansion. We compare

this expansion with the numerical results from the complete gap equations and we find

that indeed the first perturbative term adequately describes the full dependence. We

implement from the very beginning the electrical neutrality for the CFL phase and, as

already observed, this allows the use of the HDET already applied for the 2SC case [14];

for completeness also the simpler massless case is treated by the same formalism. We

notice that the gap equation with finite strange quark mass has already been discussed

in [5, 15]. Besides the use of HDET, our main contribution in this context is to provide

semi-analytical results for the mass dependence of the CFL gaps. We conclude the paper

with an Appendix where we list some results and integrals related to the gap equation.

2 NJL running coupling constant

When the NJL interaction is used for modelling QCD at vanishing temperature and

density, one can fix the UV cutoff Λ such as to get realistic quark constituent masses.

Typically the cutoff is chosen between 600 and 1000 MeV for masses ranging between 200

and 400 MeV. In any case Λ is thought of as fixed once for all. This gives no problems

at zero density, however leads to difficulties when one tries to simulate QCD at finite

chemical potential. In fact, at finite density one takes as relevant degrees of freedom all

the fermions with momenta in a shell around the Fermi surface. The thickness of the
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shell is measured by a cutoff δ, which is the cutoff for momenta measured from the Fermi

surface. This cutoff is chosen to be much smaller than the chemical potential µ and much

larger than the gap; δ is related to the NJL cutoff Λ by the relation Λ = µ+δ, because Λ is

the greatest momentum allowed by the NJL model. This relation is however problematic

when one is interested in the behavior of the theory for varying µ. The constraint Λ = µ+δ

would force δ to vanish for increasing µ, starting from µ < Λ. In turns this gives rise to

a vanishing gap. In fact, we recall from the simplest version of the BCS theory that the

gap has a typical behavior ∆ ≈ 2δ exp[−2/(Gρ)], where ρ is the density of the states at

the Fermi surface (ρ ∝ µ2) and G is the NJL coupling constant. Therefore decreasing

the volume of the shell has the effect of reducing the gap, with a quantitatively different

reduction from the state density ρ and the thickness δ. The decreasing of ∆ with µ does

not correspond to the asymptotic (µ → ∞) QCD behavior, which is characterized by

an increase of the gap with µ, though with a vanishing ratio ∆/µ [16]. The uncorrect

behavior of ∆ arises because the model is taken to be valid only for momenta up to Λ

which forbids to go to values of µ of the order or higher than Λ. Clearly this constitutes

an obstacle in physical situations where the typical chemical potential is about 400 or

500 MeV (e.g. in compact stellar objects) with a δ of the order 150 or 200 MeV. In fact

it turns out difficult, if not impossible, to explore higher values of µ for any reasonable

choice of Λ.

In this paper we make a proposal to overcome this situation. We start by noticing

that the phenomenology at zero temperature and density2 is completely determined by the

meson decay coupling constant fπ and by the constituent quark mass, or equivalently by

the chiral condensate. In the NJL model these two quantities are fixed by two equations

(see for a review [17]), one fixing fπ and the other the chiral gap equation. These equations

depend on the cutoff Λ and on the NJL coupling G. Our proposal consists in assuming

the coupling G to be a function of Λ in such a way that fπ assumes its experimental value

and that the chiral gap equation is satisfied for any choice of Λ.

To be more explicit, we write the Nambu-Jona Lasinio equations with a three dimen-

2For the sake of discussion we consider here the ideal case of massless quarks, the more realistic case

of a massive strange quark will be considered in the following
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sional cutoff Λ [17]; the equation for the π leptonic decay constant reads :

f 2
π = 3m∗ 2

∫
d3p

(2π)3

1

E3
p

θ (Λ− |~p|) = −3m∗ 2

2π2

[
Λ√

m∗ 2 + Λ2
− arcsinh

Λ

m∗

]
, (1)

where m∗ is the constituent mass at µ = 0 which is determined by the self-consistency

condition:

m∗ = m0 +
4m∗

3π2
G(Λ)

∫ Λ

0

p2dp√
p2 +m∗ 2

; (2)

m0 is the quark current mass which is assumed in this Section to be zero. G(Λ) is the

