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Abstract

We derive model-independent constraints on four-fermion contact interaction-type dynam-
ics from the published preliminary LEP2 experimental data on e+e− annihilation into
µ+µ− and τ+τ− pairs, measured at different energies between 130 and 207 GeV. The basic
observables are chosen to be the total cross section and the forward-backward asymme-
try, and the analysis realistically takes into account data uncertainties and correlations
among measurements at the various energies. The combination of data from different en-
ergy points plays an important role in the determination of regions allowed for the contact
interaction coupling constants. In contrast to the more common one-parameter analyses,
we only obtain constraints on pairs of parameters rather than limits on individual ones.

1E-mail address: nello.paver@ts.infn.it



1 Introduction

Many Standard Model extensions envisage a dynamics acting at one (or more) large mass
scales Λ � MW , such that the relevant states exchanged among quarks and leptons,
having a mass proportional to Λ, are so heavy that they could not be directly produced at
accelerator energies. The most familiar case is represented by quark and lepton composite
models [1, 2], but there are numerous other examples. However, such new interactions
could manifest themselves by indirect, virtual, effects represented by deviations of the
measured observables from the Standard Model (SM) predictions. If some deviations were
effectively observed experimentally to a given significance level, one could try to derive from
the data numerical information on the parameters (masses and coupling constants) of the
non-standard models and, eventually, to select the viable one. In the case where, instead,
no deviation from the SM predictions were observed within the experimental accuracy, one
can set numerical bounds and/or constraints on the parameters characterizing the new
interactions and, in particular, on the relevant mass scales Λ. This information should also
be of phenomenological interest, in the exploration of non-standard interactions.

In the spirit of “effective” theories, exchanges of very heavy objects in reactions of
quarks and leptons can be parameterized by a contact interaction, representing the “low
energy” expansion of the transition amplitude to leading order in the small ratio

√
s/Λ

(
√

s being the c.m. energy). The explicit form of such contact interaction Lagrangian (CI)
depends on the particles participating in the reaction under consideration. Specifically, we
consider here the electron-positron annihilation:

e+ + e− → f + f̄ , (1)

with f = µ and τ , and the relevant precision data at LEP2 for 130 <
√

s < 207 GeV,
published in Ref. [3], where the results of the four experimental collaborations are combined.
Such high precision data can be regarded as a powerful tool to severely test manifestations
of non-standard interactions through deviations from the SM predictions. In particular,
we are interested in deriving, from those data, constraints on the e e f f contact-interaction
Lagrangian [2]:

L =
∑
αβ

g2
eff εαβ (ēαγµeα)

(
f̄βγ

µfβ
)
, (2)

where α, β = L, R denote left- or right-handed fermion helicities, and the parameters
εαβ specify the chiral structure of individual interactions and determine the size of the
deviations from the SM predictions. One can introduce the previously mentioned large
mass scales by |εαβ | = 1/Λ2

αβ, and coventionally fixing g2
eff/4π = 1 as a reminder that,

as a compositeness remnant force, this interaction would become strong at
√

s ∼ Λαβ .
However, as remarked above, more generally the scales Λαβ define a standard to compare
the sensitivity of measurements to the various kinds of new interactions, see, e.g., [4, 5].

In practice, the situation is complicated by the fact that, for a given fermion flavor
f , Eq. (2) defines four individual and independent models (basically, the combinations of
the four chiralities α, β through the ε’s) and, in principle, the general contact interaction
could be any linear combination of these models. Thus, the aforementioned deviations of
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the cross section from the SM predictions may simultaneously depend on all four-fermion
effective couplings and, if only one value of the c.m. energy were available, the straightfor-
ward comparison of deviations and experimental uncertainty could produce only numerical
correlations among the the different CI couplings, rather than separate, and restricted, al-
lowed regions for these parameters in the parameter space around the SM limit εαβ = 0.
Moreover, negative interference of CI and SM amplitudes in the cross section might con-
siderably weaken the bounds.

