
Geant4 | a simulation toolkit

Geant4 Collaboration

S. Agostinelli ae, J. Allison as;�, K. Amako e, J. Apostolakis a,

H. Araujo aj, P. Arce `;m;x;a, M. Asai g;ai, D. Axen i;t,

S. Banerjee bh;`, G. Barrand an, F. Behner `, L. Bellagamba c,

J. Boudreau bc, L. Broglia ar, A. Brunengo c, S. Chauvie bi;bk,

J. Chuma h, R. Chytracek a, G. Cooperman az, G. Cosmo a,

P. Degtyarenko d, A. Dell'Acqua a;i, G. Depaola y, D. Dietrich af,

R. Enami ab, A. Feliciello bi, C. Ferguson bg, H. Fesefeldt `;o,

G. Folger a, F. Foppiano ac, A. Forti as, S. Garelli ac, S. Giani a,

R. Giannitrapani bn, D. Gibinm;bb, J.J. G�omez Cadenasm;bo,

I. Gonz�alez q, G. Gracia Abril n, G. Greeniaus p;h;ag,

W. Greiner af, V. Grichine f, A. Grossheimm;z, P. Gumplinger h,

R. Hamatsu bj, K. Hashimoto ab, H. Hasui ab, A. Heikkinen ah,

A. Howard aj, A. Hutton d, V. Ivanchenko a;ba, A. Johnson g,

F.W. Jones h, J. Kallenbach aa, N. Kanaya i;h, M. Kawabata ab,

Y. Kawabata ab, M. Kawaguti ab, S. Kelner at, P. Kent r,

T. Kodama aw, R. Kokoulin at, M. Kossov d, H. Kurashige am,

E. Lamanna w, T. Lampen ah, V. Lara a;`;bp, V. Lefebure `,

F. Lei bg;bd, M. Liendl `;a;bq, W. Lockman j;bm, F. Longo b`,

S. Magni k;au, M. Maire ao, B. Mecking d, E. Medernach a,

K. Minamimoto aw;ai, P. Mora de Freitas ap, Y. Morita e,

K. Murakami am, M. Nagamatu aw, R. Nartallo b, P. Nieminen b,

T. Nishimura ab, K. Ohtsubo ab, M. Okamura ab, S. O'Neale s,

Y. Oohata bj, K. Paech af, J. Perl g, A. Pfei�er a, M.G. Pia ad,

F. Ranjard n, A. Rybin ak, S. Sadilov a;ak, E. Di Salvo c,

G. Santin b`, T. Sasaki e, N. Savvas as, Y. Sawada ab,

S. Scherer af, S. Sei aw, V. Sirotenko i;a`, D. Smith g, N. Starkov f,

H. Stoecker af, J. Sulkimo ah, M. Takahata ay, S. Tanaka bf ,

E. Tcherniaev a, E. Safai Tehrani g, M. Tropeano ae,

P. Truscott bd, H. Uno aw, L. Urban v, P. Urban aq, M. Verderi ap,

A. Walkden as, W. Wander av, H. Weber af , J.P. Wellisch a;`,

Preprint submitted to Elsevier Science 11 July 2002

T. Wenaus u, D.C. Williams j;be, D. Wright g;h, T. Yamada aw,

H. Yoshida aw, D. Zschiesche af

aEuropean Organization for Nuclear Research (CERN)

bEuropean Space Agency (ESA), ESTEC, Holland
cIstituto Nazionale di Fisica Nucleare (INFN), Italy

dJe�erson Lab
eKEK, Japan

fLebedev Institute
gStanford Linear Accelerator Center (SLAC)

hTRIUMF, Canada
iATLAS Collaboration
jBaBar Collaboration

kBorexino Collaboration
`CMS Collaboration

mHARP Collaboration
nLHCb Collaboration

oRWTH Aachen
pUniversity of Alberta
qALICE Collaboration
rUniversity of Bath

sUniversity of Birmingham
tUniversity of British Columbia
uBrookhaven National Laboratory

vKfki, Budapest
wUniversit�a della Calabria and INFN

xCIEMAT
yUniversity of Cordoba

zUniversity of Dortmund

aaFNAL

abFukui University
acIST Natl. Inst. for Cancer Research of Genova

adINFN Genova
aeUniversit�a di Genova

afInst. f�ur Theoretische Physik, Johann Wolfgang Goethe Universit�at, Frankfurt
agHERMES Collaboration

ahHelsinki Institute of Physics (HIP)

2

aiHiroshima Institute of Technology
ajImperial College of Science, Technology and Medicine, London

akIHEP Protvino
a`North Illinois University

amUniversity of Kyoto

anLAL, Orsay
aoIN2P3/LAPP, Annecy
apLLR/IN2P3, Palaiseau

aqEPFL, Lausanne
arPatron of Lyon University
asUniversity of Manchester

atMephi, Moscow
auINFN Milan

avMIT
awNaruto University of Education

ayNiigata University
azNortheastern University

baBudker Institute for Nuclear Physics, Novosibirsk
bbUniversit�a di Padova
bcUniversity of Pittsburg

bdQinetiQ, UK

beSCIPP/UCSC, Santa Cruz
bfRitsumeikan University

bgUniversity of Southampton
bhTIFR, Mumbai, India

biINFN Torino
bjTokyo Metropolitan University

bkUniversit�a di Torino
b`Universit�a di Trieste and INFN Trieste

bmUCSC, Santa Cruz

bnUniversit�a di Udine and INFN Udine
boUniversity of Valencia

bpIFIC Instituto de Fisica Corpuscular de Valencia
bqVienna University of Technology

Abstract

3

Geant4 is a toolkit for simulating the passage of particles through matter. It in-
cludes a complete range of functionality including tracking, geometry, physics mod-
els and hits. The physics processes o�ered cover a comprehensive range, including
electromagnetic, hadronic and optical processes, a large set of long-lived particles,
materials and elements, over a wide energy range starting, in some cases, from 250
eV and extending in others to the TeV energy range. It has been designed and con-
structed to expose the physics models utilised, to handle complex geometries, and
to enable its easy adaptation for optimal use in di�erent sets of applications. The
toolkit is the result of a worldwide collaboration of physicists and software engineers.
It has been created exploiting software engineering and object-oriented technology
and implemented in the C++ programming language. It has been used in applica-
tions in particle physics, nuclear physics, accelerator design, space engineering and
medical physics.

Key words: Simulation, Particle interactions, Geometrical modelling, Software
engineering, Object-oriented technology, Distributed software development
PACS: 07.05.Tp, 13, 23

1 Introduction

Modern particle and nuclear physics experiments pose enormous challenges
in the creation of complex yet robust software frameworks and applications.
Of particular importance is the ever-increasing demand for large-scale, accu-
rate and comprehensive simulations of the particle detectors used in these
experiments. The demand is driven by the escalating size, complexity, and
sensitivity of the detectors and fueled by the availability of moderate-cost,
high-capacity computer systems on which larger and more complex simula-
tions become possible. Similar considerations arise in other disciplines, such
as: radiation physics, space science, nuclear medicine and, in fact, any area
where particle interactions in matter play a role.

In response to this, a new object-oriented simulation toolkit, Geant4, has
been developed. The toolkit provides a diverse, wide-ranging, yet cohesive set
of software components which can be employed in a variety of settings. These
range from simple one-o� studies of basic phenomena and geometries to full-
scale detector simulations for experiments at the Large Hadron Collider and
other facilities.

� Corresponding Author. Address: Department of Physics and Astronomy, The
University of Manchester, MANCHESTER M13 9PL, UK. Telephone: +44-161-
275-4179. Fax: +44-161-273-5867. E-mail: John.Allison@man.ac.uk

4

In de�ning and implementing the software components, all aspects of the
simulation process have been included: the geometry of the system, the mate-
rials involved, the fundamental particles of interest, the generation of primary
particles of events, the tracking of particles through materials and external
electromagnetic �elds, the physics processes governing particle interactions,
the response of sensitive detector components, the generation of event data,
the storage of events and tracks, the visualisation of the detector and parti-
cle trajectories, and the capture for subsequent analysis of simulation data at
di�erent levels of detail and re�nement.

Early in the design phase of the project, it was recognised that while many
users would incorporate the Geant4 tools within their own computational
framework, others would want the capability of easily constructing stand-
alone applications which carry them from the initial problem de�nition right
through to the production of results and graphics for publication. To this end,
the toolkit includes built-in steering routines and command interpreters which
operate at the problem setup, run, event, particle transportation, visualisation,
and analysis levels, allowing all parts of the toolkit to work in concert.

At the heart of this software system is an abundant set of physics models
to handle the interactions of particles with matter across a very wide energy
range. Data and expertise have been drawn from many sources around the
world and in this respect Geant4 acts as a repository that incorporates a
large part of all that is known about particle interactions; moreover it con-
tinues to be re�ned, expanded and developed. A serious limitation of many
previous simulation systems was the diÆculty of adding new or variant physics
models; development became diÆcult due to the increasing size, complexity
and interdependency of the procedure-based code. In contrast, object-oriented
methods have allowed us e�ectively to manage complexity and limit depen-
dencies by de�ning a uniform interface and common organisational principles
for all physics models. Within this framework, the functionality of models can
be more easily seen and understood, and the creation and addition of new
models is a well-de�ned procedure that entails little or no modi�cation to the
existing code.

Geant4was designed and developed by an international collaboration, formed
by individuals from a number of cooperating institutes, HEP experiments, and
universities. It builds on the accumulated experience of many contributors to
the �eld of Monte Carlo simulation of physics detectors and physical pro-
cesses. While geographically-distributed software development and large-scale
object-oriented systems are no longer a novelty, we consider that the Geant4
Collaboration, in terms of the size and scope of the code and the number
of contributors, represents one of the largest and most ambitious projects of
this kind. It has demonstrated that rigorous software engineering practices
and object-oriented methods can be pro�tably applied to the production of a

5

coherent and maintainable software product, even with the fast-changing and
open-ended requirements presented by physics research.

In the following sections we present a detailed overview ofGeant4 and its fea-
tures and capabilities, including the design and implementation of the various
categories of physics models. Many new physics models have been developed,
and others have been re�ned or extended. They have been created to support
a growing range of applications for the software, including particle, nuclear,
medical, accelerator and space physics. The code and documentation, as well
as tutorials and examples, are available from our Web site [1].

1.1 History of Geant4

The origin of Geant4 development can be traced back to two studies done
independently at CERN and KEK in 1993 [2]. Both groups sought to investi-
gate how modern computing techniques could be applied to improve what was
o�ered by the existing GEANT3 program [3]. These two activities merged
and a proposal was submitted to the CERN Detector Research and Devel-
opment Committee (DRDC) [4] to construct a simulation program based on
object-oriented technology. The resulting project was RD44, a world-wide col-
laboration that grew to include the e�orts of 100 scientists and engineers,
drawn from more than 10 experiments in Europe, Russia, Japan, Canada and
the United States.

The design choices faced by RD44 and the decisions arrived at are described
in later chapters, but key to its success was a careful design adapting object-
oriented methodology and an early decision to use the practical C++ language.

The R & D phase was completed in December 1998 [5] with the delivery
of the �rst production release. Subsequently the Geant4 Collaboration was
established in January 1999 to continue the development and re�nement of
the toolkit, and to provide maintenance and user support.

1.2 Organisation of the Collaboration

AMemorandum of Understanding (MoU) [6] signed by all participating parties
governs the formal collaboration. It is subject to tacit renewal every two years
and sets out a collaboration structure composed of a Collaboration Board
(CB), a Technical Steering Board (TSB) and several working groups. The
MoU also de�nes the way in which collaboration resources | money, man-
power, expertise, and key roles and activities (such as program librarian and
documentation manager) | are measured in Contribution Units (CU), and it

6

further delineates how the boards are constituted depending on the CU count
for each signatory. Participating groups include experimental teams and col-
laborations, laboratories and national institutes.

It is the CB's mandate to manage these resources and to monitor the agreed
responsibilities among the aÆliates. This body is also charged with the evo-
lution of the MoU. The TSB, on the other hand, is the forum where technical
matters, like software engineering details and physics model implementation
issues, are discussed and decided and where priorities are given to user re-
quests. Its primary tasks are the supervision of the production service and
the user support and the overseeing of ongoing further development of the
program. The TSB is chaired by the spokesperson of the Collaboration, who
is appointed by and reports to the CB. The spokesperson is (re)elected every
two years.

Every domain of the Geant4 software that corresponds to a releasable com-
ponent (library) is individually managed by a working group of experts. In
addition, there is a working group for each of the activities of testing and
quality assurance, software management and documentation management. A
coordinator who is selected by the TSB heads each group. There is also an over-
all release coordinator. This clean overall problem decomposition makes the
distributed software design and development possible in a worldwide collabo-
ration. Every group can work in parallel, allowing an optimal use of manpower
and expertise.

1.3 User support, documentation and source code

The Collaboration provides documentation and user support for the toolkit.
The support model is described in more detail in Section 3.6.

Documentation [7] includes installation, user and reference guides, and a range
of training kits (see also Section 1.4). It is intended to cover the need of the
beginner through to the expert user who wishes to expand the capabilities of
Geant4.

User support covers help with problems relating to the code, consultation on
using the toolkit and responding to enhancement requests. A user may also
expect assistance in investigating anomalous results.

A Web-based reporting system and a list of frequently asked questions (FAQs)
are available on the Geant4Web site [1]. The Collaboration also runs a Web-
based user forum [8], with sub-forums according to areas of di�erent interest.

Regular releases of the source code and documentation are freely available on

7

the Web.

1.4 Examples and training kits

The toolkit includes examples at three levels:

� Novice: for understanding basic functionalities;
� Extended: focused on speci�c domains of application (they may also need
additional third party libraries);

� Advanced: full programs created to utilise Geant4 in HEP experiments, and
for space and medical applications.

They are intended to develop the user's understanding in many areas. Initial
emphasis is on the classes describing the user's setup, which are required by
the toolkit. These classes are explained in Section 2.4.

Geant4 also provides a training kit. It consists of a modular set of units,
each covering a speci�c domain. The units contain descriptive material and
examples, such as code excerpts, or plots with performance results. They are
modular in themselves, providing di�erent levels of coverage and complexity.

1.5 Structure of this paper

For the reader who wishes to obtain a broad overall view of the project from
inception to realisation we describe basic principles of the design in Section 2.

Details that are needed to understand how to extend the toolkit, tailor it for
special use and obtain optimal performance, are postponed to Sections 4 and
5.

In between, we devote Section 3 to the important issue of the software process
as it applies to a large, dispersed collaboration. It is here that the exploitation
of modern software engineering techniques and object-oriented methods are
discussed.

The basic algorithms and capabilities of the kernel are described in Section
4 and an overview of available physics processes and models is presented in
Section 5. The latter also includes a sample of results and comparisons with
GEANT3 and experimental measurements.

Additional capabilities are discussed in Section 6 and interactivity (user in-
terfaces, visualisation and analysis) in Section 7.

8

2 Design overview

2.1 General considerations

Geant4 is driven by the software needs of modern experiments. A typical
software system contains components | event generator, detector simulation,
reconstruction and analysis | that can be used separately or in combinations.
The toolkit has been built as the basis for the simulation component. Thus it
was required

� to have well-de�ned interfaces to other components, and
� to provide parts to be used by the other components.

Other design requirements are that it is modular and exible, and that its
implementation of physics is transparent and open to user validation. It should
allow the user to understand, customise and extend it in all domains. Its
modular architecture should enable the user to pick only those components
he/she needs.

The high-level design was based on an analysis of the initial user require-
ments [9]. This ultimately led to a modular and hierarchical structure for the
toolkit (see Figure 1), where sub-domains are linked by a uni-directional ow
of dependencies.

The key domains of the simulation of the passage of particles through matter
are:

� geometry and materials;
� particle interaction in matter;
� tracking management;
� digitisation and hit management;
� event and track management;
� visualisation and visualisation framework;
� user interface.

These domains naturally led to the creation of class categories with coherent
interfaces and, for each category, a corresponding working group with a well
de�ned responsibility. It also led to the concept of a \toolkit", which implies
that a user may assemble his/her program at compile time from components
chosen from the toolkit or self-supplied.

Geant4 exploits advanced software engineering techniques to deliver these
key requirements of functionality, modularity, extensibility and openness. The
techniques used for the Architectural Design were based on the Booch Method-

9

ology and followed an iterative approach with progressive re�nement of user
requirements, architectural and detailed design. These issues are discussed in
more detail in Section 3.

2.1.1 General capabilities and properties

The toolkit o�ers the user the ability to create a geometrical model with
a (possibly) large number of components of di�erent shapes and materials,
and to de�ne \sensitive" elements that record information (hits) needed to
simulate detector responses (digitisation).

The primary particles of the events can be derived from internal and external
sources.

Geant4 provides a comprehensive set of physics processes to model the be-
haviour of particles. The user is able to choose from di�erent approaches and
implementations, and to modify or add to the set provided.

In addition the user can interact with the toolkit through a choice of (graph-
ical) user interfaces and visualise the geometry and tracks with a variety of
graphics systems through a well-de�ned interface and is given the ability to
implement this interface over other systems of his/her choice.

In general, the classes in the toolkit are designed in a highly reusable and a
compact way so that the user can extend or modify their services for his/her
speci�c applications. The user can realise this by following the discipline of
object-oriented technology.

Maximum use has been made of the experience acquired from previous simu-
lation packages, in particular GEANT3.

As computing performance is a crucial issue for a detector simulator, the goal
was to demonstrate performance comparable to GEANT3 or better.

2.1.2 Openness

One of the most important design goals was to make the design and imple-
mentation of the physics open and transparent. Exploiting object-oriented
technology has enabled us to establish a clear and customisable correspon-
dence between particles and processes and o�er a choice of models for each
process. The result is a highly granular implementation, each component of
which can be inspected at source code level.

The way cross sections are calculated | via formulas, parameterisations or

10

interpolation of databases | is exposed. In the last case the information ex-
tracted from the database is separated from the way it is accessed and used,
giving the opportunity of using di�erent databases and allowing their appli-
cability to be tailored by particle, energy, material, etc.

Similarly the generation of the �nal state is separated from the calculation of
the cross-sections used for tracking and is also split into alternative or comple-
mentary models, according to the energy, range, particle type and material.

2.2 Global structure

The design has evolved during development. It currently includes 17 major
categories, identi�ed from an analysis driven by our User Requirements. Figure
1 shows the top level categories and illustrates how each category depends on
the others. There is a uni-directional ow of dependencies, i.e., no circular
dependencies, as required.

Categories at the bottom of the diagram are used by virtually all higher cat-
egories and provide the foundation of the toolkit. These include the cate-
gory global covering the system of units 1 , constants, numerics and random
number handling; materials; particles; graphical representations; geometry in-
cluding the volumes for detector description and the navigation in the geom-
etry model; and intercoms which provides both a means of interacting with
Geant4 through the user interface and also a way of communicating between
modules that should not otherwise depend on one another. Intercoms is also
the repository of abstract interfaces for \plug-ins", namely Fast Simulation
(Section 6.1) and Visualisation (Section 7.2).