NJL coupling having dimension mass−2; it could be understood as the effect of a fictitious

gluon propagator [3]:

iDµν
ab = i

gµνδab

Λ2
, (3)

and Λ2G(Λ) would take the role of the square of the strong coupling constant. Eq. (1),

with fπ = 93 MeV, implicitly defines the function m∗ = m∗(Λ) which we use in eq. (2)

to get the function G = G(Λ). The result of this analysis is in fig. 1.
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Figure 1: The running NJL coupling constant G (dashed line) and the running constituent mass m∗

(in MeV, solid line) as functions of Λ (in MeV). Λ is the ultraviolet cutoff. The vertical axis on the left

refers to Λ2G(Λ), while the axis on the right refers to m∗.

Our choice implies that a NJL model is defined at any scale by using the appropriate

G(Λ). Whereas in the usual case we have to keep the momenta smaller than the cutoff,

now, for any given momenta, we can fix the cutoff in such a way that it is much bigger
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than the momenta. The phenomenology of the chiral world is clearly unaffected by this

procedure; in fact it turns out that the constituent mass acquires a weak dependence

on the cutoff, and therefore it can be fixed at the most convenient value. Also the

quantity G(Λ)Λ2 decreases weakly with the cutoff. In applying these considerations to

the calculations at finite density, we have only to use the appropriate value of the coupling

as given by G(µ+ δ), where now µ+ δ has nothing to do with the value of Λ chosen to fit

the chiral world. To give an explicit example we consider the CFL phase with massless

quarks. There are two independent gaps ∆ and ∆9 (∆9 = −2∆ if the pairing is only in

the antitriplet channel) and the gap equations are [3, 13]:

∆ = − µ2G

6π2

(
∆9 arcsinh

δ

|∆9| − 2∆ arcsinh
δ

|∆|
)
,

∆9 = − 4µ2G∆

3π2
arcsinh

δ

|∆| . (4)

If one uses a fixed value for Λ = µ+δ, as for instance in ref. [18], one gets a non monotonic

behavior of the gap, as it can be seen from fig. 2, (dashed line); a similar behavior was

found in [18] (their fig. 1), albeit a different choice of the parameters produces some

numerical differences. On the other hand the solid line shows an increasing behavior of
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Figure 2: The CFL gap ∆ for massless quarks, as obtained from eq. 4, versus the quark chemical

potential for the two cases discussed in the text. Solid line: running NJL coupling G(µ + δ) and cutoff

δ = cµ, with c = 0.35; dashed line: δ = Λ − µ, where Λ = 800 MeV, and G(Λ) = 13.3 GeV−2. The

picture shows the different qualitative behavior with µ of the gap.

the gap. We see that in this way one reproduces qualitatively the behavior found in

QCD for asymptotic chemical potential [16]. This result is obtained by the running NJL

6



coupling G(µ+ δ), with the following choice of the cutoff δ:

δ = c µ (5)

with c a fixed constant (c = 0.35 in fig. 2). The reason for this choice is that, as discussed

above, when increasing µ, we do not want to reduce the ratio of the number of the relevant

degrees of freedom to the volume of the Fermi sphere. Requiring the fractional importance

to be constant is equivalent to require eq. (5).

In fig. 3, we plot the gap parameter ∆1 (the results for ∆9 are similar) as a function

of c for three different values of the chemical potential. In general there exists a window

of values for c:

c = 0.35± 0.10 , (6)

where the gap parameters are less dependent on c. This is therefore the range of c we shall

assume below. It can be also noted that the result for the QCD superconducting model
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Figure 3: Gap parameter ∆1 as a function of c, where δ = c µ; the quarks are massless. The three

curves are obtained for three values of the quark chemical potential: µ = 1.0, 0.7, 0.5 GeV.

we are considering here has its counterpart in solid state physics, where the analysis of

[19] shows a linear increase of δ with µ similar to eq. (5).