The simplest and commonly adopted procedure consists in assuming non-zero values
for just one of the εαβ at a time, and in constraining it to a finite interval by essentially a
χ2 fit analysis of the measured cross sections and forward-backward asymmetries, while all
the other parameters are set equal to zero [4–6]. In this way, only tests of specific models
can be performed.

On the other hand, it would be desirable to perform a more general kind of analysis of
the data, that simultaneously includes all terms of Eq. (2) as free, potentially non-vanishing
independent parameters and, at the same time, allows to disentangle their contributions
to the basic observables in order to derive separate constraints within finite regions around
the SM limit.

In cases where only one value for the c.m. energy is available, such as for the planned
e+e− Linear Collider [7], a solution is represented by the initial electron beam’s longitudinal
polarization, that would enable to experimentally extract the individual helicity amplitudes
of process (1), by definition directly related to the individual e e f f contact couplings εαβ
[8, 9].

Such a procedure cannot be applied to the data from LEP, with unpolarized electron
and positron beams. However, in this case, the cross sections of processes (1) are measured
at LEP2 over a range of

√
s values wide enough that the energy dependence of the devia-

tions, entirely determined by well-known SM parameters, can be exploited to restrict the
bounds to limited regions in the CI parameter space, and in this way to perform an analysis
of the new interaction, model-independent in the sense indicated above. This observation
was used for a global analysis of data at the energies of LEP1, LEP2 and TRISTAN in
Ref. [10]. The analysis presented here uses exclusively the most recent higher statistics
LEP2 data, combines the two channels µ+µ− and τ+τ− and the results of the four exper-
iments, and accounts for, among other things, the correlations among the measurements
at the different energy points. The basic observables will be the “conventional” ones,
namely, the integrated cross section σ(s) and the forward-backward asymmetry AFB(s),
whose experimental values are tabulated in Ref. [3].

Specifically, in Sec. 2 we will give the basic definition of helicity amplitudes and the
formulae relevant to σ and AFB for the processes of interest here, and in Sec. 3 we shall
present the model-independent analysis of LEP2 data and the resulting constraints on CI
couplings. Finally, Sec. 4 will be devoted to some concluding remarks and an application
of the method to a model example.
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2 Cross section and helicity amplitudes

Limiting ourselves to the cases f = µ, τ and neglecting all fermion masses with respect
to
√

s, and taking into account the Born γ and Z exchanges in the s channel plus the
contact-interaction term (2), the differential cross section of process (1) reads [11]:

dσ

d cos θ
=

3

8

[
(1 + cos θ)2σ+ + (1− cos θ)2σ−

]
, (3)

where θ is the angle between the incoming electron and the outgoing fermion in the c.m.
frame. In terms of helicity cross sections, σαβ with α, β = L, R:

σ+ =
1

4
(σLL + σRR) , (4)

σ− =
1

4
(σLR + σRL) . (5)

In Eqs. (4) and (5):

σαβ = σpt|Mαβ|2, (6)

where σpt ≡ σ(e+e− → γ∗ → l+l−) = 4πα2
e.m./3s (for quark-antiquark production a color

factor NC ' 3(1 + αs/π) would be needed). The helicity amplitudes Mαβ can be written
as

Mαβ = QeQf + geα gfβ χZ +
s

αe.m.
εαβ , (7)

where: χZ = s/(s −M2
Z + iMZΓZ) is the Z propagator; gfL = (If3L − Qfs

2
W )/sW cW and

gfR = −Qfs
2
W/sW cW are the SM left- and right-handed fermion couplings of the Z with

s2
W = 1− c2

W ≡ sin2 θW ; Qe = Qf = −1 are the fermion electric charges.
The measured observables σ and AFB are given by the relations:

σ =

∫ 1

−1

dσ

d cos θ
d cos θ =

1

4
[(σLL + σRR) + (σLR + σRL)] ; (8)

and

σFB ≡ σ AFB =

(∫ 1

0

−
∫ 0

−1

)
dσ

d cos θ
d cos θ =

3

16
[(σLL + σRR)− (σLR + σRL)] . (9)