Above these reside categories required to describe the tracking of particles
and the physical processes they undergo. The track category contains classes
for tracks and steps, used by processes which contains implementations of
models of physical interactions. Additionally, one such process, transporta-
tion, handles the transport of particles in the geometry model and, optionally,
allows the triggering of parameterisations of processes (see Section 6.1). All
these processes may be invoked by the tracking category, which manages their
contribution to the evolution of a track's state and undertakes to provide
information in sensitive volumes for hits and digitisation.

Over these the event category manages events in terms of their tracks and
run manages collections of events that share a common beam and detector

1 A key design feature is independence from the internal representation of quanti-
ties. The internal representation can be chosen at compile time to suit the applica-
tion. This feature is provided by CLHEP's Units package [10].

11

Geant4

Readout

Run

Event

Tracking

Digits+Hits

Material

Particle

Processes

Geometry

Track

PersistencyVisualization

Graphic_Reps

Interfaces

Intercoms

Global

Fig. 1. The Top Level Category Diagram of the Geant4 toolkit. The open circle
on the joining lines represents a using relationship; the category at the circle end
uses the adjoined category.

12

implementation. A readout category allows the handling of \pile-up".

Finally capabilities that use all of the above and connect to facilities outside
the toolkit (through abstract interfaces) are provided by the visualisation,
persistency and [user] interface categories.

In the following sections, some important aspects of the architectural design
are covered. A study of these is essential for understanding the structure and
the behaviour of the toolkit.

2.3 Design and architecture

2.3.1 Events

The event category provides an abstract interface to external physics event
generators for the generation of the primary particles which de�ne a physics
event. Primary vertices and primary particles are represented by special classes
which are free from any other. Through these special classes, the user can
interface to the physics generators by preparing his/her own conversion codes.
(The General Particle Source Module [11] can simplify this task by allowing
a source with arbitrary energy, spatial and angular distribution to be de�ned
at run time.) This isolation allows a Geant4-based simulation program not
to rely on speci�c choices for physics generators and also to be independent
of the speci�c persistency solution adopted for storing the \simulation truth".
Moreover, the primary particle can represent any kind of particle, even one
that cannot be treated by Geant4, such as a quark or a gauge boson. It keeps
the mother-daughter relations between primary particles so that the speci�c
decay chain can be imported from the physics generator. For example, the
user can specify the decay products of each of two B-mesons separately.

The class G4Event represents an event, which is the main unit of simulation.
This class avoids keeping any transient information which is not meaningful
after the processing of an event is complete. Thus it is objects of this class
that the user can store for processing further down the program chain, such
as reconstruction. It contains primary vertices and primary particles before
processing the event. After processing, it has hits and digitisations generated
by the simulation and, optionally, trajectories of the simulated particles for
the recording of \simulation truth". For performance reasons, G4Event and
its content classes are not persistent. Instead, the user is assumed to pro-
vide his/her own conversion code between them and corresponding persistent
classes [12] (see also Section 6.3).

The fact that G4Event is independent of other classes also bene�ts pile-up
simulation. Digitisation can be postponed until after the processing of two

13

or more events on a rolling basis and G4Event objects can be \added" to
each other, making use of information about primary timing, so that detector
output signals can be generated as the consequence of signal overlapping.

2.3.2 Geometry and detector representation

The geometry module (category) o�ers the ability to describe a geometrical
structure and propagate particles eÆciently through it. Some concepts have
been borrowed from previous simulation packages but improvements, re�ne-
ments and advances have been made in some key areas to cope with the greater
number and di�erent organisation of detector volumes now experienced. In
particular, the requirement to exchange detector geometry with CAD systems
| via the ISO STEP standard [13] | and navigate eÆciently in such geome-
tries led to a new optimisation technique.

The concepts of logical and physical volume are not unlike those of GEANT-
3. A logical volume represents a detector element of a certain shape that can
hold other volumes inside it and can have other attributes; it also has access to
other information that is independent of its physical position in the detector,
such as material and sensitive detector behaviour. A physical volume repre-
sents the spatial positioning or placement of the logical volume with respect
to an enclosing mother (logical) volume. Thus a hierarchical tree structure of
volumes can be built, each volume containing smaller volumes (which may not
overlap). Repetitive structures can be represented by specialised physical vol-
umes | replicas and parameterised placements | with sometimes enormous
saving of memory.

In Geant4 the logical volume has been re�ned by de�ning the shape as a
separate entity, named solid. Solids with simple shapes, like rectilinear boxes,
trapezoids, spherical and cylindrical sections or shells, each have their proper-
ties coded separately, in accord with the concept of Constructive Solid Geome-
try (CSG). More complex solids are de�ned by their bounding surfaces, which
can be planes, second order surfaces or higher order B-spline surfaces [14], and
belong to the Boundary Representations (BREPs) sub-category. This variety
matches those described by the ISO STEP standard for CAD systems.

Another way of obtaining solids is by boolean combination | union, inter-
section and subtraction. The solids should be either CSGs or other boolean
solids (the product of a previous boolean operation). One of the components
may have an optional transformation relative to the other. Some actual shapes
lend themselves to this approach and their navigation is eÆcient.

Although a detector is naturally and best described by a hierarchy of vol-
umes, eÆciency is not critically dependent on this. An optimisation technique,
called voxelisation, described in Section 4.4.1, allows eÆcient navigation even

14

in \at" geometries, typical of those produced by CAD systems.

2.3.3 Tracking

It is well known that the overall performance of detector simulation depends
critically on the CPU time spent moving the particle by one step. This is a
key consideration in the object design of the tracking category.

A consequence of this is that in Geant4 particles are transported, instead
of being considered self moving. However, this is done by the transportation
process, described later in Section 4.2. The tracking category simply steers the
invocation of processes.

Contrary to GEANT3, Geant4 treats physics processes in a very generic
way [15]. Geant4 tracking does not depend on the particle type nor on the
speci�c physics process, including particle transportation.

In Geant4, each particle is moved step by step with a tolerance that permits
signi�cant optimising of execution performance but that preserves the required
tracking precision. All physics processes associated with the particle propose
a step. For a particle at rest this is a time rather than a length. The smallest
of the following is chosen:

� the maximum allowed step stipulated by the user (through the SetMax-

AllowedStep method in the G4UserLimits class);
� the steps proposed by the actions of all attached processes, including that
imposed by the geometrical limit as proposed by the transportation process.

Depending on its nature, a physics process possesses one or more characteris-
tics represented by the following actions handled by the tracking:

(1) at rest, for particles at rest (e.g., decay at rest);
(2) along step, which implements behaviour such as energy loss or secondary

particle production that happen \continuously" along a step (e.g., �Cerenkov
radiation);

(3) post step, which is invoked at the end of the step (e.g., secondary particle
production by a decay or interaction).

Along step actions take place cumulatively, while the others are exclusive.
The tracking handles each type of action in turn. For these three actions,
each physics process has a GetPhysicalInteractionLength, which proposes
a step, and a DoIt method that carries out the action. A process can stipulate
that its action must always be done (multiple scattering and transportation
are examples). The tracking scans all physics processes and actions for the
given particle, and decides which one is to be invoked.

15

More details of the class structure are given in Section 4.3.

The physical values associated with each step are exchanged between the track-
ing and each physics process using objects of the G4Step class.

2.3.4 Physics

The three types of action described above and the corresponding virtual meth-
ods are de�ned in the base class G4VProcess (see Section 4.3). All physics pro-
cesses conform to this basic interface. However, di�erent approaches for the
detailed design of the subdomains have been developed; for hadronic processes,
the abundance and complexity has required an additional decomposition de-
scribed in outline in the section on hadronic physics below.

Particle Decay

The step length (or life time for the at rest action) is straightforwardly cal-
culated from the mean life of the particle. The generation of decay products
is more diÆcult, requiring a knowledge of branching ratios and, for 3 or more
body decays, theory or parameter or data driven distributions. The issues are
discussed in Section 5.5.

Electromagnetic Physics

Geant4 electromagnetic physics manages the electromagnetic interactions of
leptons, photons, hadrons and ions.

The electromagnetic package is organised as a set of class categories:

� standard: handling basic processes for electron, positron, photon and hadron
interactions;

� low energy: providing alternative models extended down to lower energies
than the standard category;

� muons: handling muon interactions;
� X-rays: providing speci�c code for X-ray physics;
� optical: providing speci�c code for optical photons;
� utils: collecting utility classes used by the other categories.

It provides the features of openness and extensibility resulting from the use
of object-oriented technology; alternative physics models, obeying the same
process abstract interface, are often available for a given type of interaction;
an example of such case is shown in Figure 2.

Public evaluated databases are used in electromagnetic processes without in-
troducing any external dependence, while keeping the physics open to future

16

Fig. 2. A class diagram of electromagnetic processes, showing how alternative pro-
cesses, obeying the same abstract interface, are provided.

17

evolutions of available data sets. This feature also contributes to the reliability
and the openness of the physics implementation.

The package includes the processes of ionisation, bremsstrahlung, multiple
scattering, Compton and Rayleigh scattering, photo-electric e�ect, pair con-
version, annihilation, synchrotron and transition radiation, scintillation, re-
fraction, reection, absorption and �Cerenkov e�ect.

In the standard electromagnetic processes category, the class G4eIonisation
calculates for electrons and positrons the energy loss contribution due to
ionisation and simulates the \discrete" part of the ionisation, namely the
Moller and Bhabha scattering and Æ-ray production. For each material and
for e+ and e�, it produces an energy loss, range and inverse range table. The
class G4eBremsstrahlung computes the energy loss contribution due to soft
bremsstrahlung and simulates the \discrete" or hard bremsstrahlung. These
two physics processes are closely connected by the design adopted. For the
electromagnetic processes of hadrons, the G4hIonisation class computes the
continuous energy loss and simulates Æ-ray production. In this case, energy
loss, range and inverse range tables are constructed only for proton and anti-
proton; the energy loss for other charged hadrons are computed from these
tables at the scaled kinetic energy (see Section 5.6.3). The energy loss also
depends on the cut in range, which is described in more detail in Section
5.6.2.

The low energy electromagnetic processes category adopts a more complex
design approach, by distinguishing the concepts of \physics process" and
\model". A physics process may aggregate various components, each one being
represented by a model; models can play complementary or alternative roles.
A strategy [16] design pattern is adopted to de�ne the family of physics mod-
els, encapsulate them and make them interchangeable. Thanks to this design,
the system is open to evolution, without requiring any internal modi�cation
if new or alternative features are introduced. An example is, for instance, in
the low energy hadron ionisation process (G4hLowEnergyIonisation) where a
strategy pattern handles the complementary models of energy loss | Bethe-
Bloch, parameterisation, free electron gas, quantum harmonic oscillator |
depending on the energy range and charge of the incident particle. Other
strategy patterns handle the models for electronic and nuclear stopping power
respectively, while energy loss uctuation models are treated separately. The
development of an additional stopping power parameterisation, based on new
data, is straightforward; the new algorithm would just be required to satisfy
the common abstract interface and to be registered in the list of available
parameterisations.

The muons category is modelled on the standard category. The energy loss of
muons is computed by the class G4MuEnergyLoss using a scheme of compu-

18

tation which is the same as in the case of e+=e�. The G4MuIonisation class
computes the contribution to the continuous energy loss due to ionisation and
simulates the corresponding \discrete" process, knock-on electron or Æ-ray pro-
duction. The G4MuBremsstrahlung class calculates the continuous loss due
to soft bremsstrahlung and simulates \discrete", hard bremsstrahlung. The
G4MuPairProduction class gives the contribution to the continuous energy
loss due to soft e+=e� pairs and performs the simulation of pair production.

The features of energy loss are very similar for e+=e�, �+=�� and charged
hadrons so, by design, a common description for them has been adopted.
The continuous energy loss is calculated as a sum of the contributions of the
di�erent processes. It also proposes a step that, by the mechanism of chosing
the smallest step described above, limits the step of all processes in order to
preserve precision in a situation where the energy is changing along the step;
for example, the stopping range may be required to decrease by not more
than some fraction of the total ionisation range, if this limit is not less than
some �nalRange parameter. It is worth mentioning that the lower limit used
here is more natural and physical than the one used in GEANT3's automatic
calculation of the tracking parameters.

Hadronic Physics

Given the vast number of possible modelling approaches, we have chosen to
design an additional set of implementation frameworks to help generate the
corresponding code in a distributed manner, and allow signi�cant exibility to
the �nal user. Figure 3 illustrates the various framework levels in an annotated
package dependency diagram.

The so called \Russian dolls" approach for the implementation framework
design was followed. In this approach, an abstract top-level framework provides
the basic interface to other Geant4 categories. It satis�es the most general
use-case for hadronic shower simulation, namely to provide inclusive cross-
sections and �nal state generation. The framework is then re�ned for more
speci�c use-cases by implementing a hierarchy of frameworks. Each sub-level
implements the interface speci�cation of the ancestor framework level. It adds
implementation for the common logic of a particular use-case package, like
the information ow between parton string models and codes simulating de-
excitation of nuclear matter into hadrons, and provides the abstract interfaces
for the associated use-case package. By so doing, the granularity of abstraction
and delegation is re�ned at each framework level. The delegation mechanism
is implemented through abstract classes 2 .

2 The same can be achieved with template specialisations with slightly improved
CPU performance but at the cost of signi�cantly more complex designs and, with
present compilers, reduced portability.

19

Fig. 3. Package diagram of implementation frameworks and example implementa-
tions available for the hadronic physics category.

20

To illustrate this, in the following we present the second framework level in
some detail. (For a complete descriptions of all levels, please see [17].) This
framework level is very relevant for Geant4, and de�nes at the same time
some of the most relevant abstractions. It concerns processes that occur for
particles in ight. For these cases, one soon �nds that the sources of cross-
sections and �nal state production are rarely the same. Moreover, di�erent
sources will come with di�erent restrictions. The most important use-cases
of the framework address these issues. A user might want to combine di�er-
ent cross-sections and �nal state or isotope production models provided by
Geant4, and a physicist might want to implement a model for a particular
situation and add, in a seamless manner, cross-section data sets that are rel-
evant for a particular analysis. The requirements on this framework level are
the following:

� The ability to add user de�ned data sets, �nal state and isotope production
models in a seamless manner.

� The ability to use di�erent data sets, di�erent isotope production and �nal
state production codes for di�erent parts of the simulation, depending on
the conditions at the point of interaction.

� A exible choice of inclusive scattering cross-sections, �nal state production
models and isotope production models, to run in parasitic mode to any kind
of transport model.

These requirements are implemented in three framework components, one each
for cross-sections, �nal state production, and isotope production. These three
parts are integrated in the G4HadronicProcess class, which serves as base-
class for all hadronic processes of particles in ight. Each process holds a
list of \cross section data sets". The term \data set" represents an object
which encapsulates methods and data for calculating total cross sections for
a given process in a certain range of validity. The implementations may take
any form: it can be a simple equation or a sophisticated parameterisation or
evaluated data. All concrete cross section data set classes are derived from
the abstract class G4VCrossSectionDataSet, which declares methods that
allow the process to inquire about the applicability of an individual data set
through IsApplicable, and to delegate the calculation of the actual cross-
section value through the method GetCrossSection. G4HadronicProcess has
provision for registering data sets. A default covers all possible conditions to
some approximation. The process stores and retrieves the data sets through
a data store that acts like a FILO stack (a \Chain of Responsibility" with
a First In Last Out decision strategy). This allows the user to map out the
entire parameter space by overlaying data sets and hence optimise the overall
result. An example is the use of the cross-sections for low energy neutron
transport; if these are registered last by the user they will be used whenever
low energy neutrons are encountered. In all other conditions the system will
fall back on the default or other data sets with earlier registration times. The

21

fact that the registration is done through abstract base classes with no side
e�ects allows the user to implement and use his/her own cross-sections. An
example is the use of special reaction cross-sections forK0-nuclear interactions
for �=�0 analysis to control systematic error.

For �nal state production we provide the G4HadronicInteraction base class.
It declares a minimal interface of just one pure virtual method for �nal state
production: ApplyYourself. G4HadronicProcess provides a registry for �nal
state production models inheriting from this class. Again, the �nal state pro-
duction model is meant in very general terms; it might be an implementation
of a quark gluon string model [18], a sampling code for ENDF/B data formats
[19], or a parameterisation describing only neutron elastic scattering o� silicon
up to 300MeV. The G4HadronicProcess delegates �nal state production to
the applicable �nal state production model. G4HadronicInteraction provides
the functionality needed to de�ne and enforce the applicability of a particular
model. Models inheriting from G4HadronicInteraction can be restricted in
applicability in projectile type and energy and can be activated/deactivated
for individual materials and elements. The design is a variant of the Chain
of Responsibility pattern [16]. This allows a user to use models in arbitrary
combinations and to write his/her own models for �nal state production. An
example is the likely CMS scenario | the combination of low energy neutron
transport with a quantum molecular dynamics [20] or chiral invariant phase
space decay [21{23] model in the case of tracker materials and fast parame-
terised models for calorimeter materials, with user de�ned modelling of inter-
actions of spallation nucleons with the most abundant tracker and calorimeter
materials.

For dedicated isotope production codes, a base class, G4VIsotopeProduction,
is provided. It declares a method GetIsotope that calculates and returns the
isotope production information. Any concrete isotope production model inher-
its from this class and implements the method. Again, the modelling possibil-
ities are not limited, and the implementation of concrete production models is
not restricted in any way. By convention, the GetIsotope method returns NULL
if the model is not applicable for the current projectile-target combination. If
no applicable isotope production model is registered the G4HadronicProcess
calculates the isotope production information from the �nal state given by the
transport model. In addition, it provides a registering mechanism for isotope
production models that run parasitically to the transport models and inherit
from G4VIsotopeProduction. The registering mechanism behaves like a FILO
stack, and the �rst model that returns a non-NULL value will be applied. In
addition, the G4HadronicProcess provides the basic infrastructure for the
accessing and steering of isotope production information. It allows one to en-
able and disable the calculation of isotope production information globally
or for individual processes, and to retrieve the isotope production information
through the GetIsotopeProductionInfo method at the end of each step. The

22

G4HadronicProcess is a �nite state machine that ensures that the method
GetIsotopeProductionInfo returns a non-zero value only at the �rst call af-
ter isotope production occurred. An example of the use of this functionality
is the study of the activation of a germanium detector in a high precision, low
background experiment.

In general we want to stress that �nding the functional requirements of frame-
works through use-case analysis has proven to be a highly e�ective tool.
Framework components were found through bundling use-cases. Framework
interfaces were de�ned by the need for delegation and exibility; framework
functionality was de�ned from detailed requirements analysis. The \Russian
dolls" approach to framework design is very e�ective. Layering the implemen-
tation frameworks, and keeping simple and general abstractions in the upper
levels of the framework hierarchy, has proven to result in a structured and
well suited solution for a complex problem. Addressing more speci�c use-cases
in lower level frameworks that implement the interfaces of the more general
framework has kept the system surprisingly extendible. It has facilitated the
distributed and largely decoupled contributions of many scientists.

2.3.5 Particles and materials

These two categories implement facilities necessary to describe the physical
properties of particles and materials for the simulation of particle-matter in-
teractions.

Particles are based on the G4ParticleDefinition class, which describes the
basic properties of particles, like mass, charge, etc., and also allows the particle
to carry the list of processes to which it is sensitive. A �rst-level extension
of this class de�nes the interface for particles that carry cuts information, for
example range cut versus energy cut equivalence. A set of virtual intermediate
classes for leptons, bosons, mesons, baryons, etc., allows the implementation of
concrete particle classes, such as G4Electron, G4PionMinus, etc., which de�ne
the actual particle properties and, in particular, implement the actual range
versus energy cuts equivalence. All concrete particle classes are instantiated
as singletons to ensure that all physics processes refer to the same particle
properties.