These results, valid for the massless case, are confirmed by a complete numerical

analysis including the effect of a strange mass. This will be discussed in the subsequent

section.
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3 Effective lagrangian for gapless quarks

The massive case is considerably more involved, and the simple set of equations (4) has to

be substituted by a system of 5 equations [5] that can be only solved numerically. In [18]

the CFL phase with massive strange quark was also considered. In comparison with [5]

the derivation we present here has the advantage of offering semi-analytical results, thanks

to an expansion in powers of ms/µ. We principally differ from ref. [18] for the different

treatment of the cutoff, as discussed in the previous section, and for the inclusion of pairing

in both the antitriplet and the sextet color channel. The possibility of a semi-analytical

treatment rests on the HDET approximation. This effective lagrangian approach was

extended in [14] to the 2SC phase with massive quarks and here we treat the three flavor

case.

In the HDET one introduces effective velocity dependent fields, corresponding to the

positive energy solutions of the field equations: ψα,i,~n(x) where α, i are color and flavor

indices, ~n = ~v/|~v|, and ~v is the quark velocity defined by the equation

pµ = µvµ + `µ (7)

with vµ = (0, ~v). The effective fields ψα,i ~n(x) are expressed in terms of Fourier-transformed

quark fields ψ̃α,i(p) as follows

ψα,i ~n(x) = P+

∫
d4p

(2 π)4
ei (p−µv)·x ψ̃α,i(p) . (8)

Here P+ is the positive energy projector, defined, together with P−, by the formula

P± =
1± (~α · ~v + xi γ

0)

2
, (9)

where xi = mi/µ and mi is the mass of the quark having flavor i. We now change the

color-flavor basis introducing new fields ψA
~n as follows:

ψα,i,~n(x) =
9∑

A=1

λA
αi√
2
ψA

~n (x) , (10)

where λA with A = 1, . . . , 8 are the usual Gell-mann matrices and λ9 =
√

2/3λ0. We also

introduce the Nambu-Gor’kov doublet

χA =
1√
2


 ψA

~n

C ψA,∗
−~n


 . (11)
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In the χA basis the lagrangian of the quarks, including the quark-gluon interaction and

the gap therm can be written in momentum space as follows:

L = L0 + L1 + L∆ . (12)

L0 is the kinetic term while L1 describes the quark-gluon interaction. They are given by:

L0 =
∑
~n

9∑
A,B=1

χ†A


 VAB · ` 0

0 ṼAB · `


 χB ,

L1 = ig
∑
~n

9∑
A,B=1

χ†A


 HAB·A 0

0 −H̃∗
AB · A


 χB . (13)

We have introduced the symbols

VAB · ` = Tr [TA TB Vµ] `µ , ṼAB · ` = Tr
[
TA TB Ṽµ

]
`µ

HAB·A = Hµ
AmB · Am

µ =
1√
2
Tr [TA Tm TB Vµ]Am

µ ,

H̃AB·A = H̃µ
AmB · Am

µ =
1√
2
Tr

[
TA Tm TB Ṽµ

]
Am

µ . (14)

In these equations TA = λA/
√

2, Am
µ is the gluon field, and Vµ denotes the matrix

Vµ
ij =



Vµ

u 0 0

0 Vµ
d 0

0 0 Vµ
s


 (15)

with Vµ
i = (1, ~vi) for each flavor i; a similar definition holds for Ṽµ

ij , with Ṽµ
i = (1, −~vi).

In the limit mu = md ≈ 0 one has vu = vd = 1 , vs =
√

1− x2
s =

√
1−m2

s/µ
2
s.

Let us now turn to the gap term L∆. We consider CFL condensation in both the

antisymmetric 3̄A and in the symmetric 6S channels. We assume equal masses (actually

zero) for the up and down quarks and neglect quark-antiquark chiral condensates, whose

contribution is expected to negligible in the very large µ limit. Also the contribution

from the repulsive 6S channel is expected to be small, but we include it because the gap

equations are consistent only with condensation in both the 6S and the 3̄A channels. The

condensate we consider is therefore

< ψαi C γ5 ψβj >∼
(
∆ij ε

αβIεijI +Gij (δαi δβj + δαj δβi)
)
. (16)
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The first term on the r.h.s accounts for the condensation in the 3̄A channel and the second

one describes condensation in 6S channel. As we assume mu = md, we put

∆us = ∆ds ≡ ∆ , ∆ud ≡ ∆12 , (17)