Finally, their relation to σ± is given by

σ± =
σ

2

(
1± 4

3
AFB

)
. (10)

Taking Eq. (7) into account, Eqs. (8) and (9) show that σ and σFB (or AFB) simultane-
ously depend on all four contact interaction couplings, and therefore by themselves do not
allow a model-independent analysis, but only the simplified one-parameter fit of individual
models. However, σ and σFB depend on the two combinations of helicity cross sections,
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(σLL + σRR) and (σLR + σRL). Accordingly, a combined analysis of σ and σFB enables to
separately constrain the pairs of parameters (εLL, εRR) and (εLR, εRL). Moreover, the com-
bination of experimental data on σ and σFB at different values of the c.m. energy allows
to further restrict such separate bounds in a model-independent way.

To clarify this statement and intuitively show by a simplified example the role of the
different energy points in improving the constraints, assuming that no deviation from the
SM is observed within the experimental accuracies, constraints on the contact interaction
couplings εαβ can be derived from the system of two inequalities:

|σSM+CI − σSM| < δσ, (11)

|ASM+CI
FB −ASM

FB | < δAFB, (12)

where δσ and δAFB represent the experimental uncertainties on these observables. Taking
Eqs. (4) and (5) into account, the deviations from the SM predictions in the left-hand sides
of Eqs. (11) and (12) can be written as:

σSM+CI − σSM =
1

4
[(∆σLL + ∆σRR) + (∆σLR + ∆σRL)] , (13)

ASM+CI
FB −ASM

FB =
3

16 σSM

[(
1− 4

3
ASM

FB

)
(∆σLL + ∆σRR)−

(
1 +

4

3
ASM

FB

)
(∆σLR + ∆σRL)

]
,

(14)

where ∆σαβ = σSM+CI
αβ − σSM

αβ .
From Eqs. (11)–(14) one can obtain constraints on the εαβ . Specifically, the areas

allowed to the values of the parameters are enclosed by concentric circles in the planes
(εLL, εRR) and (εLR, εRL). For example, the domain allowed to the pair (εLL, εRR) is delim-
ited by the circular contours:(

εLL +
αe.m.

s
MSM

LL

)2

+
(
εRR +

αe.m.

s
MSM

RR

)2

= R2
±, (15)

where

R2
± =

(αe.m.

s
MSM

LL

)2

+
(αe.m.

s
MSM

RR

)2

± κ2, (16)

and

κ2 =
(αe.m.

s

)2 4

σpt

δσ+. (17)

In the right-hand side of Eq. (17), δσ+ must be expressed in terms of the experimental un-
certainties δσ and δAFB,1 and a color factor 1/NC is needed in the case of quark-antiquark
production. These relations show that both the centre and the radii of the circles R± are

1While σ+ and σ−, as shown in Eqs. (4) and (5), are the most natural observables, we use instead σ
and AFB for our analysis, since the data are tabulated (with errors) for these observables.
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determined by the values of the SM helicity amplitudes and depend on energy, while the
width of the allowed area is determined by the experimental uncertainty of the observables.
Therefore, in principle, the combination of two (or more) such allowed regions correspond-
ing to different energies can lead to a reduction of the allowed region and, ultimately, to
model-independent bounds on the contact interaction coupling constants.

It should be stressed that, while the observables are given by two sums of helicity cross
sections, σLL + σRR and σLR + σRL, it does not follow that one can only obtain constraints
on the corresponding sums of parameters, εLL + εRR and εLR + εRL. There is indeed a small,
but finite, sensitivity to the individual parameters. This is due to effects proportional to
squares of the ε parameters, together with the small difference between left- and right-
handed couplings of the Standard Model, |g`L| 6= |g`R|.