The design of the materials category reects what exists in nature: materials
are made of a single element or a mixture of elements, elements are made
of a single isotope or a mixture of isotopes. Because the physical properties
of materials can be described in a generic way by quantities which can be
either given directly, like density, or derived from the element composition,
only concrete classes are necessary in this category.

Characteristics like radiation and interaction length, excitation energy loss,

23

coeÆcients in the Bethe-Bloch formula, shell correction factors, etc., are com-
puted from the element, and if necessary, the isotope composition.

The materials category also implements facilities to describe surface properties
for the tracking of optical photons (see Section 5.10).

2.4 User actions

Geant4 provides the abstract interface for eight user classes. The concrete
implementation, instantiation and registration of these classes are mandatory
in three cases, optional in the other �ve. This enables the user to customise
Geant4 to his/her speci�c situation. These user classes and their functional-
ity result from an analysis of the user requirements document.

The three mandatory user class bases are:

� G4VUserDetectorConstruction for de�ning the material and geometrical
setup of the detector. Several other properties, such as detector sensitivities
and visualisation attributes, are also de�ned in this class.

� G4VUserPhysicsList for de�ning all the particles, physics processes and
cut-o� parameters.

� G4VUserPrimaryGeneratorAction for generating the primary vertices and
particles.

For these three user classes, Geant4 provides no default behaviour; instead
there are pure abstract de�nitions from which the user must derive her/his
own concrete classes. For example,Geant4 de�nes no default physics process.
Even the particle transportation process must be registered by the user, oth-
erwise Geant4 will not transport any particle. On the other hand, because of
this, the user can easily switch the way transportation or any speci�c physics
process without a�ecting any other processes or the behaviour of Geant4.
And because it is impossible to provide a set of processes which are sure to
apply in every situation, and since a user needs to optimise performance for
his/her application, instead of providing defaults the Geant4 distribution
provides various examples, described briey in Section 1.4, which the user can
draw on.

The optional user classes allow the user to modify the default behaviour of
Geant4. The �ve optional user class bases are:

� G4UserRunAction for actions at the beginning and end of every run.
� G4UserEventAction for actions at the beginning and end of every event.
� G4UserStackingAction for customising access to the track stacks.
� G4UserTrackingAction for actions at the creation and completion of every

24

track.
� G4UserSteppingAction for customising behaviour at every step.

For example, as described in detail in Section 4.5, the user can optimize the pri-
ority of processing any particle by implementing the G4UserStackingAction
class.

3 Software process

The term software process refers collectively to the set of processes used by
an organisation or project to plan, manage, execute, monitor, control and
improve its software-related activities. Software processes de�ne the practices
that are used in the production and evolution of the software.

Although the Geant4 software product has been in production and available
to the public since December 1998, a number of categories are still under
active development and therefore require di�erent treatment in terms of the
application of software processes.

Most of the procedures and methods used in the Geant4 software process
are derived from the RD44 project speci�cations. They were applied during
the development phase of the project, but to a large extent are still valid.

There are many software processes applicable to Geant4, both in software
development and in organisational matters. The complexity of the software in-
volved, the wide areas of application of the software product, the huge amount
of code, the number of code categories, and the size and distributed nature of
the collaboration itself are all ingredients which motivate an ongoing software
process improvement program [24].

Processes fall into several categories: primary life-cycle of software develop-
ment, supporting life-cycle, management processes, organisational life-cycle,
and user-supplier processes. A particular process can be deployed at di�erent
levels of generality. Tailoring of processes in the di�erent domains is sometimes
required, for instance for reasons of quality or stability, or for the evolution
phase related to a speci�c domain, or due to personnel issues [25].

By software life-cycle is meant the phases the software product goes through
between when it is conceived and when it is no longer available for use. The
software life cycle therefore includes: requirements analysis, design, construc-
tion, testing (validation), installation, operation, maintenance, and retirement.

As discussed in the following sections, the life-cycle model adopted for most
domains in Geant4 is both iterative and incremental (also called the spiral

25

approach) [26]. In the current production and maintenance phase, the life-
cycle model is essentially iterative for most domains; it allows the application
of successive re�nements to the existing architecture and the consideration of
experienced solutions for analysis and design iterations. Concerning software
construction, we adopted from the beginning exible and well-de�ned pro-
gramming and coding guidelines [27], basically dealing with adhesion to the
object-oriented paradigm (data-hiding, encapsulation, etc.), performance, and
portability of the software. Packaging of the software has strictly followed the
domain decomposition into categories and sub-categories that resulted from
the design process.

In order to achieve maintainable software and ensure its quality, the adoption
of standards, wherever possible, is promoted in Geant4.

3.1 Methodology

Because of the wide variety of requirements for Geant4, not only from the
HEP community but also from other �elds, we expected that the �nal product
would be a large and complex software system. It was also envisaged during
the planning stage of the project that the creation of Geant4 would require
HEP software expertise dispersed all over the world, which inevitably required
the formation of a worldwide software collaboration. We considered that it
was absolutely essential to employ an engineering discipline in the design and
construction of the software.

The study of software engineering (the application of the engineering disci-
pline to large-scale complex software systems) has led to the emergence of
various \software methodologies" which prescribe a comprehensive develop-
ment process. We spent considerable e�ort at the beginning of the project to
study the software methodologies that were available. Because a software de-
velopment process based on the object-oriented (OO) approach was considered
to be the most promising technology at the time, we studied the feasibility
of various OO methodologies during the �rst year (1995) of the project. We
evaluated, for example, the Booch method [26], the OMT method [28], and
the Fusion method [29]. For the evaluation we created a set of requirements
for the methodology of which the essential points are as follows: (1) the pro-
cess must be exible, (2) it should provide a way to decompose a system into
independent subsystems so that a clear job-sharing scheme (not only for code
implementation, but also for analysis and design) can be de�ned, (3) it should
provide models, notations and tools which help to exchange the ideas of de-
sign even if people are dispersed over the world, (4) it should provide for an
incremental development strategy, (5) it should provide a reverse engineering
capability to guarantee a way of following the evolution of the methodology.

26

Our most important conclusion from the evaluation was that there was no
absolute measure for the selection of the best methodology. The methodologies
had basically the same philosophy and approach, and de�ned similar phases
in the software process (for example, requirement gathering, analysis, design,
implementation and so on). Each methodology had its strong and weak points.
The OMT method provided a base for other methodologies. For example, the
Fusion method imported the OMT object model for its own object model. The
Booch method provided the richest description for the analysis and design of
a system. The Fusion method had an excellent capability in describing the
object interactions. We also found that multiple methodologies were often
employed simultaneously in the development of large-scale software.

Based on these observations, we �nally decided to employ the Booch method-
ology for the construction of the Geant4 software. The major reasons for
this choice were as follows: (1) it provides a concept of dividing a system into
independent subsystems in the design and implementation phases, (2) it has a
pragmatic and common-sense approach with an incremental and iterative pro-
cess, (3) it has easy-to-understand models with rich notations which �ll the
gap between design and implementation, (4) it has easy-to-obtain support-
ing software for Unix and PC environments. Although we selected the Booch
method, our feasibility studies showed that the basic approach and essential
components of the major methodologies were similar.

There was another reason we decided to use the Booch method: it was an-
nounced in 1994 that the OMT and Booch methods would be united. There
was a strong belief at that time that this new combined version would be-
come a de facto standard of OO methodology and would be supported by the
software engineering community.

Our basic principle in using the Booch method was to adapt it for our purpose,
not to blindly adopt it | we did not expect that it would automatically pro-
vide a series of well-de�ned steps which would generate the necessary output
products. The essential point, one we consider key to our successful usage of
the software methodology, was that we needed to judge for ourselves which ele-
ments of the methodology were important and were applicable to our project.

3.2 Object-oriented analysis and design

Although it is impossible to introduce all important concepts of object-oriented
methodology in this section, we present here a brief illustration of key aspects
to help those who are not familiar with the methodology.

Object-oriented analysis and design (OOA/OOD) and code implementation
de�ne major phases of the software development process of an OO method-

27

ology. OOA and OOD provide an object-based decomposition of a software
system into smaller and smaller parts, each of which can be re�ned indepen-
dently. They also o�er a set of logical and physical models with which the
developer can understand both the entire architecture and the �ne detail of
a class design. To construct such models, OOA and OOD provide a coherent
set of processes the programmer can follow.

In the Booch method, the software development is structured into micro and
macro processes. The micro process serves as the framework for an iterative
and incremental approach in each phase of the development. It is similar to the
so-called \spiral model". The macro process serves as the controlling frame-
work for the micro process, and is similar to the \waterfall model". It consists
of four phases: (1) requirement gathering, (2) OOA, (3) OOD, (4) code imple-
mentation and evolution. In the following we summarise activities done in each
phase of the macro process for Geant4 development. Various aspects which
we found to be important for the worldwide collaboration are also described.

3.2.1 Requirement gathering and OOA phase

We started this phase by collecting user requirements for a new detector sim-
ulation software product. The Geant4 core team (see below) created a draft
requirements document and it was distributed among the GEANT3 user
community. After receiving feedback from the community, we elaborated the
requirements and summarised them using the ESA standard format [30]. The
resulting requirements document was not a static one; it was updated many
times during the development process.

Then we analysed the requirements document to identify all major objects in
the problem domain, including all data attributes and major operations that
would be needed to provide the required functionality. We produced central
models (class diagrams) containing all the semantics of the system in a set
of concise but accurate de�nitions. We also identi�ed clusters of classes (class
categories) that were themselves cohesive, but were loosely coupled relative to
other clusters. Major products in this phase were the requirements document,
class diagrams, scenario (object interaction) diagrams and a class category
diagram. In this phase the core team (6{7 people) played an essential role.
With this relatively small number of people, the members could work closely
together even though they were located in Switzerland, England, France and
Japan.

3.2.2 OOD phase

The goal of this phase was to elaborate the models created during the analysis
phase so that the objects and classes could be coded and executed. The ma-

28

jor products we produced in this phase were the updated class diagrams and
scenario diagrams. We found that in most class categories the OOA and OOD
were concurrent processes. About two-thirds of the �rst year of the project
were spent on OOA and OOD, and no C++ code was written during this
phase. The \class category diagram" created at the end of the OOA had a
fundamental importance during the further course of the worldwide develop-
ment. We used each class category as a unit to share tasks in the OOD and
in the implementation phase. The loose coupling between categories allowed
us to implement each category relatively independently. A working group was
established for each category, and members of a group could work without
interfering with the work in other categories. Also, each working group could
be kept relatively small because a category covered only limited functionality.
This enabled members to work in a very eÆcient manner.

3.2.3 Code implementation and evolution phase

We started this phase by writing C++ prototype code based on the design
created during OOA and OOD. Further re�nements of the design were done
based on performance of the program or addition of new requirements. Regular
incremental releases of the code and progress reports to the CERN review
committee provided clear milestones for the project. Each release was preceded
by an acceptance testing phase and thus gave us the opportunity of regularly
testing the quality of the product. In this phase, the micro process played a
major role in the code development.

3.3 Software process improvement

Software Process Improvement (SPI) is an activity which belongs to the organ-
isational life-cycle category, and therefore must be indeed \life-cycle driven"
and regularly applied. As such, SPI is a process which cannot be forced and
must be gradually applied, after identifying the right priorities and objectives
[25].

The main goal of the SPI program [24] inGeant4 is to understand, determine
and propose applicable procedures for software development and maintenance
in the production phase of our software. In view of this, we periodically perform
process assessments making reference to the ISO/IEC SPICE Model [31,32].
Experience from members in the Geant4 Collaboration is sometimes used to
help identify weaknesses in some areas and where to apply SPI. Establishing
well de�ned methods and procedures is of vital importance for the Geant4
project whose mandate is �rst to provide to users, and then to maintain, a
software product with a reasonably long lifetime, good reliability and robust-

29

ness.

3.4 Con�guration and release management

The creation and modi�cation of requirement and design documents, user
documentation and source code are activities shared by collaboration members
located at many di�erent sites. To avoid incompatible revisions and to ensure
consistency, changes in the code and documentation must be controlled and
tracked. InGeant4 we use the Concurrent Versions System (CVS) [33], which
maintains a central repository for all documents and source code and provides
all the necessary functionality for change management. The repository consists
of a tree of directories on backed-up disk space in an AFS [34] distributed �le
system. For collaborators without direct access to AFS, the repository is also
accessible though a server using the CVS built-in client-server protocol

The source code directory structure follows directly from the decomposition
of the software into domains or categories. In each category the coordinator
is responsible for coordination of development, testing, bug �xing, and release
of the software and documentation in that category. Most categories are split
further into sub-categories with corresponding subdirectories for source code,
and so on. This splitting eases the development task for a given developer by
separating development in one sub-category from that in other sub-categories.
In addition several developers can share the work on a given �le, as CVS
supports concurrent editing of �les. At installation time, the user has the
option of building one object library for each category or building independent
\granular" libraries in each sub-category.

The build system is based on GNU Make [35]. Each source �le is analysed for
dependencies on other source �les so that the system knows which parts need
to be rebuilt after a change. For building applications, the dependencies are
used to obtain a list of the needed category or sub-category libraries in correct
linking order.

For each �le in the repository CVS tracks versions, keeps comments on the
changes made and allows symbolic tagging of related versions. A new version
is generated whenever a developer \checks in" a modi�ed �le. It is possible
to retrieve any previous version or the di�erences between any two versions,
including the developers current modi�ed version. A tag is a symbolic name
given to a set of �les with each �le having its speci�c version. Tags are used
in the preparation of releases, for bug �xes and for regular testing. New or
modi�ed code in a category must be submitted as a tag for testing [36] and
pass all tests before this code can be included in a major public release [37].

Important bug-�xes are periodically collected and publicly made available in

30

the form of patches or minor releases. Bug �xes to a particular release are done
on a CVS branch starting from the released version. Changes on this branch
can be merged back into the current development version, assuring that no
�xes get lost. Branches are also useful if global changes have to made and
tested. The changes are then �rst done on a branch without disturbing ongoing
development, and once successfully tested, these changes are merged back into
the development version. This was successfully used on several occasions, for
example when the code was ported to strict ISO C++ compilers requiring the
use of the std:: namespace pre�x for standard library classes.

3.5 Quality assurance and testing

As part of our software process, the development of e�ective tests and testing
procedures has been a major e�ort of the Collaboration as a whole and, par-
ticularly, of the dedicated Testing and Quality Assurance working group. As
with the other software methodologies, we have been guided by established
and well-documented practices in software engineering [36].

Software testing protocols typically fall into two classes: unit testing and inte-
gration or system testing. Each category team is responsible for unit testing,
or testing the functionality of their own code in relative isolation from other
categories. For example, there are unit tests dedicated to geometry, tracking,
and the various physics processes (electromagnetic, hadronic, and so on). A
team is expected to devise test programs with enough coverage to exercise the
code within their category and to perform these tests regularly as new or re-
vised code is developed. As a baseline for testing each category team uses the
latest reference version of Geant4 as tagged and announced by the System
Testing Team (STT).

In practice, unit tests can detect many faults but comprehensive testing re-
quires the inclusion of interactions between categories. Testing the code as
a whole with categories working in concert is the task of the integration or
system testing procedure.

In this procedure, new code in a category is tagged and the tag is proposed
for testing to the STT. If several category tags have been proposed, the STT
must choose the order and timing of their introduction into the test cycle. This
requires careful judgement, keeping in mind the dependency relationships of
code changes, the need for prompt feedback to developers, and the virtues
of moderating the amount of new or modi�ed code that is brought into each
round of tests.

System testing is done in parallel on a set of \test platforms" representing as
far as possible the range of actual systems in use in the Geant4 user commu-

31

nity. Each platform comprises a machine architecture, operating system, and
C++ compiler. For example \Linux-g++" designates a Linux (Intel) system
with the GNU C++ compiler.

Within each platform, testing is further diversi�ed due to variations in building
the tests, such as compiling \debug" or \optimised" versions, and the selection
of code variants such as ISO compliant C++.

With about 6 platforms and about 35 tests to be performed on each, it is clear
that system testing is a large and complex task and must be well organised
and streamlined to make it a sustainable process. Consequently the STT have
developed a system testing framework which utilises a set of scripts and tools
to perform almost all phases of testing.

The launching and controlling of tests is done through standard mechanisms
such as ssh, cron, and mail. Source code, test cases, and test logs are main-
tained on a global �le system (AFS), although local disk space is preferred for
building libraries and running executables.

When a category team tags some code for testing, CVS automatically sends
the relevant information to an extended version of Bonsai [39], a Web-based
CVS query and database system. Bonsai has been modi�ed by the STT to
support tags-based processing and to provide an on-line form where category
teams can submit new tags for system testing.

Another Web-based tool, Tinderbox [40], is being expanded and adapted to
Geant4 and will provide automated monitoring, logging, and problem de-
tection and reporting (including hyperlinks to suspect source code) for all
system tests, both completed and in progress. To aid with both development
and testing, the STT also maintains an indexed and cross-referenced source
code browsing facility based on LXR [41].

At the conclusion of a test cycle, accepted tags are incorporated into the
next reference version of Geant4. For rejected tags, reports about test fail-
ure modes are inserted in the Bonsai system for operative recognition and
elimination. Problems that cannot be resolved quickly may be logged into the
problem tracking system [38].

Although unit and system testing are critical to ensuring the integrity and cor-
rectness of the Geant4 code, it is also important to build quality in from the
start. To this end we employ various Quality Assurance tools such as CodeWiz-
ard, which detects unsafe, nonstandard and error-prone coding practices in the
source code, and Insure++, which detects data integrity and memory manage-
ment problems in the running executable. These tools, as well as our adopted
coding guidelines, help to provide a front-line defence against the introduction
of actual or potential problems into the software.

32

3.6 User support process

The Collaboration o�ers user support for Geant4, providing assistance with
software problems, consultancy on results, and response to enhancement re-
quests. In this section we explain in more detail our support model and the
process by which we provide it.

Not only is the maintenance and development of the various Geant4 do-
mains distributed amongst the collaborators, but so is the responsibility for
user support and documentation. Object-oriented technology makes such a
wide distribution of responsibility among the experts of di�erent parts of the
software package possible and e�ective.

Users of the software who encounter a problem in running the code can use an
Internet-based problem reporting system. The system is accessible from the
World Wide Web and is open to all users. It is set up automatically to assign
problem reports to the responsible person according to the category a�ected.
He or she may accept the report and respond directly or forward it to a
colleague. This system is a customised version of the open source reporting
tool Bugzilla [42]. Besides routing the problem to specialists, it tracks and
documents the responses until the problem is resolved.

New requirements, such as requests for new functionality or re�nements of
existing abilities, are presented to and decided by the TSB. The TSB sets the
priorities and agrees on time-scales for the ful�llment of new requirements.
Such support is guaranteed to collaboration members, while requests from
outside are handled on a \best e�ort" basis.