Guu = Gdu = Gud = Gdd ≡ G1 , Gus = Gds ≡ G2 , Gss ≡ G3 , (18)

which reduces the number of independent gap parameters to five. We stress that we

impose electrical and color neutrality, which, as shown in ref. [7], is indeed satisfied in

the color-flavor locked phase of QCD because in this phase the three light quarks number

densities are equal nu = nd = ns, with no need for electrons, i.e. ne = 0. As a consequence,

the Fermi momenta of the three quarks are equal:

pF, u = pF, d = pF, s ≡ pF , (19)

which, in terms of the quark chemical potentials and Fermi velocities can be written as

µu|~vu| = µd|~vd| = µs|~vs| . (20)

It follows that the wave function of the quark-quark condensate has no dependence on the

Fermi energies and the condensation can be described in the mean field approximation

by the following lagrangian term containing only the effective fields ψαi,±:

L∆ = −∆ij ε
αβIεijI +Gij (δαi δβj + δαj δβi)

2

∑
~n

ψT
αi,− C γ5 ψβj, + + h.c. (21)

Using the Nambu-Gor’kov fields one rewrites (21) as follows:

L∆ =
∑
~n

9∑
A,B=1

χ†A


 0 γ5 ⊗ ∆AB

γ5 ⊗ ∆†
AB 0


 χB (22)

where

∆AB = ∆AB(3̄) + ∆AB(6) (23)

and

∆AB(3̄) =




∆12 I3 0 0 0

0 ∆ I4 0 0

0 0 1
3
(4 ∆−∆12)

√
2

3
(∆−∆12)

0 0
√

2
3

(∆−∆12) −2
3
(∆12 + 2 ∆)




(24)
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∆AB(6) =




G1 I3 0 0 0

0 G2 I4 0 0

0 0 G1 − 4
3
(G2 −G3)

√
2

3
(3G1 − 2G3 −G2)

0 0
√

2
3

(3G1 − 2G3 −G2)
2
3
(3G1 + 2G2 +G3)



, (25)

where In stays for the n×n identity matrix. The nine eigenvalues of the matrix ∆AB are

reported in the Appendix. From the lagrangian

L0 + L∆ =
∑
~n

9∑
A,B=1

χ†A


 VAB · ` γ5 ⊗ ∆AB

γ5 ⊗ ∆†
AB ṼAB · `


 χB =

∑
~n

9∑
A,B=1

χ†AS
−1
AB(`)χB (26)

the fermionic propagator is obtained:

SAB(`) =




1
∆Ṽ · `∆−1 V · l−∆2 ∆Ṽ · `∆−1 − 1

∆Ṽ · `∆−1 V · l−∆2 γ5 ⊗ ∆

− 1
∆V · `∆−1 Ṽ · l−∆2 γ5 ⊗∆ 1

∆V · `∆−1Ṽ · l−∆2 ∆V · `∆−1




AB

The off-diagonal matrix S12
AB (1, 2= NG indices) is the anomalous component of the quark

propagator, which is what we need to write down the gap equations. In matrix form they

are as follows

−∆AB = −i G(µ+ δ) p2
F

4 π3
Hµ

AaC H
ν∗
DbB

∫ +δ

−δ
d`‖

∫ +∞

−∞
d`0δ

ab gµν S
12
CD(l) , (27)

where the color-flavor symbols Hµ
AaB have been defined in (14) and the running NJL

coupling is computed at µ + δ, according to the previous discussion. In eq. (27) δ = cµ

is the cutoff discussed in section 2. The gap equations can be numerically solved; results

for ms = 250 MeV and c = 0.35 are reported in Fig. 4.