3 Data fitting and derivation of constraints

Recently, the f f̄ Subgroup of LEPEWWG presented preliminary combined results of mea-
surements of the four LEP collaborations using experimental data from the full LEP2
available data set at energies from 130 GeV up to 207 GeV for the annihilation processes
e+e− → f f̄ [3]. In particular, for lepton final states f = µ and τ , the set of the average
cross sections σµµ, σττ and forward-backward asymmetries Aµµ

FB, Aττ
FB and their experimen-

tal errors have been given for the 12 energy points listed in Table 1.

Table 1: Approximate average integrated luminosity per experiment and nominal centre-of
mass energies collected during LEP2 operations [3].

ECM (GeV) 130 136 161 172 183 189 192 196 200 202 205 207
Lint [pb−1] 3 3 10 10 50 170 30 80 80 40 80 140

The data fitting procedure used is based on the method of least squares. We introduce
a χ2 function, which may be written in the following matrix form

χ2(ε) = (OLEP2 −OTH(ε))TV −1(OLEP2 −OTH(ε)), (18)

where ε = (εRR, εLL, εRL, εLR) is the vector of C.I. parameters; OLEP2 is the vector of values
of observables measured at LEP2 and OTH is the vector of their theoretical predictions;
finally, V is the covariance matrix of the experimental uncertainties.

The chosen set of observables, represented by the vector OLEP2, contains 48 elements
(two kinds of observable for two flavour channels and twelve energy points). The cor-
responding theoretical predictions, OTH, which depend on the CI parameters ε and on
radiative corrections via improved Born SM amplitudes [12, 13], have been evaluated with
mtop = 175 GeV and mH = 150 GeV. Initial- and final-state radiation are taken into ac-
count by the program ZFITTER [14] adapted to the present case of contact interactions.
The radiative corrections were applied using definition “2” in Ref. [3]: namely, for dilepton
events

√
s′ is taken to be the bare invariant mass of the outgoing dilepton pair (as opposed

to that of the s-channel propagator), the ISR-FSR photon interference is included and the
signal is defined by the kinematical cut

√
s′ > 0.85

√
s. We note that the improved Born
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amplitudes leave the form of the previous equations for the cross sections, Eqs. (3) and
(10) unaltered.

As regards the 48 × 48 symmetric covariance matrix V , the diagonal entries are the
experimental uncertainties on the observables, while the off-diagonal entries define the
correlations between the observables as well as among the different energy points [3].

The least-square confidence region is determined by the condition

χ2(ε) ≤ χ2
min + χ2

CL, (19)

where χ2
min is the minimum value of the function χ2(ε) and χ2

CL = 9.49 for 95 % CL and four
degrees of freedom. The procedure of minimization χ2(ε) is performed using the program
package MINUIT [15].

Table 2: Central value ε0, global limits (allowed intervals) obtained as projections of the
95% CL four-dimensional region on the axes and 95% CL one-dimensional model-dependent
constraints on the CI parameters.

Parameter Model independent Model dependent

[TeV−2] central value global limits

εLL 0.0085 (−0.175, 0.095) −0.0047+0.0071
−0.0071

εRR −0.0195 (−0.187, 0.111) −0.0052+0.0078
−0.0078

εLR 0.0120 (−0.225, 0.060) −0.0012+0.0111
−0.0116

εRL −0.0160 (−0.225, 0.060) −0.0012+0.0111
−0.0116

Combining the µ and τ data, we show in Table 2 the components of the central value
ε0 (over-all minimum of χ2) and the global limits (intervals (εmin, εmax)) obtained as pro-
jections of the confidence region on the corresponding axes. These intervals should be
considered as global, model-independent, constraints on the CI parameters εαβ . The χ2 in
the model-independent fits amounted to 41.3, for nd = 48 − 4 = 44 degrees of freedom:
the probability of this result is p = 0.411[16]. For comparison, we give the 95% CL one-
parameter constraints on εαβ parameters for the LL, RR, LR and RL contact-interaction
models.