For each member organisation a contact person has been designated who acts
as a �rst reference for Geant4 users in that locality, which may include aÆl-
iated institutions, user groups, and others in the same geographic area. The
contact person is expected to respond to enquiries, to help resolve simple prob-
lems, and to forward more specialised queries to the relevant expert(s). This
method is chosen to avoid the overhead of channelling all problems through a
single central group.

This distributed user support model arose naturally from the existing distri-
bution of expertise and manpower across experiments, laboratories, and insti-
tutes which have contributed to the creation and maintenance of Geant4. It
o�ers major advantages over the traditional central support: a larger number
of people are involved, each in the domain of their competence, and in many
instances supporting code that they developed.

To exploit these advantages, an adequate structure is needed to �lter, analyse,
dispatch, or prioritise the users' requests, and also to provide the user with

33

a direct interface to which one can refer without knowing the details of the
user support mechanism. The needed structure is provided by the TSB and
the working groups.

4 The kernel

4.1 Global structure

The kernel manages the tracking of particles taking account of the geometry,
�elds and physics processes. EÆciency is a key issue and various optimisation
techniques are used. Geant4 provides ways of controlling the order of pro-
cessing of tracks. User code is invoked when particles enter sensitive volumes
so that hits and digitisations can be scored. All this is described below.

Geant4's logical structure and the user action classes were essentially de-
scribed in Section 2.2 and 2.4.

4.2 How a particle is tracked

In spite of its name, tracking in Geant4 does not transport particles, trans-
portation is performed by the transportation process which is handled as one
of the generic processes (the transportation process itself is described in some
detail in Section 4.4).

G4TrackingManager is an interface class brokering transactions between the
event, the track and the tracking categories. The tracking manager (a single-
ton instance of the class) handles the necessary message passing between the
upper hierarchical object, which is the event manager (a singleton instance
of class G4EventManager), and lower hierarchical objects in the tracking cate-
gory. The tracking manager receives a track from the event manager and takes
the necessary actions to complete tracking it.

G4SteppingManager is the class which plays an essential role in tracking the
particle. It takes cares of all message passing between objects in the di�erent
categories which are relevant to transporting a particle (for example, geometry,
interactions in matter, etc.). Its public method Stepping steers the stepping of
the particle. In the implementation of the algorithm, the inheritance hierarchy
of the physics interactions plays an essential role. This hierarchical design of
the physics interactions enables the stepping manager to handle these as ab-
stract objects; the manager does not need to be knowledgeable of the concrete

34

interaction objects, for example, bremsstrahlung, pair creation, etc. The ac-
tual invocations of various interactions during the stepping are done through
the dynamic binding mechanism. This is a powerful programming technique
which makes the tracking catgory completely shielded from any change in the
design of classes in the physics process, i.e., if we add in future a new physics
process for a particle, it is not necessary to change anything on the tracking
side.

Objects of class G4Track represent the particles which are handled by the
stepping manager. Each object holds information particular to each step of
a particle, for example, the current position, the time since the start of step-
ping, the identi�cation of the geometrical volume where the particle is, etc.
The dynamic information of the particle, like momentum and energy, is held
through a pointer to an object of type G4DynamicParticle. Also the static
information of the particle, like mass and charge, is stored through the pointer
to an object of type G4ParticleDefiniton. Here the aggregation technique
is extensively employed to keep the tracking performance very fast.

As described in section 2.3.3, each physics process proposes a step length,
returned by GetPhysicalInteractionLength (see Section 4.3). For example,
for interaction processes it is the distance to an interaction in the current
material. The stepping manager selects the process that proposes the shortest
step length. This selection, which has to take account also of geometrical
boundaries and user parameters, is described in more detail in Sections 5.3
and 5.4.

An object of type G4TrajectoryPoint holds the state of the particle af-
ter propagating one step. It includes information about space-time, energy-
momentum, geometrical volume, etc. A G4Trajectory object aggregates all
G4TrajectoryPoint objects which belong to the particle being propagated.

4.3 Process management

A large variety of interactions is experienced by particles passing through
matter. In Geant4 this variety is expressed by a division into seven major
process categories: electromagnetic, hadronic, transportation, decay, optical,
photolepton hadron, and parameterisation.

In designing Geant4, we focused on the generalisation and abstraction of
physics processes before considering the implementation of the varieties. Our
approach enables anyone to create a process and register it for a particle type
in a Geant4 simulation much more easily than in GEANT3. This openness
should allow the creation of processes for novel, domain speci�c or customised
purposes by individuals or groups of users.

35

All physics processes are treated in a \uni�ed manner" to describe how parti-
cles behave in a material. As described in section 2.3.3 on tracking, two kinds
of process methods play an important role: one is GetPhysicalInteraction-
Length (abbreviated GPIL) and the other is DoIt. There are three kinds of
DoIt methods or actions together with three GPIL methods corresponding
to each DoIt. These are AtRestDoIt, AlongStepDoIt, and PostStepDoIt.
All physics processes are derived from the base class of G4VProcess, which
provides three virtual DoIt and GPIL methods. In other words, all physics
processes can be treated in the same manner from the tracking point of view.

Each process can perform any combination of these three DoIt action. This
is a major innovation in Geant4, which goes beyond the categorisation of
processes made by previous simulation packages that distinguished, at most,
two types of process, discrete and continuous. Those two are still available as
special cases but, in addition, several novel types of process are possible.

As a result, the tracking code is completely general and common to all pro-
cesses of all particle types. This uni�ed model for physics processes gives ex-
ibility in design of a physics process. For example, the transportation of parti-
cles is a kind of process in Geant4 and a speci�c transportation process can
be applied in various cases (such as for transportation in electric �elds).

Each particle type contains a list of physics processes that the particle can un-
dertake. The process manager of each particle manages the list of processes.
Users can choose physics processes which are necessary for their own simu-
lation and register them via the process manager. The process manager also
contains information about the ordering of DoIt actions for each process in
the list.

In Geant4, the concept of particle change, represented by the class G4V-

ParticleChange and its derivatives, is introduced to keep the results in DoIts,
i.e., the �nal state of the track and secondary tracks. Thus, only these objects
know which properties the physics process has updated. A physics process can
de�ne its own particle change derived from the base class G4VParticleChange
to gain performance.

Clear separation between process and tracking functionality can be realised
by using particle change. Processes cannot change track information directly;
they can only propose changes as a result of an interaction. On the other hand,
the tracking accepts and judges proposals from processes and triggers their
action. In addition, the tracking controls the timing of updating the step and
track information based on the particle change.

This approach of using particle change and the abstraction of physics processes
ensures that we can easily develop new physics processes and/or extend the
functionality of existing processes.

36

4.4 Propagation in the detector model

The primary task of the geometry category is to supply information to the
transportation process and ultimately to the tracking manager for the geomet-
rical propagation of tracks. This includes propagation in a �eld, for example,
a magnetic �eld.

In GEANT3, as inGeant4, particles are moved in steps that are determined
by physics processes or by the detector geometry; however, inGEANT3, small
\pushes" are adopted to guarantee the change of volume at a boundary in
the face of computational rounding errors. This mechanism may cause errors,
especially in the case of photon reection, and it has been demonstrated to be
ineÆcient when volume boundaries are not coincident, since a series of many
small steps may be required when the \push" is not large enough. Geant4's
propagation methods were designed to overcome these limitations without
sacri�cing accuracy and eÆciency. After a step to a boundary a track's state
records whether it is on a boundary, whether it is exiting the current volume,
etc.

Volumes e�ectively have boundaries of a very small but �nite \thickness"
to take into account the round-o� and accumulated errors of oating point
arithmetic. In this \tolerant" geometry [43], intersections with boundaries
less than the tolerance from the current point are ignored if the direction
of the particle is away from the boundary. The thickness (or tolerance) is
chosen to be very small compared to detector features but much larger than
the expected arithmetic errors. Note that the internal unit of length can be
chosen at compile time (see Section 2.2) so that this condition can generally
be satis�ed.

The number of steps a particle must take to traverse a detector is therefore
much reduced. However, in order to traverse a detector model geometry eÆ-
ciently, it is also critical to reduce the number of candidate volumes for which
intersections have to be calculated and Geant4 has adopted an optimisation
technique which is described next.

4.4.1 Tracking optimisation

While tracking through the detector, a particle may encounter any one of
several detector parts at each step. Calculating the intersection of a track
with every daughter volume at each tree level would be extremely ineÆcient.
Di�erent methods, some inspired by techniques used in ray tracing, to lower
the number of candidate volumes to be tested for intersection, have been
evaluated.

37

Fig. 4. Smart Voxels. A mother volume with divisions along the horizontal axis.
Each one of these slices has an independent set of vertical divisions (voxels). Here,
the �rst one from the left is shown.

The technique of virtual divisions, like the one adopted in GEANT3, consists
of having mother volumes sliced evenly along one axis into sections. Each sec-
tion stores pointers to the sub-volumes it contains, compressed by bunching
together common lists. This scheme works well in a hierarchical detector de-
scription, where the number of daughter volumes at each node is small. It will
fail for a \at" geometry, i.e., where many volumes are placed at the top or
high level node without regard to relationship, as might happen for geome-
tries imported from a CAD system, particularly if the level of detail varies
with position.

Other techniques based on �xed or variable grids were investigated. Each cell
of the grid stores a list of pointers to the volumes intersected. The contents
of each cell can be determined entirely at initialisation time, based on the
bounding box of each volume. Fixed size grids have the disadvantage of mem-
ory consumption for �ne granularity dictated by small detector components.
The use of variable grids would overcome this problem but would make the
testing of intersections and the determining of which cell a particle is inside
more complex.

In Geant4 we have devised a new technique derived from the voxel based
method, used in ray tracing, where space is subdivided into cubic volume el-
ements (voxels) and a tree based map is created by recursively dividing the
detector into octants. This traditional voxel based technique retains the dis-
advantage of grid based methods in that every voxel intersected along the par-
ticle's trajectory must be tested for intersection of its contents. In Geant4's
smart voxels technique [44], for each mother volume, a one dimensional virtual
division is performed. The best axis for the virtual division is chosen by using
an heuristic. Subdivisions (slices) that contain the same volumes are gathered
into one in order to optimise memory and performance (see Figure 4).

Each division containing too many volumes is then re�ned by applying virtual
division again, using a second Cartesian axis. If the resultant subdivisions still

38

contain too many volumes, a further re�nement can be performed by dividing
again along a third Cartesian axis.

For a hierarchical detector description the mother volume local coordinate
system is usually a suÆcient guide to the choice of voxel decomposition axes.
For a \at" geometry, the smart voxels technique produces a simple virtual
division if volumes are regular placed or a tree up to three levels deep if it
contains many volumes of di�erent sizes and placements.

Smart voxels are computed at initialisation time and do not require large
memory and computing resources. At tracking time the searching is done in
the hierarchy of virtual divisions. This method for tracking has been found
to be very eÆcient. Also it very much reduces the need to tune the detector
description, since the performance in inadvertent or unavoidable \at" regions
of an otherwise hierarchical description is not much compromised.

4.4.2 Transportation in a �eld

Charged particles moving in a �eld do not follow linear trajectories between
interactions. In a uniform magnetic �eld their trajectories are helical (in the
approximation of small energy loss), while in non-uniform �elds they are curves
that, in most cases, cannot be described analytically.

Propagation in the detector thus involves two tasks: �rst the calculation of
the trajectory (numerically if the �eld is non-uniform) and then the �nding of
its intersection with volume boundaries.

We solve the particle's motion using a selection of methods, the majority in-
volving Runge-Kutta integration. The default method is a fourth order Runge-
Kutta, while lower order methods are available for �elds that are not smooth
enough and higher order methods are available for �elds that are smooth and
do not vary greatly.

Furthermore, for magnetic �elds in particular, a new set of integration methods
has been created that combines Runge-Kutta and the known helical solution
for uniform �elds. Here the \baseline" linear solution of �rst order Runge-
Kutta solution is replaced with a helical one in a scheme similar to the implicit
or explicit Euler schemes of Runge-Kutta.

These new integration methods have the ability to integrate over a large num-
ber of \turns" of a near-helical path in an almost uniform �eld. Thus they
are best suited for �elds that are nearly uniform and reasonably smooth. In
these circumstances, and for particles whose motion takes them over several
to thousands or more \loops" or turns of a helix, these new methods can o�er
a large performance bene�t compared to \ordinary" Runge-Kutta methods,

39

while taking into account �eld variations.

To calculate the intersection with volume boundaries we split the curved path
into sections and approximate each section by its chord. The algorithm's ac-
curacy and performance is controlled by a set of parameters, which can be
speci�ed by the user. The sections are chosen so that the maximum estimated
separation between the real (curved) path and the corresponding chord is
smaller than the \miss-distance" parameter. The chord is then used to test
for intersection with the boundary of a volume and, of course, it might miss
where the curved track would intersect. However the maximum depth in that
'missed-volumed' that is entered by the curved track should be no less than
the \miss-distance".

Once a candidate intersection is found, it is re�ned to within a distance de�ned
by another accuracy parameter. Currently the �nal intersection point is taken
to lie on the chord. Thus the intersection accuracy parameter must be chosen
carefully to limit the systematic error in tracks whose position is measured
accurately, else reconstructed momenta will be inuenced by this error.

The e�ects of a particle's motion on the precession of its spin angular momen-
tum in slowly varying external �elds are simulated. The relativistic equation
of motion for spin is known as the BMT equation [45]. The equation demon-
strates a remarkable property; in a purely magnetic �eld, in vacuum, and
neglecting small anomalous magnetic moments, the particle's spin precesses
in such a manner that the longitudinal polarization remains a constant, what-
ever the motion of the particle. But when the particle interacts with electric
�elds of the medium and multiple scatters, the spin, which is related to the
particle's magnetic moment, does not participate, and the need thus arises to
propagate it independent of the momentum vector. In the case of a polarized
muon beam, for example, it is important to predict the muon's spin direction
at decay-time in order to simulate the decay electron (Michel) distribution
correctly.

4.5 Priority control of tracks

Since the tracks are represented by C++ objects, it is quite straightforward to
use standard containers to stack them. Event handling in Geant4 has three
stacks (by default), namely \urgent", \waiting" and \postpone to next event".
Each is a simple �rst-in-last-out stack.

In the formerGEANT3, there was only one stack and each track was assigned
a priority. For every pop request it was necessary to scan for a track with the
highest priority, a rather heavy procedure once many secondaries were stacked.

40

InGeant4, priorities can be controlled easily by using the two stacks \urgent"
and \waiting". A user simply chooses in which stack to store the newly pushed
track by implementing, instantiating and registering a concrete derivative of
G4UserStackingAction. When the \urgent" stack becomes empty, the user
code is noti�ed so that the current event can be examined to see if it is worth
continuing to simulate or whether it is better to abort. If continuing, tracks
in the \waiting" stack are re-examined and some or all are transferred to the
\urgent" stack for the next stage of simulation. This continues recursively until
the event is complete or aborted. Not only the speed of popping the track with
the highest priority but also the capability of easy abortion of uninteresting
events make the simulation much more powerful.

4.6 Hits and digitisation

4.6.1 Detector sensitivity

In Geant4, a hit is a snapshot of a physical interaction or an accumulation
of interactions of a track or tracks in a \sensitive" detector component. On
the other hand, the term digit represents a detector output, for example, an
ADC/TDC count or a trigger signal. A digit is created from one or more hits
and/or other digits. Given the wide variety of applications of Geant4, how
to describe the detector sensitivity and the quantities a user needs to store
in the hit and/or digit vary greatly. Thus Geant4 provides only the abstract
classes for both detector sensitivity and hit/digit.

Each logical volume can have a pointer to a sensitive detector, which is an ob-
ject of a user class derived from the abstract base class G4VSensitiveDetector.
A sensitive detector creates hits using the information given in the current step.
The user has to provide his/her own implementation of the detector response.
Hits, which are user-de�ned objects derived from class G4VHit, are collected
in an event object. At tracking time, when the step is inside of a volume which
has a pointer to a sensitive detector, this sensitive detector is invoked with the
current step information.

In contrast to sensitive detector, which is invoked automatically at tracking
time, the digitisation module must be invoked by the user's code. Digitisation
may be done during event processing, at the end of each event, and/or even
after some number of events had been processed to simulate \pile-up".

4.6.2 Readout geometry

In some cases, the readout segmentation can be di�erent to the geometrical
structures of the detector. For example, the user may implement a detailed

41

sandwich structure of a sampling calorimeter, while the readout collects the
energy deposition of some of the layers. The readout geometry is an arti�cial
geometry which can be associated with a sensitive detector. Each sensitive
detector can have its own readout geometry. (Note that the transportation
process does not see the volume boundary of readout geometry and thus a
step does not end at the boundary of readout geometry.) Once a step belongs
to a sensitive detector, geometrical information of both the \real" tracking
and the readout geometry geometries are available to the sensitive detector.

5 Physics processes

5.1 Scope

TheGeant4 toolkit contains a large variety of complementary and sometimes
alternative physics models covering the physics of photons, electrons, muons,
hadrons and ions from 250 eV up to several PeV. The hierarchical structure
of the processes category was introduced in Sections 2.3.4 and 4.3. There are
seven major sub-categories | electromagnetic, hadronic, transportation, decay,
optical, photolepton hadron, and parameterisation. The �rst two, electromag-
netic and hadronic, are further sub-divided, as mentioned in Section 2.3.4 and
further described below.

We stress our design goal of achieving openness of physics implementation.
Object-oriented programming makes the structure apparent; the result is a
highly granular implementation, each component of which can be inspected
at source code level. The abstract interface common to all processes makes
the tracking independent from the type of process. This, together with the
modular architectural framework, also allows the continuous development of
new models without a�ecting the previous code.

5.2 Processes and models

For a particle interaction or decay it is useful to distinguish between the pro-
cess, i.e., a particular initial and �nal state, which therefore has a well-de�ned
cross-section or mean-life, and the model that implements the production of
secondary particles. It allows the possibility of o�ering multiple models for the
same process. One way this is exploited was described in outline in Section
2.3.4 and further examples are given below.

42

5.3 Interactions and decays

A particle in ight is subject to many competing processes. Moreover, in a real
detector, it will often travel through many regions of di�erent materials, shapes
and sizes before interacting or decaying. In simulation, the particle proceeds
in steps, and we have to �nd an eÆcient and unbiased way of choosing what
limits the step and, if the particle continues, of updating the parameters for
the next step.

Let us consider the interaction or decay of a particle in ight. (Similar con-
siderations apply to a particle at rest.) Firstly, we calculate a distance to the
point of interaction or decay. This is characterised by the mean free path �.
The probability of surviving a distance ` is

P (`) = e�n�;

where n� =
R `
0 d`=�(`).

For a decay, � = v� , where v is the velocity and � the mean life. For an
interaction, if the cross-section on isotope i of mass mi that has fraction xi by
mass in the current material of density � is �i, then 1=� = ��i fxi�i=mig. We
must keep in mind that � varies as it looses energy and changes discontinuously
at a geometrical boundary.

The key point to note is that the probability distribution of n� is a simple
exponential independent of material and energy. So, at the point of production
of the particle we set

n� = � ln �

where � is a random number uniformly distributed in the range (0; 1), and
this is used to determine the distance to the point of interaction or decay in
the current material. This information from all processes for the particle (each
process using a di�erent random number, of course) is used to decide what
happens.

5.4 Deciding which process limits the step

Processes other than interaction or decay also compete to limit the step. Con-
tinuous energy loss may limit the step to preserve precision. Also, transporta-
tion insists that the step should not cross a geometrical boundary. The user
can also request a maximum allowed step.