A semi-analytical solution can be found by performing an expansion in the strange

quark mass:

xs =
ms

µs

≈ ms

µ
� 1 . (28)

Here µ = µu = µd, µs = µ+ δµ with δµ = O(ms/µ)2. We define:

∆1 = ∆12 +G1 ≡ ∆0
1 + ε1x

2
s , ∆9 = − 2 ∆12 + 4G1 ≡ ∆0

9 + ε9x
2
s ,

∆ ≡ 4∆0
1 −∆0

9

6
− ξ1x

2
s , G2 ≡ 2∆0

1 + ∆0
9

6
− ξ2x

2
s , G3 ≡ 2∆0

1 + ∆0
9

6
− ξ3x

2
s , (29)
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Figure 4: The five gap parameters vs. the chemical potential µ; results obtained by the numerical

solution of the exact gap equations, for ms = 250 MeV and δ = 0.35µ. The upper curve refers to

∆12, while the middle one refers to ∆. The lower curves are the data obtained for the three sextet gap

parameters |G1|, |G2| and |G3|. Gaps and µ are expressed in MeV.

where ∆0
1,∆

0
9 are the values for massless quarks and can be obtained from eqns. (4).

For ms 6= 0 the number of gaps increases from 2 to 5, but eqns. (29) give immediately

the solutions for any value of ms (with the proviso xs = m2
s/µ

2 � 1) if one knows the

parameters ξ = (ε1, ε9, ξ1, ξ2, ξ3). They can be obtained by solving the system of 5 linear

algebraic equations

A · ξ = f . (30)

The matrices A and f are reported in the appendix. Numerical results for the parameters

ξ are in Table 1. For a strange mass of 250 MeV we find the rate ∆9/∆1 equal to −2.365

for µ = 500 MeV and −2.33 for µ = 1000 MeV.

µ ε1 ε9 ξ1 ξ2 ξ3

500 -35.29 90.48 33.63 -2.06 -6.20

700 -44.86 102.93 41.16 -3.10 -8.72

1000 -61.21 135.08 55.69 -4.42 -12.23

Table 1: Values of the ξ components, obtained by means of the 5× 5 system of linear equations. In the

gap equations we have made the choice δ = 0.35 µ. All the gaps and µ’s are expressed in MeV.
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Figure 5: Gap parameter ∆1 = ∆12 + G1 as a function of µ. Left panel: results for two different values

of the strange quark mass, ms = 150, 250 MeV (curves are obtained by means of the perturbative gap

equations). Right panel: relative variation δ∆1/∆1 = [∆1(ms) −∆1(0)]/∆1(0). In this plot δ = 0.35µ.

Gaps and µ’s are expressed in MeV.

From these results we can compute the dependence of the various gaps on µ. For

∆1 it is reported (for two values of the strange quark mass) in fig.5. We stress that the

approximation we consider here is indeed very good in the range of parameters we have

considered in the present paper, i.e. ms = 150− 250 MeV and µ = 500− 1000 MeV. As

an example, fig. 6 shows the approximate solution for ∆1 (solid line), which differs only

by a few percent from the exact solution (dashed line), except in the lower region of µ.

These results are obtained for a mass of 250 MeV; for smaller values the effect is even less

relevant.

4 Conclusions

A main point in this work has been to clarify the issue of the dependence on µ of the

ultraviolet cutoff in the NJL model and its application to CFL phase of QCD. A convenient

procedure consists in re-defining the NJL coupling such as to make it cutoff dependent.

The application to the CFL model with ms 6= 0 leads, in the approximation of the

high density effective theory, to an expansion in the parameter (ms/µ)2, whose numerical

validity is very good already at first order. Both triplet and sextet gaps are included. The

gap parameters are obtained as functions of the chemical potential and their behavior is
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Figure 6: This diagram shows the difference between the exact numerical calculation of the gap ∆1 for

ms = 250 MeV (solid line) and the approximate result obtained through the expansion in ms (dashed

line). Units are MeV.

consistent with the expected asymptotic limits.

Appendix

Eigenvalues of the gap matrix

The eigenvalues of the gap matrix for CFL with massive strange quark are as follows:

∆1 = . . . = ∆5 = ∆12 + G1, ∆6 = ∆7 = ∆ + G2, ∆8/9 = 1
2

(
x− z ±

√
(x+ z)2 + 4y2

)
where x, y, z are given by

x =
1

3
(4∆−∆12) +G1 − 4

3
(G2 −G3) , (31)

y =

√
2

3
(∆−∆12) +

√
2

(
G1 − G2

3
−
√

2G3

3

)
, (32)

z =
2

3
(∆12 + 2∆)− 2

3
(3G1 + 2G2 +G3) . (33)

Matrices ξ, A, f
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We write down explicitly the matrices ξ, A, f defined in the text

ξT = (ε1 ε9 ξ1 ξ2 ξ3) ; (34)

A =




α β − 2
9b(−g1 + 2g9 − g19) 2

9b(−g1 + 2g9 − g19) 2
9b(g1 − g9 + 2g19)

α β −1− b
9 (7g1 + 4g9 + g19) −1 + b

9 (g1 + 4g9 + g19) − b
9 (4g1 + 2g9 + 2g19)

α β − 4
3 − 2b

9 (5g1 + 2g9 + g19) 4
3 − 2b

9 (7g1 − 2g9 − g19) − 4
3 − 2b

9 (−g1 + g9 + 2g19)

0 0 −
√

2
3

(
1 + b

3 (5g1 − g19)
) √

2
3

(
1− b

3 (g1 − g19)
) − 2

√
2

3

(
1 + b

3 (g1 − g19)
)

γ 1 4
3 − 2b

9 4g1 − 4
3 − 16b

9 g1
2
3 + 4b

9 g1



(35)

where we have defined b = G(µ+ δ)µ2/2π2, α = 1− 2
3
b h1, β = 1

3
b h9, γ = 8b

3
h1; finally

f =




b
(
− Ĩ0

1

3
+

Ĩ0
9

6
− 1

18
(f1 + f9 − 4f19)

)

b
(
− Ĩ0

1

2
+

Ĩ0
9

4
− 1

18
(5f1 − f9 − 2f19)

)
b
(

5
18

(
−2Ĩ0

1 + 2Ĩ0
9

)
+ 1

18
(11f1 − f9 − 4f19)

)
b
(

1
18
√

2
(−7Ĩ0

1 − Ĩ0
9 ) +

√
2

18
(17

2
f1 + f19))

)
b
(

16
9
Ĩ0
1 + 10

18
f1

)



. (36)

The values of the parameters fj , gj, Ĩ
0
j , hk are listed below.

f1 =
1

2πi
∆0

1J
δ(∆0

1) , f9 =
1

2πi
∆0

9J
δ(∆0

9) , f19 =
1

2πi
∆0

1J
δ(∆0

1,∆
0
9) ,

g1 =
1

2πi
Iδ(∆0

1) , g9 =
1

2πi
Iδ(∆0

9) , g19 =
1

2πi
Iδ(∆0

1,∆
0
9) , (37)

Ĩ0
j = ∆0

jarcsinh

∣∣∣∣∣ δ∆0
j

∣∣∣∣∣ , hk = arcsinh

∣∣∣∣∣ δ∆0
j

∣∣∣∣∣− 1 . (38)

In this expression we use the following parametric integrals:

Iδ(x) =
∫ δ

−δ
d2l

V · l Ṽ · l + x2

D(x)2
= 2 π i

(
−arcsinh

∣∣∣∣∣ δx
∣∣∣∣∣+ δ√

δ2 + x2

)
, (39)

Iδ(x1, x2) =
∫ δ

−δ
d2l

V · l Ṽ · l + x1 x2

D(x1)D(x2)
=

=
2 π

i

[
arcsinh

∣∣∣∣∣ δx2

∣∣∣∣∣+ x1(x1 + x2)

x2
2 − x2

1

(
arcsinh

∣∣∣∣∣ δx2

∣∣∣∣∣− arcsinh

∣∣∣∣∣ δx1

∣∣∣∣∣
)]

, (40)

Jδ(x) =
∫ δ

−δ
d2l

l2‖
D(x)2

= i π

(
arcsinh

∣∣∣∣∣ δx
∣∣∣∣∣− δ√

δ2 + x2

)
, (41)

Jδ(x1, x9) =
∫ δ

−δ
d2l

l2‖
D(x1)D(x9)

=
i π

2(x2
1 − x2

9)

[
−2 δ

(√
x2

1 + δ2 −
√
x2

9 + δ2

)
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+2 x2
1 arcsinh

∣∣∣∣∣ δx1

∣∣∣∣∣− 2 x2
9 arcsinh

∣∣∣∣∣ δx9

∣∣∣∣∣
]
. (42)
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