The process which returns the smallest distance is selected and its post step
action is invoked. If this is an interaction or decay, the particle is killed and

43

secondaries are generated. If not, the particle gets another chance to interact
or decay; n� for each process is decremented by an amount corresponding to
the step length and the whole algorithm is repeated at the next step.

5.5 Decay processes

Class G4Decay implements at rest and post-step actions for decay at rest and
in ight respectively. It chooses a decay time or path according to the above
algorithm. It also chooses a decay mode from the branching ratios in the decay
table for the particle. (The user has, nevertheless, the freedom to �x the proper
decay time and decay mode of primary particles.) Geant4 provides default
decay tables for most particles, such as �, K mesons, �, � hyperons and
resonant baryons, based on data from the Particle Data Group [46].

There are many models for determining the distribution of secondaries, for
example V-A theory for muon decay, Dalitz theory for �0 decay, or simple
phase space. In Geant4, concrete classes derived from G4VDecayChannel are
implemented for speci�c models and attached to each decay mode.

Decays of heavy avour particles, such as B mesons, are very complex, with
many decay modes and decay mechanisms. Geant4 does not attempt to
model these but provides two ways of dealing with them that take advantage
of external event generators. In the �rst way, the external decayer approach,
the G4VExtDecayer class provides an interface to the external package that
decides the decay mode and secondary particle momenta. This activated by
attaching a concrete implementation of this class to the G4Decay object of
that particle.

The second way, the pre-assigned decay mode approach, decays of heavy parti-
cles are simulated by the primary event generator, which attaches these daugh-
ter particles to the parent using the PreAssignedDecayProducts method of
G4DynamicParticle. G4Decay adopts these pre-assigned daughter particles
instead of asking G4VDecayChannel to generate the decay products.

5.6 Electromagnetic processes

The range of available electromagnetic processes is extensive. Whenever avail-
able, use is made of the public evaluated databases distributed by a variety
of international sources; this contributes to the reliability and openness of the
physics implementation.

44

Geant4 electromagnetic physics is usable in a wide variety of simulation
domains; a selection of applications and results can be found in [47{49].

5.6.1 Standard electromagnetic processes

Geant4 standard electromagnetic physics provides a variety of implementa-
tions of electron, positron, photon and charged hadron interactions. Photon
processes include Compton scattering, -conversion and the photo-electric ef-
fect. Electron/positron processes handle bremsstrahlung, ionisation and Æ-ray
production, positron annihilation and synchrotron radiation. The energy loss
process manages the continuous energy loss of particles due to ionisation and
bremsstrahlung. A signi�cant feature of this is an algorithm [50] which can
generate low energy Æ-rays only near the boundaries of volumes, which can
lead to an improved performance while keeping the quality of physics. The
ionisation and energy loss of hadrons has several models to choose from, in-
cluding Photo-Absorption Interaction (PAI) [51].

The Geant4 multiple scattering process can handle all charged particles. It is
based on a new model that simulates the scattering of the particle after a step,
computes the mean path length correction and the mean lateral displacement.
Its performance is compared to GEANT3 and experimental data in Figure
5.

A shower pro�le resulting from Geant4 standard electromagnetic physics
processes is compared to GEANT3 and experimental data in Figure 6.

Standard electromagnetic processes average the e�ects of the shell structure
of atoms and cannot expected to simulate details below 1 keV.

5.6.2 Range cuts

In Geant4, charged particles are tracked to the end of their range. However,
for performance, when generating the particles produced in an interaction, a
process may, optionally, choose to suppress particles whose range, as de�ned
below, would be less than a user-de�ned value that we name the range cut.
In this case the process must add the energy of the particle to the energy
deposited during or at the end of the step.

Range is used, rather than energy, as a more natural concept for designing a
coherent policy for di�erent particles and materials. For photons, the absorp-
tion length de�nes the cut - see Section 5.6.3.

For some processes, such as Æ-ray and bremsstrahlung production, the use of a
cut is not an option but a necessity, in order to suppress the generation of large
numbers of soft electrons and gammas. The energy of non-produced particles is

45

Angular distribution (6.56 MeV proton, 92.6 micrometer silicon)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

G4

G3

angle(deg)

dN
/d

(c
os

th
et

a)

Fig. 5. Multiple scattering of 6.56MeV protons by 92.6 �m of silicon: comparison of
Geant4, GEANT3 and experimental data from [52] | the angular distribution
of exiting protons.

transferred from the discrete component of a process to the continuous (along-
step) component. This also means that the interaction length also depends on
the cut.

All this needs a fast way of �nding the range of charged particles and the
absorption length of photons in each material; Section 5.6.3 describes this in
more detail.

For electromagnetic physics it is important to have a range cut which is
uniform across particles and materials in order to design a coherent set of
processes. We use range to ensure uniformity between di�erent particles (in
particular between electrons and photons). This production threshold con-
cept is used by the electromagnetic processes, in particular by ionisation and
bremsstrahlung.

46

radial energy profile (% of E inc)

H2O e- 1 GeV G4-G3-data comparison

10

10 2

10 3

0 0.1 0.2 0.3 0.4 0.5 0.6

G4

G3
data

R/Radl

(1
/E

0)
(d

E
/d

R
ad

l)

10

10 2

10 3

cumul radial energy dep (% of E inc)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

G4
G3
data

R/Radl

E
cu

m
ul

/E
0

0

20

40

60

80

100

Fig. 6. Shower pro�le of 1GeV electrons in water: Geant4, GEANT3 and experi-
mental data from [53]

5.6.3 Range and absorption length tables

In order to implement the range cut policy described in Section 5.6.2, the rel-
evant electromagnetic processes produce range-energy and aborption length-
energy tables for each material for use by all processes. The range is computed
by numerical integration of energy loss for electrons/positrons, muons, pro-
tons and antiprotons. The range for other charged hadrons is computed from
the proton table by using the scaled kinetic energy Ts = Tmp=m, where T
is the particle kinetic energy, m is the particle mass and mp is the proton
mass, which is the energy of a proton with the same velocity as the tracked
particle. This approach can be used because ionisation losses depend only on
the velocity.

For bremsstrahlung, a cut based on the absorption length for photons is ap-
proximated as described below.

The energy loss processes for e+=e�, �+=�� and charged hadrons are very
similar, so it is quite natural to have a common description for them.

47

5.6.4 Energy loss of electrons/positrons

The G4VeEnergyLoss class computes the continuous energy loss of electrons
and positrons. The continuous energy loss is calculated as a sum of the con-
tribution of the di�erent processes. At present there are two processes con-
tributing to the continuous energy loss, they are: the ionisation process (class
G4eIonisation) and the bremsstrahlung process (class G4eBremsstrahlung).
G4eIonisation calculates the contribution due to ionisation and simulates
the \discrete" part of the ionisation | Moller and Bhabha scattering or Æ-
ray production. G4eBremsstrahlung computes the energy loss due to soft
bremsstrahlung and simulates \discrete" or hard bremsstrahlung.

The G4VeEnergyLoss class also constructs energy loss and range tables for
every material. First the energy loss tables are constructed and �lled, simply
summing the contributions computed for ionisation and bremsstrahlung. After
this, it creates range tables and their inverses for e+=e� for every material. All
the tables are constructed at the beginning of a Geant4 run, at initialisation
time. Later, during the simulation, the energy loss process performs two tasks:
it imposes a limit on the step size of the particle and computes the energy loss
during a step travelled by the particle.

The computation of the mean energy loss during a step uses the dE=dx and
inverse range (T (r)) tables. The mean loss is

�T = T (r0)� T (r0 � s);

where r0 is the range at the beginning of the step of length s. For s < �r0,
where � is an arbitrary parameter (the linear loss limit), an approximation is
used:

�T � s

�
�
�
�
�
dE

dx

�
�
�
�
�
:

After the mean energy loss has been calculated, the process computes the
actual energy loss, i.e., the loss with uctuation. The uctuation is computed
in the uctuation model GLANDZ [54], also used in the GEANT3 code.

5.6.5 Energy loss of muons

The energy loss of muons is computed by the class G4VMuEnergyLoss. The
scheme is the same as in the case of e+=e�, except that now there are three
processes contributing, namely the ionisation process (class G4MuIonisation),
the bremsstrahlung process (class G4MuBremsstrahlung) and the direct pro-
duction of e+=e� pairs (class G4MuPairProduction). They each also simulate
the corresponding discrete processes | Æ-ray production, hard bremsstrahlung
and hard direct e+=e� pair production, respectively.

48

5.6.6 Energy loss of charged hadrons

The continuous energy loss of charged hadrons is calculated by the class
G4VhEnergyLoss. Here there is only one process which contributes, namely
ionisation (class G4hIonisation), which also simulates the discrete process of
hard Æ-ray production.

5.6.7 Bremsstrahlung

In Geant4, the user speci�es the cuts for the suppression of soft particles
as a distance. This is straightforwardly interpreted as a range for Æ-rays, as
described above; for bremsstrahlung we interpret it as follows. We use the fact
that, to a good approximation at low energies, averaging over atomic shell
e�ects, the absorption length decreases as energy decreases. In each material,
a cut is established at an energy such that �ve absorption lengths equals
the user de�ned distance cut. Only e�5 � 0:7% of suppressed photons of cut
energy, and a lesser proportion for photons for lower energy, would travel
further than the user de�ned distance cut. We thus obtain an approximate
correspondence between the delta-ray and bremsstrahlung cuts.

An approximate empirical formula is used to compute the absorption cross
section of a photon in an element. The absorption cross section means here
the sum of the cross sections for gamma conversion, Compton scattering and
the photo-electric e�ect. These processes are the \destructive" processes for
photons, i.e., they destroy the photon or decrease its energy. (Coherent or
Rayleigh scattering only changes the direction of the gamma, so its cross
section is not included.)

5.6.8 Multiple scattering

The G4MultipleScattering class simulates the multiple scattering of charged
particles in material. It simulates the scattering of the particle after a given
step, computes the mean path length correction and the mean lateral displace-
ment. However, it uses a new multiple scattering model [57] which does not
use the Moli�ere formalism.

Liljequist et al. [58] have calculated tables of parameters for electrons and
positrons in the kinetic energy range 0.1 keV to 20MeV in 15 materials. Our
model uses these values, corrected for a nuclear size e�ect, withan appropriate
interpolation or extrapolation in the atomic number and in the velocity of the
particle when necessary.

49

5.6.9 Low energy extensions

A set of physics processes is implemented inGeant4 to extend the range of va-
lidity of electromagnetic interactions down to lower energy than the standard
electromagnetic processes. The currently available extensions cover processes
for electrons, photons, positive and negative charged hadrons and positive
ions; further extensions to cover positron and negative ion interactions are
in progress. The current implementation of low energy electron and photon
processes [59] can be used down to 250 eV.

The low energy package includes the photo-electric e�ect, Compton scattering,
Rayleigh scattering, bremsstrahlung and ionisation; for completeness, a photon
conversion process has also been implemented and based on the same data
sources as the other low energy ones. In addition, uorescence emission from
excited atoms is also generated; the implementation of the Auger e�ect is
in progress. The implementation of electron and gamma processes is based
on the exploitation of evaluated data libraries (EPDL97 [60], EEDL [61] and
EADL [62]) that provide data for the determination of cross-sections and
the sampling of the �nal state. A simulation based on Geant4 low energy
processes for photons and electrons is compared with experimental data in
Figure 7, with evidence of shell e�ects.

A low energy process is also available to handle the ionisation by hadrons and
ions [64,65]. It adopts di�erent models depending on the energy range and the
particle charge. In the high energy (> 2MeV) domain the Bethe-Bloch formula
and in the low energy one (< 1 keV for protons) the free electron gas model are
applied respectively. In the intermediate energy range parameterised models
based on experimental data from the Ziegler [66] and ICRU [67] reviews are
implemented; corrections due to the molecular structure of materials [68] and
to the e�ect of the nuclear stopping power [67] are taken into account. The
Barkas e�ect is described by means of a specialised model Figure 8 shows a
comparison with experimental data for ions.

5.7 Photo- and electro-production of hadrons

Geant4 includes photonuclear and electronuclear reactions which convert
the energy ow of electrons, positrons and photons into the energy ow of
mesons, baryons and nuclear fragments [55]. In the nuclear giant resonance
region the cross section of the photonuclear process is comparable with the
other electromagnetic processes. At high energies, because of the Froissart
increase of interaction cross sections and large energy transferred to nucleus,
this kind of reaction can be very important [56].

The electronuclear reactions use the equivalent photon method [55]. Approxi-

50

photon transmission, Al 1 mum

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

data

GEANT4

energy(keV)

Fig. 7. Comparison of the Geant4 low energy photon simulation and experimental
data, showing relevance of shell e�ects: photon transmission in 1�m Al; data from
[63]

mation of structure functions of nucleons and simulation of DIS reactions are
under development.

5.8 Muo-production of hadrons

Geant4 also provides the nuclear interaction of muons with production of
hadrons. This is important for the simulation of detector response to high
energy muons, muon propagation and muon-induced hadronic background at
energies above 10GeV and relatively high energy transfers, in particular in
light materials [57]. The average energy loss for this process increases almost
lineary with energy, and at TeV muon energies constitutes about 10% in stan-
dard rock. Extension to lower energies, starting from the nuclear disintegration
threshold, on the basis of the equivalent photon method [55], is under devel-
opment.

51

log10(Ekin/M(MeV/amu))

dE
/d

x
(M

eV
/(

m
g/

cm
2))

Ion Ionisation Losses in Aluminum

12C

40Ar

0

10

20

-3 -2 -1 0 1 2 3

Fig. 8. Electronic stopping power of ions in Al; the accuracy of the data is approx-
imately 5%; experimental data from [69]

5.9 Hadronic processes

The basic requirements on the physics modelling of hadronic interactions in a
simulation toolkit span more than 15 orders of magnitude in energy. The en-
ergy ranges from thermal for neutron cross-sections and interactions, through
7TeV (in the laboratory) for LHC experiments, to even higher for cosmic ray
physics. In addition, depending on the setup being simulated, the full range or
only a small part might be needed in a single application. The complex nature
of hadronic showers and the particular needs of the experiment require the
user to be able easily to vary the models for particular particles and materials
depending on the situation.

For calorimeter simulation at colliders, for example, pion nuclear interactions
are fundamental, and leading particle e�ects, transverse momentum distribu-
tions, inclusive cross-sections, and the prediction of nuclear excitation energies
largely de�ne the quantities of interest for measurement and detector design.
When simulating backgrounds in the muon systems of the large LHC exper-

52

iments, critical items are the production of muons in hadronic showers, as
well as the simulation of punch-through and low energy neutron interactions.
When studying the impact of a neutron irradiated gadolinium rod on a tu-
mour, precise Doppler broadening of cross-sections and energy distributions
of the capture photons are vital.

A simulation tool-kit is therefore required to include the calculation of cross-
sections for the scattering of any incident meson or baryon (having a mean-life
long enough for interactions to be non-negligible) o� any stable or long lived
nuclear isotope target and to include models of these interactions. Lepton-
nucleus scattering should also be included. A good toolkit will o�er exible
choice of alternative cross-section algorithms and interaction models that the
user can choose according to his computer memory and performance and his
needed precision. The ability of the expert user to extend or adapt the provided
set of models is also a fundamental requirement.

Of this huge domain of energy, incident particle, target isotope and level of
precision, much is already available in the standard distribution. The hadronic
process category comprises several families of classes: processes which de�ne
each possible process and provide connections to the underlying cross sections
and models which implement the process; management, containing classes
which abstract some common properties of hadronic interactions and provide
steering mechanisms for the application of appropriate interaction models;
cross sections which encapsulate all cross section data and associated calcu-
lation methods for computing the occurrence of processes; stopping processes,
a distinct category for particles stopping or at rest; models, each of which im-
plements the �nal state generation of a particular process or a set of processes
for a particle or class of particles within a speci�ed energy range; and utility
classes which provide various standardised computational methods for use by
the models.

Within the models category are a number of sub-systems: low energy, high
energy, generator, neutron hp, radiative decay, etc., organised according to en-
ergy range, methodology, reaction type, and so on. This large array of models,
many newly developed or adapted for Geant4, is the result of a wide-ranging
development e�ort with many contributors. As a result of the design of the
process management and steering facilities, a set of models for a given applica-
tion can be chosen with great exibility, combining broadly-applicable models
with specialised ones in a well-de�ned way and invoking the appropriate model
for a given interaction depending on particle types, energy ranges, and other
characteristics.

53

5.9.1 Interaction cross-sections

The total cross-sections for inelastic scattering, capture of neutral particles,
induced �ssion and elastic scattering have been carried over from GEANT3.
The software design inGeant4 allows one to overload these defaults with spe-
cialised data-sets. Custom data sets are provided for proton induced reactions
[70] and neutron induced reactions [71] at particle energies below 20GeV, and
ion spallation reactions [72], as well as neutron interactions at energies below
20MeV.

5.9.2 Modelling �nal states

Three classes of models are distinguished for modelling �nal states. There are
models that are largely based on evaluated or measured data, models that are
predominantly based on parameterisations and extrapolation of experimental
data under some theoretical assumptions, and models that are predominantly
based on theory. In the following, we describe the usage of data driven, pa-
rameterisation driven and theory driven modelling approaches in Geant4.

Data driven models

When experimental or evaluated data are available with suÆcient coverage,
the data driven approach is considered to be the optimal way of modelling.
Data driven modelling is used in the context of neutron transport, photon
evaporation, absorption at rest, calculation of inclusive cross-sections, and
isotope production. We also use data driven modelling in the calculation of
the inclusive scattering cross-sections for hadron nuclear scattering. Limita-
tions exist at high projectile energies, for particles with short life-times, and
for strange baryons, as well as the K0 system. Theory based approaches are
employed to extract missing cross-sections from the measured ones, or, at high
energies, to predict these cross-sections.

The main data driven models in Geant4 deal with neutron and proton in-
duced isotope production, and with the detailed transport of neutrons at low
energies. The codes for neutron interactions are generic sampling codes, based
on the ENDF/B-VI data format [19], and evaluated neutron data libraries
such as ENDF/B-VI [73], JENDL3.2 [74], and FENDL2.2 [75]. Note that any
combination of these can be used with the sampling codes. The approach is
limited by the available data to neutron kinetic energies up to 20MeV, with
extensions to 150MeV for some isotopes.

The data driven isotope production models that run in parasitic mode to the
transport codes are based on the MENDL [76] data libraries for proton and
neutron induced production. They complement the transport evaluations in
the sense that reaction cross-sections and �nal state information from the

54

transport codes de�ne the interaction rate and particle uxes, and the isotope
production model is used only to predict activation.

The data driven approach is also used to simulate photon evaporation at mod-
erate and low excitation energies, and for simulating radioactive decay. Both
codes are based on the ENSDF [77] data of nuclear levels, and transition,
conversion, and emission probabilities. The decay of almost three thousand
nuclide species are covered, and all emitted �, �, � and � particles can be
tracked by Geant4 and their interactions simulated. Since the residual nu-
cleus is often in an excited state, the isomeric transitions are treated using the
photo-evaporation classes in Geant4 (future developments planned for the
toolkit include the treatment of internal conversion and atomic de-excitation
following decay). In the case of photon evaporation the evaluated data are
supplemented by a theoretical model (giant dipole resonance de-excitation) at
high excitation energies.

Finally, data driven modelling is used in the simulation of the absorption of
particles coming to a rest, mainly for ��, ��, K�, and �p, in order to describe
the fast, direct part of the spectrum of secondaries, and in the low energy part
of the modelling of elastic scattering �nal states in scattering o� hydrogen.

Parameterised models

Parameterisations and extrapolations of cross-sections and interactions are
widely used in the full range of hadronic shower energies, and for all kinds
of reactions. In Geant4, models based on this paradigm are available for
low and high particle energies respectively, and for stopping particles. They
are exclusively the result of re-writes of models available from GEANT3,
predominantly GEISHA [78]. They include induced �ssion, capture, and elastic
scattering, as well as inelastic �nal state production.

Theory based models

Theory based modelling is the basic approach in many models that are pro-
vided by Geant4 or are under development. It includes a set of di�erent
theoretical approaches to describing hadronic interactions, depending on the
addressed energy range and computing performance needs.

Parton string models for the simulation of high energy �nal states (ECMS >
O(5GeV)) are provided and in further development. Both di�ractive string
excitation and dual parton model [79] or quark gluon string [18] model are
used. String decay is generally modelled using well established fragmentation
functions [80]. The possibility of using quark molecular dynamic [81] is cur-
rently in preparation.

Below 5GeV centre of mass energy, intra-nuclear transport models are in

55

preparation. For cascade type models a re-write of HETC [82] as well as IN-
UCL [83] is in preparation, as well as an implementation of a time-like cascade
[84]. For quantum molecular dynamics models, an enhanced version of UrQMD
[85] is being written.

Note that the cascade models are based on average geometrical descriptions of
the nuclear medium, and take e�ects like Pauli-blocking, coherence length and
formation times into account in an e�ective manner. Scattering is done as in
the QMD model, with the possibility of using identical scattering implementa-
tions. The QMD models calculate the interaction Hamiltonian from two- and
three-body interactions of all particles in the system, and solve the Newtonian
equations of motion with this time-dependent Hamiltonian numerically. Scat-
tering is done using smeared resonance cross-sections, taking Pauli's principle
into account by investigating local phase-space. The approach promises to give
all correlations in the �nal state correctly, and has no signi�cant limitations
in its applicability at low energies. It is very CPU expensive.

At energies below O(100MeV) we provide the possibility of using exciton based
pre-compound models [86] to describe the energy and angular distributions of
the fast particles, and of softening the otherwise too steep behaviour of the
quasi-elastic peaks. In this area one model is released, and an alternative is in
preparation.

The last phase of a nuclear interaction is nuclear evaporation. In order to
model the behaviour of excited, thermalised nuclei, variants of the classi-
cal Weisskopf-Ewing model [87] are used. Specialised improvements such as
Fermi's break-up model [88] for light nuclei, and multi-fragmentation [89] for
very high excitation energies are employed. Fission [90], and photon evapora-
tion [57] can be treated as competitive channels in the evaporation model.

As an alternative for all nuclear fragmentation models, including evaporation
models, the chiral invariant phase space (CHIPS) model [21,22] is under de-
velopment. It is a quark-level 3-dimensional, SU(3)xSU(3) symmetric event
generator for fragmentation of excited hadronic [21] and nuclear [22] systems
into hadrons. It is expected to be applied to a wide range of hadron- and
lepto-nuclear [23] interactions. This is already released in the toolkit as an
event generator for the reactions of pion capture at rest, anti-proton capture
at rest, as a fragmentation model for photo- and electronuclear reactions, and
as nuclear fragmentation model for residual nuclei absorbing the soft part of
the Quark-Gluon String. The kaon capture at rest, decays of hyper-nuclei,
hadron-nuclear and in particular antiproton-nuclear interactions at low ener-
gies, Nuclear Giant resonance fragmentation are under development.

A theoretical model for coherent elastic scattering was added recently, using
the Glauber model and a two Gaussian form for the nuclear density. This ex-

56

pression for the density allows one to write the amplitudes in analytic form.
Note that this assumption works only since the nucleus absorb hadrons very
strongly at small impact parameters, and the model describes nuclear bound-
aries well.

For lepton nuclear interactions, muon nuclear interactions are provided. Here
the leptonic vertex is calculated from the standard model, and the hadronic
vertex is simulated using a suitable set of models from the above described.
Neutrino nuclear interactions will be added in due course.

Modelling summary

Already when taking only the view of the large HEP experiments, it has
become evident that all modeling techniques | data driven, parameterisation
driven, and theory driven | are necessary to satisfy the needs for hadronic
simulation in an optimal manner. Data driven modeling is known to provide
the best, if not only, approach to low energy neutron transport for radiation
studies in large detectors. Parameterisation driven modeling has proven to
allow for tuning of the hadronic shower for particle energies accessible to test-
beam studies, and is widely used for calorimeter simulation. Theory driven
modeling is the approach that promises safe extrapolation of results toward
energies beyond the test-beam region, and allows for maximal extendibility
and customisability of the underlying physics.

The use of state of the art software technology is the key that allows for
distributed development of the physics base of a tool-kit for simulation of
hadronic physics in the Geant4 context. It allows the work of many experts
in the �eld to be combined in a coherent manner, and o�ers the user the
possibility of unifying his/her knowledge in a single executable program in a
manner that is deemed optimal for a particular problem. This is a completely
new situation. In a very short time it has lead to an unexpectedly wide range
of modelling possibilities in Geant4, and an unprecedented ease of exibility
of usage of models and cross-sections.

5.9.3 Sample data driven models

As an example of a data driven model, we briey describe the models for
neutron and proton induced isotope production. These models are running in
parasitic mode to the transport models, and can be used in conjunction with
any set of models for �nal state production and total cross-sections. They
have been written to allow for detailed isotope production studies, covering
most of the spallation neutron and proton energy spectrum. They are based
on evaluated nucleon scattering data for kinetic energies below 20MeV, and a
combination of evaluated data and extrapolations at energies up to 100MeV.
The upper limit of applicability of the model is 100MeV nucleon kinetic en-

57

ergy.

The evaluated data libraries that are the basis of the Geant4 neutron trans-
port and activation data library are Brond-2.1 [91], CENDL2.2 [92], EFF-3
[93], ENDF/B-VI.0 [73], ENDF/B-VI.1, ENDF/B-VI.5, FENDL/E2.0 [75],
JEF2.2 [94], JENDL-FF [74], JENDL-3.1, JENDL-3.2, and MENDL-2 [76].
Our selection was guided in large part by the FENDL2.0 selection. Additions
to and small modi�cations of this selection were possible due to the structure
of the Geant4 neutron transport code and the use of the �le system to max-
imise the exibility of the data formats. The inclusion of the MENDL data
sets is fundamental for these models.

Figure 9 shows an example of the simulated cross-section in comparison to
evaluated data from the MENDL collection, using 106 events at each energy.
A systematic error of 15% was added to the simulation results to take the error
in the extrapolation of the total cross-sections into account. For a complete
description and more comparisons, see [95].

5.9.4 Sample parameterised models

Parameterisation based models have been found to be very powerful in the
case of calorimeter simulation. Without giving a detailed description of these
models, we want to illustrate the predictive power for the case of high energy
models in Figure 10 for production of neutral pions in interactions of kaons
and pions with gold and aluminum.

5.9.5 Sample theory driven models

Given that the chiral invariant phase-space decay model CHIPS is a rather
new development and is developed only within Geant4, we choose this as an
example for a theory based model. CHIPS is a quark-level 3-dimensional event
generator for fragmentation of excited hadronic systems into hadrons. An im-
portant feature is the universal thermodynamic approach to di�erent types
of excited hadronic systems including nucleon excitations, hadron systems
produced in e+e� interactions, high energy nuclear excitations, etc. Exclusive
event generation, which models hadron production conserving energy, momen-
tum, and charge, generally results in a good description of particle multiplic-
ities and spectra in multi-hadron fragmentation processes. To illustrate the
predictive possibilities of this ansatz, we show a comparison between CHIPS
predictions and measurement in the case of proton anti-proton annihilation in
Figure 11. For details of the model see [21{23].

58

Fig. 9. Isotope production cross-sections for neutron induced production of impor-
tant isotopes as simulated using the isotope-production code in Geant4. Large
points are simulation results, small points are evaluated data from the MENDL2
data library.

5.10 Optical processes

Geant4 is an ideal framework for modelling the optics of scintillation and
�Cerenkov detectors and their associated light guides. This is founded in its
unique capacity of commencing the simulation with the propagation of a
charged particle and completing it with the detection of the ensuing optical
photons on photo sensitive areas, all within the same event loop.

A photon is called optical when its wavelength is much greater than the typical
atomic spacing. InGeant4 the concept of optical photons is a class of particles

59

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d
σ/

dx
[m

b]

10
-2

10
-1

1

10

10
2

-- GEANT 3

-- GEANT 4

● data π+p

❍ data K +p

(π,K) → π0X at 250 GeV/c

Fig. 10. Comparison of production cross-sections of neutral pions in kaon and pion
induced reactions with measurement.

Proton antiproton annihilation at rest

Annihilation Channels with Two-Particle Final StatesAnnihilation Channels with Two-Particle Final StatesAnnihilation Channels with Two-Particle Final States

dN
/N

A
 (

A
nn

ih
ila

tio
n-1

)

π0 π0

π+
π-

K
0 K–

0

K
 +

K
 -

ηπ
0

ηη ρ0 π0

ρ-
+
π+

 -

ρ0 η
ρ0 ρ0

ω
π0

ω
η

ω
ρ0

ω
ω

K
*0 K–

0 +
 c

.c
.

K
*+

 -
K

 -
 +

K
*0 K–

*0

K
*+

 -
K

* -
 +

η′
π0

η′
η

η′
ρ0

η′
ω

φπ
0

φη φρ
0

φω f 2π
0

f 2ρ
0

f 2ω a 2π a 2ω f 2′π
0

CHIPS MCpoints: p
–
p data

Exp. sum of channels = 0.239±0.009
MC sum of channels = 0.17445

10
-5

10
-4

10
-3

10
-2

10
-1

1

5 10 15 20 25 30

Fig. 11. Comparison of the branchings in two particle �nal states in proton
anti-proton annihilation with the predictions of CHIPS.

detached from their higher energy gamma cousins. This implementation allows
processes to be associated to them arising from the wave like property of
electromagnetic radiation.

The catalog of processes at optical wavelengths includes refraction and re-

60

ection at medium boundaries, bulk absorption and Rayleigh scattering. The
optical properties of the medium which are key to the implementation of
these types of processes are stored as entries in a properties table linked to
the material in question. They can be expressed as a function of the photon's
wavelength.

5.10.1 �Cerenkov process

The ux, spectrum, polarization and emission of this radiation follow well
known formulae. The time and position of �Cerenkov photon emission are cal-
culated from quantities known at the beginning of the charged particle's step,
which is assumed to be rectilinear even in the presence of a magnetic �eld. The
need to suspend the primary charged particle track arises in the production
of �Cerenkov photons because the number of such photons generated during
the length of a typical step, as de�ned by energy loss or multiple scattering,
is often very large. Hence, the tracking of the �Cerenkov radiating particle can
be suspended by putting it on its own stack of generated secondaries, so that
its proteges are tracked in turn before it is revived and transported further.

5.10.2 Scintillation

Every scintillation material has a characteristic light yield and an intrinsic
resolution, which generally broadens the statistical distribution, due to im-
purities; typical examples are doped crystals like NaI(Tl) and CsI(Tl). The
average yield can have a non-linear dependence on the local energy deposi-
tion. Scintillating materials also have emission time spectra with one or more
exponential decay time constants, with each decay component having its in-
trinsic photon emission spectrum. These empirical parameters are particular
to each material and must be supplied by the user. Geant4 provides a frame-
work in which this can be done e�ectively. A Poisson distributed number of
photons is generated according to the energy lost during the step. The photons
originate evenly along the track segment and are emitted isotropically with a
random linear polarization.

5.10.3 Absorption and Rayleigh scattering

The implementation of optical photon bulk absorption is trivial in that the
process merely kills the particle. The procedure requires the user to �ll the
relevant material property table with empirical data for the absorption length.
The di�erential cross section in Rayleigh scattering is proportional to the
square of the cosine of the angle between the new photon's polarization vector
and that of the original photon. The Rayleigh scattering process samples this
angle accordingly and then calculates the scattered photon's new direction by

61

requiring that it be perpendicular to the photon's new polarization in such a
way that the �nal direction, initial and �nal polarization are all in one plane.

5.10.4 Reection and refraction

Before explaining the simulation of reection and refraction at medium bound-
aries, it is necessary to introduce the concept of optical surface in Geant4.

The optical boundary process design relies heavily on the concept of surfaces.
The information is split into two classes. One class in the materials category
keeps information about the physical properties of the surface itself, and a
second class in the geometry category holds pointers to the relevant physical
or logical volumes involved and has an association with the physical properties
class. Objects of the second type are stored in a related table and can be
retrieved by either specifying the logical volume entirely surrounded by this
surface or the pair of physical volumes touching at the surface. The former is
called skin surface, while the latter is referred to as a border surface. The �rst
type of surface is useful in situations where a volume is coded with a reector
and is placed into many di�erent mother volumes. A limitation is that the skin
surface can only have one and the same optical property for all of the enclosed
volume's sides. The border surface is an ordered pair of physical volumes,
so the user can choose di�erent optical properties for photons arriving from
di�erent sides of the same interface.

The physical surface object also speci�es which model the boundary process
should use to simulate interactions with that surface. In addition, the physical
surface can have a material property table all its own. The usage of this table
allows all specular constants to be wavelength dependent. In case the surface
is painted, wrapped or has a cladding, the table may include the thin layer's
index of refraction. This allows the simulation of boundary e�ects both at
the intersection between the medium and the surface layer, as well as at the
far side of the thin layer, all within the process itself and without invoking
the Geant4 navigator. Combinations of surface �nish properties, such as
polished or ground and front painted or back painted, enumerate the di�erent
situations.

When a photon arrives at a medium boundary its passage depends on the
nature of the two materials that join at that boundary. The user can specify
the medium boundary as between two dielectric materials, one dielectric and
a metal, or one dielectric and a black medium. In the case of two dielectric
materials, the photon can be totally internal reected, refracted or reected,
depending on the photon's wavelength, angle of incidence, (linear) polarization
and the refractive indices on both sides of the boundary. The photon can be
absorbed by the metal or reected back into the dielectric. If the photon is

62

absorbed it can be detected according to the photo-electron eÆciency of the
metal. Reection and transmission probabilities are sensitive to the state of
linear polarization.

The user has two choices inGeant4 for modelling a realistic surface, either the
UNIFIED model [96] of the DETECT [97] program, or the originalGEANT3
implementation via the GLISUR methods ag. Using GLISUR, the roughness
of a surface is speci�ed by a single parameter, while with the UNIFIED model
a more comprehensive description is possible that deals with all aspects of
surface �nish and reector coating.

5.11 Transition radiation

Transition radiation emitted by a relativistic charged particle crossing an inter-
face between two materials with di�erent dielectric properties is implemented
as a boundary process. (An alternative implementation is described in Section
6.1.) The class G4ForwardXrayTR is responsible for the description of X-ray
transition radiation (XTR) photon generation from one interface between two
di�erent materials. One of those material states should be gas or vacuum.
The base class G4TransitionRadiation consists of methods and data mem-
bers which can be used in both optical and X-ray transition radiations.

6 Additional capabilities

The real power of the object-oriented approach lies in the ability to extend
the basic functionality either by implementing classes derived from the kernel
base classes or writing \plug-ins" which use Geant4.

An example of the former, in fact, is the whole of the physics processes; the
kernel is written for the generic process de�ned by the abstract interface and
any process which conforms to this interface can be used. Below we describe
another extension, namely to \parameterised processes" or \fast simulation
processes", which allows the user to de�ne what happens when a particular
particle enters a particular volume. All this can happen without modifying
the kernel.

\Plug-ins" simply use Geant4. In this category are user interfaces, visual-
ization and analysis, described in Section 7 and persistency, described below.
Like processes, these are distributed with Geant4 but, if the user wishes, can
be replaced. This might happen in a large project that has already de�ned its
software framework and already made decisions about such functions. It is a

63

relative straightforward matter to integrate Geant4 into an existing software
framework.

6.1 Parameterisation for fast simulation

Fast simulation or parameterisation allows one to take over the tracking and
implement, for example, a fast algorithm of detector response. The typical
use case is shower parameterisation where the several thousand steps per GeV
computed in the detailed simulation are replaced by a few tens of energy
deposits [98,99]. Very fast simulation, in which the tracking is intercepted to
produce reconstructed-like objects, is also useful [100].

Parameterisation characteristics which have been identi�ed as impacting the
design are: parameterisations are generally experiment dependent; they take
place in an envelope, which is typically the mother volume of a sub-detector,
for example a calorimeter; they apply to speci�c particles types. Parameteri-
sation may also be required not to trigger in complicated regions, like module
overlaps of a calorimeter, and may require kinematic criteria, like a suÆciently
high energy, to be valid.

The above requirements have been expressed in the following way. Parameteri-
sations take place at tracking time so that access to kinematic and geometrical
information is natural. Parameterisations compete with the normal tracking;
at the beginning of each step starting inside an envelope, parameterisations
are given a chance to issue a trigger. If it does so, it is applied, otherwise the
tracking proceeds with a normal step.

Parameterisations are designed as models, applicable to speci�c particle types
and de�ning a trigger method. Geant4 provides an abstract interface only,
since parameterisations are usually experiment dependent. This interface, G4-
VFastSimulationModel, de�nes three pure virtual methods IsApplicable,
ModelTrigger and DoIt. The IsApplicable method allows the user to as-
certain for which particle types the model is valid. ModelTrigger de�nes the
trigger and is the place where the user makes the decision not to trigger in
complicated regions or in non suited kinematic ranges. DoIt is the user param-
eterisation code proper, invoked if the model has previously issued a trigger.
The DoIt signature is general enough to change the state of the current par-
ticle and to create secondaries.

The notion of \envelope" has been explicitly introduced: envelopes are the
geometrical regions where (and only where) parameterisations may trigger.
Envelopes can be de�ned in two ways. They can be volumes of the geometry
for tracking or they can be volumes, called \ghost volumes", independent of
that geometry. The former are, perhaps, more usual while the latter allows a

64

general envelope de�nition.

In this latter case, envelopes are volumes that are \overlayed" on the nor-
mal tracking geometry and an extra navigation method is performed to check
whether the current particle is inside this volume. This allows one in partic-
ular to create envelopes for geometries produced by CAD systems, where no
hierarchical structure exists. Those ghost volumes are, in addition, particle
type sensitive, allowing the creation of di�erent envelopes for di�erent parti-
cle types. For example, de�ning an envelope solely for pions enclosing both
electromagnetic and hadronic calorimeters is possible.

In practice, envelopes are G4LogicalVolume objects. Parameterisation models
are bound to this volume through a G4FastSimulationManager object, which
gathers and messages those models. The pointer of this manager is recursively
propagated to the daughters of the G4LogicalVolume, allowing fast checking
of the presence of such a manager at tracking time.

The interface between the parameterisation and the tracking is provided by a
G4VProcess, the G4FastSimulationManagerProcess (G4FMP), which checks
for the presence of a G4FastSimulationManager object and messages it if any.
Modi�cation of the current track and information of possible secondaries cre-
ated by a parameterisation model are communicated to the tracking through
a G4VParticleChange, like any G4VProcess. The G4FMP also provides the ex-
tra navigation in case ghost volumes are used. The G4FMP makes use of the
\exclusive" signal in the case that a model triggers to tell the tracking that it
is to be the only process applied in the current step.

As a concrete example for the use of fast simulation we give X-ray transi-
tion radiation (XTR) generation from radiators [101]. It is described by a
family of classes inheriting from G4VFastSimulationModel. (It has also been
implemented as a boundary process | see Section 5.11.) The base class G4-
XrayTRmodel is responsible for the creation of tables with integral energy and
angular distributions of XTR photons. It has also the DoIt function providing
XTR photon generation and moving the incident particle through the XTR
radiator. Particular models like G4IrregularXrayTRmodel realise the pure
virtual function GetStackFactor. The latter calculates the response of the
XTR radiator.

Figure 12 shows the scheme of working of the G4XrayTRmodel::DoIt function.
An incident charged particle with a Lorentz factor > 100 enters the logical
volume G4Envelope at the point p1 and exits at p2. It moves along the direction
given by the unit vector ~v. XTR photons are generated randomly along the
particle trajectory (point g1) inside G4Envelope with energies and polar angles
relative to ~v randomly selected from the corresponding tables of the integral
energy and angular distributions. Each XTR photon then is moved to the

65

-

Incident

particle p1 p2

~v
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��:

g1

g2

XTR photon

Foils

XTR radiator

q q q q q

Fig. 12. Illustrating the working of the G4XrayTRmodel::DoIt function.

border of G4Envelope (g2). Finally the sum of the XTR photon energies is
subtracted from the kinetic energy of the incident particle.

6.2 Event biasing

Variance reduction techniques are an important aspect of most Monte Carlo
calculations and allow the user to tune the simulation to the part of the
problem space (particle species, energy, position, etc.) most relevant to his/her
application [102]. In Geant4 facilities exist to allow the user to modify the
statistical weight associated with each G4Track object so that, for example,
the user can modify the probability of interaction processes (currently through
user-written code) to increase the sampling of high-energy secondary particles,
which will have correspondingly lower track weights. More general facilities to
allow a user to bias the simulation conditions, without the need for signi�cant
code development, are currently being developed. However, there are already
two classes that allow biasing schemes to be applied.

When simulating radioactive decay following energetic particle interactions, it
is often necessary to treat the decays of a range of nuclide species over many
generations. Furthermore, results are often required only for decays within par-
ticular "time-windows" that are much shorter than the times between nuclide
production and observation. To deal with the former, the Geant4 radioactive
decay processes applies recursive formulae based on the work of Bateman [103]
and Truscott [104] to allow determination of the decay rates for all nuclear
generations. This is used in combination with the variance reduction modes

66

Fig. 13. Illustration of Decay Probability Biasing.

that can be invoked in the class G4RadioativeDecay preferentially to sample
the times of the decay according to the times of observation (as illustrated
by Figure 13). In the extreme case, all radionuclides and their progeny can
be forced to decay at a user-de�ned observation time. An additional feature
of this variance reduction mode in G4RadioactiveDecay is that the user can
infer the e�ects of a time-varying source (e.g. if assessing radiation e�ects on
a satellite from a solar particle event) from each radionucleus created in the
simulation at time t = 0. This is achieved by convolving the decay rate over a
user-de�ned source time pro�le. (Clearly performing a similar calculation us-
ing an analogue Monte Carlo approach to sample source particles as a function
of time would be very ineÆcient in comparison.)

Other variance reduction schemes within G4RadioactiveDecay include:

� splitting of radionuclides prior to decay, which can be used to increase the
sampling of decay radioactive decay products;

� re-biasing of the decay branches, so that there is increased sampling of low-
probability branches that may, because of particle energy or species, have a
more important e�ect on the observation.

The class G4GeneralParticleSource also provides facilities for the user to
bias the source particle distribution in energy, in the x-, y- or z-direction for
the point at which it is created, or in angular direction. Here the user has

67

only to provide the desired sampling distribution in the form of a cumulative
probability distribution histogram, and G4GeneralParticleSource recalcu-
lates the weights of the biased source particles sampled from the distribution.
This feature permits, for example, more particles to be sampled closer to the
volumes of the simulated geometry where greater sensitivity to radiation ef-
fects is expected, or increased sampling of the high-energy portion of a cosmic
ray spectrum, which can produce more secondary particles.

6.3 Persistency

The persistency category provides an interface for storing and retrieving run,
event, hits, digits and geometry information in and from ODMG-compliant
object databases so that users may perform post-simulation analysis in sepa-
rate processes. The object persistency has been achieved by using the ODMG
class description and HepODBMS [105].

It is a functional requirement that the kernel part of Geant4 must be able to
run with and without HepODBMS and the related commercial packages. This
category can be built optionally. Users must set an environment switch before
the installation of the toolkit to use this category. This requirement leads to
a design decision that normal kernel objects (transient objects) must have
corresponding persistent objects to perform a deep copy of data members.
The ODMG-compliant class description allows one to one mapping of the
association between complicated objects such as geometry.

A persistent class must inherit the persistency characteristics from the class
HepPersObj in HepODBMS. Data members of the persistent class are updated
and committed during the database transaction methods de�ned in HepDbAp-

plication. Schema information is extracted from the class header �les and
compiled as meta-data with a preprocessor. Currently a commercial object
database package Objectivity/DB is supported by HepODBMS.

To use persistency, users must instantiate a singleton object of class G4Per-
sistencyManager. This object is messaged by the Geant4 run manager to
trigger the actual deep copy of the objects related to run, event and geometry.
Location of the database and the transactions to the database are speci�ed
through the user interface class G4PersistencyMessenger and the informa-
tion is transferred to an object of class G4TransactionManager, which handles
the database transaction messages using HepDbApplication. The deep copy
operations are performed during these transactions.

When a pointer of a transient G4Event object is handed to G4Persistency-

Manager, it is handed on to a G4PersistentEventMan object which then con-
structs a persistent object of class G4PEvent with data member which are val-

68

ues of G4Event. A constructor of G4PEvent then constructs G4PPrimaryVertex,
and makes associations to the primary vertex, hit collections and digit collec-
tions if they exist. G4PPrimaryVertex then constructs G4PPrimaryParticle
objects. Similar deep copy transactions occur for run and geometry when
triggered by G4RunManager. The relation of the persistent and the transient
objects is reversed in the retrieve transaction.

Hit and digit classes and their collections belong to the user domain and ac-
tual implementation of these classes di�er from detector to detector. Geant4
persistency category provides persistent abstract base classes so that users
can directly store and retrieve their hits and digits collections. In a user im-
plementation, hit and hits collection inherits persistency from G4PVHit and
G4PVHitsCollection respectively. Actual storing and retrieving of the data
members is triggered in the methods of G4TransactionManager. In this case,
the user must explicitly take control of database transactions for their user
de�ned persistent classes by specifying a transaction type parameter in G4-

PersistencyManager methods.

7 Interactivity and visualisation

Interactivity and visualisation span three related categories, i.e., intercoms,
interfaces, and visualisation categories. At the lowest level resides intercoms,
which provides, amongst other things (see Section 2.2), command de�nition
and interpretation tools. User interaction is realised through the concept of a
\session" and graphical and non-graphical concrete sessions are available in
the interfaces category.

Visualisation is a high level category which uses intercoms and | if interactive
graphical tools are shared, such as the X Windows Toolkit (Unix) or Microsoft
Windows | also uses interfaces, where the windows event handlers are coded.
Drivers for several graphics systems are o�ered and can be instantiated in
parallel.

Below, we describe these categories in turn. We also describe how the visual
debugging of detector geometry models can be realised in Geant4.

7.1 User interfaces

The design of Geant4 (graphical) user interfaces was inuenced by two con-
siderations: the categories of users and the phases of user actions.

Three categories of users were envisioned:

69

(1) End user who runs aGeant4 application by setting run-time parameters
and executing commands with the (graphical) user interfaces.

(2) Application programmer who creates application programs speci�c to
his/her simulation. He/she may wish to de�ne specialised commands and
sets of associated parameters. Available commands may vary from one
application to another.

(3) Framework provider who is a Geant4 developer.

This leads us to separating the creation of (graphical) user interfaces from the
creation of commands.

During the execution of an application, two phases of user actions arise, namely
for initialisation of simulation and for control of event generation and process-
ing. The user interaction is di�erent in each phase and this requires that a
Geant4 application is a state-machine and that its available commands and
their parameters may vary according to state.

It was our design choice to have the intercoms category separate from the
user interfaces category. The intercoms category implements an expandable
command interpreter which is the key mechanism in Geant4 for realising
customisable and state-dependent user interactions with all categories without
being perturbed by the dependencies among classes.

The capturing of commands is handled by a C++ abstract class G4UIsession
of the intercoms category. Various concrete implementations of the command
capturer are contained in the [user] interfaces category. Taking into account
the rapid evolution of graphical user interface (GUI) technology and conse-
quent dependence on external facilities, it was decided to o�er plural and
extensible GUI's. Application programmers and framework providers, how-
ever, are asked only to know how to register their commands and parameters
appropriate to their problem domain; no knowledge of GUI programming is
required to allow the application to use them through one of the available
GUIs.

7.1.1 Concrete implementations

Various user interface tools like Motif, Tk/tcl, JAVA, etc., have been used
to implement the command \capturer". The richness of the Collaboration has
permitted di�erent groups to o�er various front-ends to theGeant4 command
system. We list below the currently available implementations according their
main technologies:

� batch to read and execute a �le containing commands,
� tcsh-like terminal for interactive sessions,

70

Fig. 14. GAG working with JAS.

� Xm, Xaw, Win32 variations of the above using a Motif, Athena or Win-
dows widget to retrieve commands, useful if working in conjunction with
visualisation drivers that use the Xt library or the WIN32 one,

� GAG [106,107], a client/server type adaptive GUI reectingGeant4 states,
and

� OPACS [108], an OPACS/Wo widget manager implementation.

Figure 14 is a display dump of GAG co-working with JAS (Java Analysis
Studio) [109].

7.1.2 Other tools for application programmers

Geant4 requires the application programmer to create three mandatory classes
relating to detector geometry, physics processes and the primary generator.
The following tools have been developed to help him/her to create the �rst two

71

of these classes without memorising the straight-forward but tedious names
and methods of relevant classes like materials, solids, particles, etc. These have
proved very useful for rapid prototyping of simulation applications [107,110].

� GGE (Geant4 Geometry Editor) is a tabular tool written in Java which has
a material editor and a volume editor. Complete C++ source codes, ready
for compilation, implementing the programmer's geometry are produced
from the tables �lled by the user. It can be saved in a persistent �le for
reuse.

� MGA (Material Generation and Association) is similar with GGE. It uses
CAD's STEP output and associates it with materials to generate C++
source codes.

� GPE (Geant4 Physics Editor) has tables for particles and electromagnetic
processes. The programmer associates a particle with a process by �lling the
physics list table. From the table are generated complete C++ source codes
including the default cut value.

7.2 Visualisation

Geant4 visualisation is designed to visualise detector geometry, particle tra-
jectories, tracking steps, hits, texts (character strings), etc., to help users to
prepare and execute detector simulation.

There is a wide variety of user requirements on visualisation. For example:

� very quick response to survey successive events;
� high-quality outputs for presentation and documentation;
� impressive special e�ects for demonstration;
� exible camera control for debugging detector geometry and physics;
� selection of visualisable objects;
� interactive picking of graphical objects for attribute editing or feedback to
the associated data;

� highlighting wrong intersections of physical volumes;
� cooperative working with graphical user interfaces.

It is very diÆcult to respond to all of these requirements with only one built-in
visualiser, so we have designed an abstract interface which supports several
complementary graphics systems. Here the term \graphics system" means ei-
ther an application running as a process independent ofGeant4 or a graphics
library to be compiled with Geant4. A concrete implementation of the inter-
face is called a visualisation driver, and this can use a graphics library directly,
communicate with an independent process via pipe or socket, or simply write
an intermediate �le for a separate viewer.

72

The current distribution ofGeant4 contains several established drivers. Those
which need external libraries or packages may only be activated if the corre-
sponding external system is installed, and it is the user's responsibility to check
this and set environment variables to control the compilation of the drivers. In
addition, in principle, the user may extend this list by implementing his/her
own driver to the speci�cation of the abstract interface.

The following drivers write intermediate �les for a separate viewing. The
drivers themselves need no external libraries or packages and are normally
built by default into any Geant4 executable.

� DAWNFILE [111]: produces �les for the Fukui Renderer, DAWN [112],
which is well suited to preparing technical-high-quality PostScript outputs
for presentation and/or documentation. Figure 15 shows an example.

� HepRepFile: generates �les in the HepRep [113] format, suitable for viewing
with several viewers, notably the WIRED [114] event display viewer. As well
as various 3D representations of the geometry model and trajectories, etc.,
the geometry hierarchy can be viewed as a tree structure and used to select
visible components.

� RayTracer This driver performs ray-tracing rendering using the tracking
algorithms of Geant4, and generates a JPEG �le. The driver is, therefore,
a useful debugging tool for Geant4 developers. For users, it is useful for
generating photo-realistic high-quality images.

� VRMLFILE [111]: generates VRML (versions 1 and 2) �les that can be
viewed with one of the many attractive VRML viewers now available. These
enable one to perform interactive spinning of detectors, ying inside detec-
tors or particle showers, and so on.

The following link directly to external libraries and require activating by the
setting of environment variables. These graphics systems establish their own
graphical database for fast refreshing and view re-orienting, except for the so-
called immediate mode of OpenGL. Free implementations of all these libraries
are available.

� OPACS [108]: The OPACS library supports many useful functions such as
an event display and picking.

� OpenGL [115]: OpenGL is widely available and is well suited to real-time,
fast visualisation. Its immediate mode has no limitation on picture com-
plexity.

� OpenInventor [116]: This driver supports high interactivity, e.g., attribute
editing of picked objects, virtual-reality visualisation, and other advanced
functions.

The following use the socket mechanism to communicate with viewers running
in daemon mode and require activating by the setting of environment variables.

73

Fig. 15. Visualisation with the DAWNFILE driver.

They have the features of their �le-writing equivalents above but have the
advantage of remote visualisation.

� DAWN [111]: has the features of DAWNFILE above.
� VRML [111]: has the features of VRMLFILE above.

The following use the visualisation driver mechanism to provide an alterna-
tive tree representation of the geometry model. The drivers themselves need

74

no external libraries or packages and are normally built by default into any
Geant4 executable.

� ASCIITree: simply tabulates the geometry model hierarchy on standard
output.

� GAGTree: communicates with the GAG user interface (Section 7.1.1), if
instantiated, and allows a tree-widget-like viewing of the geometry model
hierarchy.

Visualisation procedures are controlled by the visualisation manager described
in a user class, say, MyVisManager that inherits the class G4VisManager de-
�ned in the visualization category [117]. The visualisation manager accepts
a user's requests for visualisation, processes them, and passes the processed
requirements through the abstract interface to the currently selected visual-
isation driver. In this process, the visualisation manager uses various classes
for visualisable 3D objects (volumes, lines, texts, markers, etc.) de�ned in the
graphics reps category and the geometry category. The visualisation manager
also uses utility classes de�ned in the visualization/modeling sub-category to
generate 3D data ready for visualisation.

7.3 Data analysis

There are various analysis systems that generate histograms, analyse event
data statistically, and so forth. It is possible to plug in many of these to
Geant4. Examples of plugging in analysis systems supporting the AIDA
abstract interface [118], e.g., JAS [109], Lizard [119], and OpenScientist [120],
are included in the Geant4 package.

7.4 Geometry veri�cation

The application developer's job includes describing a detector geometry, usu-
ally by writing C++ codes. In debugging, the most time-consuming work
is the checking of the detector model. Visualisation is indispensable. It is a
requirement and assumption of the Geant4 tracking that volumes do not
overlap and that daughter volumes are fully contained within the mother.
This means that there should be no intersections of physical volume surfaces.
Correct tracking behaviour is not guaranteed if this happens.

In general, the most powerful intersection detection algorithms are provided
by CAD systems, treating intersections between the solids in their topological
form, and users are encouraged to use such facilities. In principle, the STEP

75

interface enables transfer between Geant4 and CAD systems, but this might
not always be practical.

Geant4 visualisation supports a powerful way of visually debugging intersec-
tions of physical-volume surfaces. Physical volume surfaces are decomposed
into 3D polygons, and intersections of the generated polygons are investigated.
If a polygon intersects with another one, physical volumes to which these poly-
gons belong are drawn with a highlight colour (red by default). Figure 16 is a
sample visualisation of detector geometry with intersecting physical volumes
highlighted. This visual debugging of physical volume surfaces is performed
with the DAWNFILE visualisation driver (see 7.2) in cooperation with the
debugger application DAVID [121].

Geant4 also provides some facilities for helping in detecting geometry errors,
these facilities are also available as run-time commands. A series of linear tra-
jectories are used to calculate the points of intersection with the solids. The
requirement of no overlaps and full containment proscribe the ordering of these
points along the trajectory. This is an approach which is complementary to
that of CAD systems and DAVID. The disadvantage is that small errors may
be missed if the linear trajectories do not happen to pass through the prob-
lematic region of space. On the other hand, it uses the geometry algorithms
built into Geant4 itself and the geometry is sampled where the user is most
interested in its validation.

8 Conclusion

The Geant4 toolkit provides a versatile and comprehensive software pack-
age for modern simulation applications that involve the interaction and pas-
sage of particles through matter. It can handle complex geometries eÆciently
and compactly, and allows visualization of the geometry and particle tracks
through a variety of interfaces. It provides simulation for a wide range of
physics processes based on theory, data or parameterisation. These treat, for
example, hadronic interactions from thermal energies up to 1PeV, electromag-
netic interactions of charged hadrons, ions, leptons and photons from 250 eV
to 1PeV or more, as well as the production and propagation of optical pho-
tons. The implementation of the toolkit in an object-oriented design allows
it to be easily extended, where appropriate, to meet the requirements of the
user, through class inheritance. In addition, there are a growing range of utili-
ties for visualization and analysis of resulting data. The software itself, which
is freely available at source-code level over the Web [1], has been developed
in accordance with software engineering standards in order to attain a high
quality, reliable product.

76

Fig. 16. Highlighting wrong intersections of physical volumes.

77

Geant4 has been, and continues to be developed and maintained through a
Memorandum of Understanding agreed between the many collaborating insti-
tutes. This world-wide international collaboration, and the user community,
is continuing to expand due to the applicability, accessibility and versatil-
ity of this toolkit, with current applications ranging from medical physics to
high-energy astrophysics, as well as of course particle physics and accelerator
design. The reader is referred to user forums and separate papers, many as-
sociated with joint projects and experiments, for more detailed discussions,
development and validation of the Geant4 toolkit.

Acknowledgements

The support for this work has come directly or indirectly from many sources.
Primarily, we acknowledge the member institutes: European Organization
for Nuclear Research (CERN), European Space Agency, Helsinki Institute
of Physics (HIP), Inst. f�ur Theoretische Physik, Johann Wolfgang Goethe
Universit�at, Frankfurt, Je�erson Lab, Karolinska Institutet, KEK (Japan),
Stanford Linear Accelerator Center (SLAC), TERA Foundation, TRIUMF
(Canada) and Universitat de Barcelona and the Collaborating National Or-
ganisations: IN2P3 (France), Istituto Nazionale di Fisica Nucleare (INFN),
Italy, Lebedev Institute and UK Particle Physics and Astronomy Research
Council (PPARC). From those we particularly recognise the contribution of
CERN in terms of manpower (both local and visiting associateships) and
of equipment through its IT Division (Simulation Group), with the support
of the Large Hadron Collider Board during both the R & D phase and the
current production phase, and of SLAC in terms of manpower through Com-
puter Services. Without this direct support, this project would not have come
to fruition.

But perhaps, when all is added up, most of the e�ort has come from the gen-
erous support of experiment collaborations and universities that have allowed
and encouraged their members to contribute to Geant4 in a spirit of world-
wide collaboration to everyone's mutual bene�t. Experiment collaborations
who are formally members of Geant4 are: ATLAS, BaBar, CMS, HARP and
LHCb. There have been signi�cant contributions from non-member experi-
ments too. The universities are too numerous to mention.

Satoshi Tanaka would like to acknowledge the support of Prof. Hiroaki Ya-
mamoto, Department of Information Science, Fukui University.

Marc Verderi would like to acknowledge many useful discussions with Claude
Charlot.

78

References

[1] Geant4 Web page: http://cern.ch/geant4.

[2] K. Amako et al., Proceedings of CHEP94, San Francisco, CA, USA, LBL-35822
CONF-940492.

[3] R. Brun, F. Bruyant, A.C. McPherson, M. Maire, P. Zanarini, CERN Data
Handling Division, DD/EE/84{1, 1987.
Also, GEANT - Detector Description and Simulation Tool, CERN Program
Library Long Write-up W5013, IT Division, API group, CERN.

[4] A. Dellacqua et. al, Geant4 an object-oriented toolkit for simulation in HEP,
CERN/DRDC/94-29 DRDC/P58, 1994.

[5] S. Giani et al., Geant4 An Object-Oriented toolkit for Simulation in HEP,
CERN/LHCC 98-44, 1998.

[6] At URL http://cern.ch/geant4/organisation/MOU.html.

[7] All user documents are found at URL
http://cern.ch/geant4/G4UsersDocuments/Overview/html.

[8] A user forum based on the hypernews system can be found at
http://geant4-hn.slac.stanford.edu:5090/Geant4-HyperNews/index.

[9] RD44, Geant4 User Requirements Document, CERN, 1998.

[10] CLHEP - A Class Library for High Energy Physics,
http://wwwinfo.cern.ch/asd/lhc++/clhep.

[11] P. Truscott, F. Lei and C. Ferguson, The General Particle Source Module,
http://www.space.dera.gov.uk/space_env/gspm.html.

[12] M. Asai, ODBMS for LHC detector simulation,
Comp. Phys. Comm. 110 (1998) 125.

[13] ISO 10303-203. Application protocol: Con�guration Controlled Design,
Industrial automation systems and integration - Product data representation
and exchange, ISO TC 184/SC4, 1994.

[14] J. Sulkimo and J. Vuoskoski, GEREP, a Boundary Representation Modeller
proposal for Geant4 , IT Division Internal Report, CERN.

[15] M. Asai et al., Design of tracking and generic processes in Geant4, Proceedings
of the MC2000 Conference, Lisbon (2000).

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-
Wesley, 1995.

[17] J. P. Wellisch, Hadronic shower models in Geant4 - the frameworks,
Comp. Phys. Comm. 140 (2001) 65-75.

79

[18] A. B. Kaidalov, K. A. Ter-Martirosyan, Phys. Lett. B117 (1982) 247.

[19] Data Formats and Procedures for the Evaluated Nuclear Data File, National
Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, USA.

[20] H. Stocker et al., Nucl. Phys. A538 (1992) 53.

[21] P. V. Degtyarenko, M. V. Kosov and H. P. Wellisch, Chiral invariant phase
space event generator. I: Nucleon anti-nucleon annihilation at rest, Eur. Phys.
J. A 8 (2000) 217.

[22] P. V. Degtyarenko, M. V. Kossov and H. P. Wellisch, Chiral invariant phase
space event generator. II: Nuclear pion capture at rest and photo-nuclear
reactions below the Delta(3,3) resonance, Eur. Phys. J. A 9 (2000) 411.

[23] P. V. Degtyarenko, M. V. Kossov and H. P. Wellisch, Chiral invariant phase
space event generator. III: Modeling of real and virtual photon interactions
with nuclei below pion production threshold, Eur. Phys. J. A 9 (2000) 421.

[24] G. Cosmo, Software Process Improvement in Geant4 , Geant4 Internal
Status Report, January 2001.

[25] D. A. Reo et al., Measuring Software Process Improvement: there's more to it
than just measuring processes, ESI - FESMA 99, September 1999.

[26] G. Booch, Object-Oriented Analysis and Design with Applications, The
Benjamin/Cummings Publishing Co., 1994, ISBN 0-805-35340-2.

[27] At URL
http://cern.ch/geant4/collaboration/coding_guidelines.html.

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lornsen, Object-
Oriented Modeling and Design, Prentice-Hall International Editions, ISBN 0-
13-630054.

[29] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremes
Object-Oriented Development: The Fusion Method, Prentice Hall International
Edition 1994, ISBN 0-13-101040-9.

[30] ESA PSS-05-0 Issue2, ESA Software Engineering Standards, European Space
Agency,

[31] ISO/IEC Joint Technical Committee 1 (JTC1), ISO/IEC DTR 15504 Software
Process Assessment.

[32] ISO/IEC Joint Technical Committee 1 (JTC1), ISO/IEC DTR 15504-5 Part
5: An Assessment Model and Indicator Guidance.

[33] CVS Web page: http://www.cvshome.org.

[34] AFS is an acronym for the Andrew File System, developed at Carnegie-Mellon
University, Pittsburgh, under a sponsorship from IBM. Today AFS is marketed
by IBM Transarc Lab (http://www.transarc.ibm.com/Product/EFS)

80

[35] At URL http://www.gnu.org/software/make/make.html.

[36] At URL
http://cern.ch/geant4/working_groups/testing/testing.html.

[37] At URL
http://cern.ch/geant4/working_groups/testing/

tag_release_policy.html.

[38] At URL http://wwwinfo.cern.ch/asd/cgi-bin/geant4/problemreport.

[39] Bonsai Web page: http://www.mozilla.org/bonsai.html.

[40] Tinderbox Web page: http://www.mozilla.org/tinderbox.html.

[41] LXR Web page: http://lxr.linux.no.

[42] Bugzilla Web page: http://bugzilla.mozilla.org.

[43] P. Kent, Minimising Precision Problems in Geant4 Geometry, Geant4
working note, April 1995.

[44] P. Kent, Pure Tracking and Geometry in Geant4 , Geant4 working note,
April 1995,

[45] V. Bargmann, L. Michel, and V.L. Telegdi, Phys. Rev. Letters 2, 435 (1959)
and J.D. Jackson, Classical Electrodynamics, 2nd Edition, John Wiley & Sons,
New York, p. 559 �.

[46] Review of Particle Physics, The European Physical Journal C, 15 (2000).

[47] A \gallery" of results comparing Geant4 with GEANT3 and experimental
data can be found at URL
http://cern.ch/geant4/reports/gallery/electromagnetic.

[48] E. Daly et al., Space Applications of the Geant4 Simulation Toolkit,
Proceedings of the MC2000 Conference, Lisbon (2000).

[49] S. Chauvie et al., Medical Applications of the Geant4 Simulation Toolkit,
Proceedings of the MC2000 Conference, Lisbon (2000).

[50] J. Apostolakis et al., CERN-OPEN-99-299 (1999)

[51] J. Apostolakis, S. Giani, V. Grichine et al., Nucl. Instr. Meth. A453 (200) 597.

[52] J. Vincour and P. Bem, Nucl. Instr. Meth. 148 (1978) 399.

[53] J. H. Crannel, Phys. Rev. 184 (1969) 2.

[54] Energy loss in thin layers in GEANT, K.M. Lassila-Perini, L. Urba'n,
Nucl. Instr. Meth. A362 (1995) 416.

[55] M.V. Kossov, Approximation of photonuclear interaction cross-sections,
submitted to EPJA, 2002.

81

[56] R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 55 (1998) 69.
R. Engel, A. Schiller, V.G. Serbo, Z. Phys. C 71 (1996) 651.

[57] See Physics Reference Manual at the Geant4 Web page [1] under
Documentation.

[58] D. Liljequist et al., J. Appl. Phys. 68 (1990) 3061.

[59] J. Apostolakis et al., CERN-OPEN-99-034 and INFN/AE-99/18 (1999).

[60] D. Cullen et al., EPDL97: the Evaluated Photon Data Library, 97 version,
UCRL{50400, Vol. 6, Rev. 5 (1997).

[61] S. T. Perkins et al., Tables and Graphs of Electron-Interaction Cross Sections
from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data
Library (EEDL), UCRL{50400 Vol. 31 (1997).

[62] S. T. Perkins et al., Tables and Graphs of Atomic Sub-shell and Relaxation
Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-
100, UCRL{50400 Vol. 30 (1997).

[63] R. Shimizu et al., J. Phys. D9 101 (1976).

[64] S. Giani et al., CERN-OPEN-99-121 and INFN/AE-99/20 (1999).

[65] S. Giani et al., CERN-OPEN-99-300 and INFN/AE-99/21 (1999).

[66] H. H. Andersen and J. F. Ziegler, The Stopping and Ranges of Ions in Matter
Vol.3, Pergamon Press (1977).

[67] A. Allisy et al., ICRU Report 49 (1993).

[68] J.F. Ziegler and J.M. Manoyan: Nucl. Instr. and Meth. B 35 (1988) 215.

[69] H. Paul, at URL
http://www.uni-linz.ac.at/fak/TNF/atomphys/STOPPING/welcome.htm.

[70] J. P. Wellisch, D. Axen, Phys. Rev. C 54 (1996) 1329.

[71] M. Laidlaw, J. P. Wellisch, private communication.

[72] A. Tripathi, et al., NASA technical paper 3621.

[73] ENDF/B-VI, Cross Section Evaluation Working Group, ENDF/B-VI
Summary Document, BNL-NCS-17541 (ENDF-201) (1991), National Nuclear
Data Center, Brookhaven National Laboratory, Upton, NY, USA.

[74] T. Nakagawa, et al., JENDL-3 Japanese Evaluated Nuclear Data Library,
Version 3, Revision 2, J. Nucl. Sci. Technol. 32 (1995) 1259.

[75] FENDL/E2.0, The processed cross-section libraries for neutron-photon
transport calculations, version 1 of February 1998. Summary documentation
H. Wienke and M. Herman, report IAEA-NDS-176 Rev. 0 (International
Atomic Energy Agency, April 1998). Data received on tape (or: retrieved on-
line) from the IAEA Nuclear Data Section.

82

[76] Yu. N. Shubin, V. P. Lunev, A. Yu. Konobeyev, A. I. Ditjuk, Cross section data
library MENDL-2 to study activation as transmutation of materials irradiated
by nucleons of intermediate energies, INDC(CCP)-385 (International Atomic
Energy Agency, May 1995).

[77] M. R. Bhat, Evaluated Nuclear Data File (ENSDF), Nuclear Data for Science
and Technology, page 817, Springer Verlag, Berlin, Germany, 1992.

[78] H. C. Fesefeldt, Simulation of hadronic showers, physics and application,
Technical report PITHA 85{02, 1985.

[79] A. Capella and J. Tran Thanh Van, Z. Phys. C 10 (1981) 249.

[80] B. Andersson, G. Gustafson, G. Ingelman, T. Sj�ostrand, Phys. Rep. 97 (1983)
31, or A. B. Kaidalov Sov. J. Nucl. Phys. 45 (1987) 1452.

[81] M. Hofmann, J. M. Eisenberg, S. Scherer, M. Bleicher, L. Neise, H. Stocker and
W. Greiner, Non-equilibrium dynamics of a hadronising quark-gluon plasma,
nucl-th/9908031.

[82] R. G. Alsmiller, F. S. Alsmiller, and O.W. Hermann, Nucl. Instr.and Meth. A
295 (1990) 337.

[83] Yu. E. Titarenko et al., Experimental and computer simulations study of
radio-nuclide production in heavy materials irradiated by intermediate energy
protons, nucl-ex/9908012.

[84] M. G. Pia, Object-oriented design and implementation of an intra-nuclear
transport model, Proceedings of Computing in high energy and nuclear physics
CHEP 2000 Padova.

[85] S. A. Bass et al., URQMD: A new molecular dynamics model from GANIL to
CERN energies, Wilderness 1996, Structure of vacuum and elementary matter,
399-405.

[86] V. Lara and J. P. Wellisch, Pre-equilibrium and equilibrium decays in
GEANT4, Proceedings of Computing in high energy and nuclear physics
CHEP2000 Padova, page 52.

[87] V. E. Weisskopf, D. H. Ewing, Phys. Rev. 57 (1940) 472.

[88] E. Fermi, Prog. Theor. Phys. 5 (1950) 1570.

[89] J. P. Bondorf, A. S, Botvina, A. S, Iljinov, I. N. Mishustin, K. Sneppen,
Phys. Rep. 257 (1995) 133.

[90] N. Bohr, J. W. Wheeler, Phys. Rev., 56 (1939) 426.

[91] A. I. Blokhin et al., Brond-2.2: Current status of Russian Nuclear Data
Libraries, Nuclear Data for Science and Technology, Vol. 2, page 695, American
Nuclear Society, LaGrange, IL, 1994.

[92] CENDL-2: Chinese Nuclear Data Center, CENDL-2, The Chinese Evaluated
Nuclear Data Library for Neutron Reaction Data, IAEA-NDS-61, Rev. 3
(1996), International Atomic Energy Agency, Vienna, Austria.

83

[93] H. D. Lemmel, EFF-2.4: The European Fusion File 1994, including revisions
up to May 1995, Summary Documentation, IAEA-NDS-170, June 1995

[94] C. Nordborg, M. Salvatores, Jef-2: Status of the JEF Evaluated Data
Library, Nuclear Data for Science and Technology, American Nuclear Society,
LaGrange, IL, 1994.

[95] J. P. Wellisch, Neutron Induced Isotope Production On Selected CMS Elements
Using Geant4 , CMS-Note 1999/07.

[96] A. Levin, and C. Moisan, A More Physical Approach to Model the Surface
Treatment of Scintillation Counters and its Implementation into DETECT,
TRIUMF Preprint TRI-PP-96-64, Oct. 1996.

[97] G. F. Knoll, T. F. Knoll and T. M. Henderson, Light Collection Scintillation
Detector Composites for Neutron Detection, IEEE Trans. Nucl. Sci., 35 (1988)
872.

[98] G. Grindhammer et al., Nucl. Instr.and Meth. A 290 (1990) 469.

[99] J. del Peso, E. Ros, Nucl. Instr.and Meth. A 306 (1991) 485.

[100] BOGUS (BaBar Object-oriented Geant4 -based Uni�ed Simulation) (to be
published).

[101] J. Apostolakis, S. Giani, V. Grichine et al., Comp. Physics Comm., 132 (2000)
241.

[102] L.L. Carter and E.D. Cashwell, Particle transport simulation with the Monte
Carlo method, TID-26607, Published by the US National Technical Information
Center, Energy Research and Development Administration, 1975.

[103] H. Bateman, Cambridge Philosophical Society Proceedings, 15, 423-427, 1910.

[104] P.R. Truscott, Ph.D. Thesis, University of London, 1996.

[105] J. Shiers, Massive-Scale Data Management using Standards-Based Solutions,
16th IEEE Symposium on Mass Storage Systems, San Diego, USA, 1999.

[106] M. Nagamatsu, T. Kodama, H. Uno, H. Yoshida, K. Ohtsubo, S. Tanaka,
M.Asai, Computing in High Energy Physics '98 (Chicago).

[107] At URL http://erpc1.naruto-u.ac.jp/~geant4.

[108] OPACS Web page: http://www.lal.in2p3.fr/OPACS.

[109] JAS (Java Analysis Studio) Web page: http://jas.freehep.org.

[110] H. Yoshida, T. Kodama, S. Sei, H. Kurashige, Computing in High Energy and
Nuclear Physics 2000 (Padova).

[111] Latest information and download can be found at URL
http://geant4.kek.jp/GEANT4/vis.

[112] S. Tanaka, Computing in High Energy Physics '97 (Berlin).

84

[113] HepRep Web page: http://heprep.freehep.org.

[114] WIRED Web page: http://wired.freehep.org.

[115] Information on the OpenGL library and the Geant4 OpenGL driver at URL
http://www.opengl.org.

[116] Information on the HEPVis library and the Geant4 OpenInventor library
at URL http://cactus.phyast.pitt.edu/~joe/hepvis/hepvis.html,
http://www.lal.in2p3.fr/Inventor.

[117] J. Allison and S. Tanaka, Computing in High Energy Physics '97 (Berlin).

[118] AIDA Web page: http://aida.freehep.org.

[119] Lizard Web page: http://cern.ch/anaphe/Lizard.

[120] OpenScientist Web page: http://www.lal.in2p3.fr/OpenScientist.

[121] S. Tanaka and K. Hashimoto, Computing in High Energy Physics '98 (Chicago,
1998).

List of Figures

1 The Top Level Category Diagram of the Geant4 toolkit. The
open circle on the joining lines represents a using relationship;
the category at the circle end uses the adjoined category. 12

2 A class diagram of electromagnetic processes, showing how
alternative processes, obeying the same abstract interface, are
provided. 17

3 Package diagram of implementation frameworks and example
implementations available for the hadronic physics category. 20

4 Smart Voxels. A mother volume with divisions along the
horizontal axis. Each one of these slices has an independent
set of vertical divisions (voxels). Here, the �rst one from the
left is shown. 38

5 Multiple scattering of 6.56MeV protons by 92.6�m of silicon:
comparison of Geant4, GEANT3 and experimental data
from [52] | the angular distribution of exiting protons. 46

6 Shower pro�le of 1GeV electrons in water: Geant4,
GEANT3 and experimental data from [53] 47

85

7 Comparison of the Geant4 low energy photon simulation and
experimental data, showing relevance of shell e�ects: photon
transmission in 1�m Al; data from [63] 51

8 Electronic stopping power of ions in Al; the accuracy of the
data is approximately 5%; experimental data from [69] 52

9 Isotope production cross-sections for neutron induced
production of important isotopes as simulated using the
isotope-production code in Geant4. Large points are
simulation results, small points are evaluated data from the
MENDL2 data library. 59

10 Comparison of production cross-sections of neutral pions in
kaon and pion induced reactions with measurement. 60

11 Comparison of the branchings in two particle �nal states
in proton anti-proton annihilation with the predictions of
CHIPS. 60

12 Illustrating the working of the G4XrayTRmodel::DoIt

function. 66

13 Illustration of Decay Probability Biasing. 67

14 GAG working with JAS. 71

15 Visualisation with the DAWNFILE driver. 74

16 Highlighting wrong intersections of physical volumes. 77

86