In Figs. 1–2 we show the contours which bound the regions found as “projections”
of the four-dimensional confidence hypervolume determined by (19) on four of the two-
dimensional planes (LL–RR), (LR–RL), (LL–LR), (LL–RL). The contours have been pro-
duced as the line connecting all points of the plane where χ2 takes the value χ2

min + χ2
CL

after minimization on the two remaining free parameters.
These figures show obvious symmetries. First of all, in Fig. 1, where we display the

allowed regions in the (εLL, εRR) and (εLR, εRL) planes, there is an approximate “reflection
symmetry” between εLL ↔ εRR as well as between εLR ↔ εRL. As discussed in Sec. 2,
the observables depend on σLL + σRR and σLR + σRL, and to lowest order in the ε’s, this
translates into a dependence on εLL + εRR and εLR + εRL. Thus, in this approximation,
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Figure 1: Allowed areas at 95% C.L. on leptonic contact interaction parameters in the
planes (εLL, εRR) and (εLR, εRL), obtained as projections of the four-dimensional confidence
hypervolume on the relevant plane after minimization in the two remaining parameters.
The bars correspond to one-dimensional model-dependent constraints as discussed in the
text. The circles correspond to the central values (see Table 2).

the allowed regions would be bands at fixed εLL + εRR and εLR + εRL, representing strong
correlations between pairs of parameters. The contributions of the second-order effects (in
the εαβ) delimit and curve these bands. In the case of the εLR–εRL exclusion region, the
radius of curvature, given by an expression analogous to Eq. (16), is smaller than that
of the εLL–εRR exclusion region. This stronger bending originates from the destructive
vs. constructive interference between photon- and Z-exchange: above the Z resonance,
g`Lg`RχZ < 0, whereas (g`L)2χZ ≈ (g`R)2χZ > 0, so |MSM

LR | = |MSM
RL | < |MSM

LL | ≈ |MSM
RR|.

In Fig. 2, we show the analogous allowed regions in the (εLL, εLR) and (εLL, εRL) planes.
The allowed regions in the (εRR, εLR) and (εRR, εRL) planes are very similar to those of this
Fig. 2, and hence not shown.

In the figures, the constraints on the one-parameter models LL, RR LR and RL (see
Table 2) are represented by bars. These correspond to one-dimensional model-dependent
constraints at 95 % C.L. with χ2

CL = 3.84, obtained by varying only one parameter at a
time with the remaining three set equal zero. The results in this case are in full agreement
with those obtained in Ref. [3].

Figure 2 is rather different from Fig. 1, but the two panels are very similar among
themselves. This is due to the symmetric inputs, σLL + σRR and σLR + σRL, together with
the fact that the linear approximation, determined by the interference between SM and
CI couplings, provides a first, rough description of the bounds. Also, we note that there is
little correlation between these pairs of parameters, and the allowed regions are simply

[εαβ < δ′] ∩ [εα′β′ < δ′] ∩ [ε2
αβ + ε2

α′β′ < δ2], (20)
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Figure 2: The same as Fig. 1 for the (εLL, εLR) and (εLL, εRL) planes.

where

δ′ ' max(εLL) or max(εLR) or max(εRL), (21)

as determined from Fig. 1. Similarly,

δ2 = [max(εLL)]2 + {[max(εLR)]2 or [max(εRL)]2}, (22)

respectively, for the two panels. This simple shape is thus due to the lack of correlations
among the parameters shown in Fig. 2.

4 Discussion

Our most important result is that if one does not restrict the analysis to individual models,
the bounds on the ε’s are rather loose. In fact, any set of three of them (but not all four, as
is seen from the correlations in Fig. 1) can be of the order of 0.2 TeV−2. This corresponds
to a scale Λ ∼ 2.2 TeV.

In the case of εLL and εRR, as discussed above, the orientation of the “banana” in Fig. 1
implies that εLL and εRR should roughly add to zero. Rather large deviations from the
SM are allowed, provided these parameters have opposite signs. It should be noted that,
if one assumes universality, such opposite signs can never arise from the low-energy limit
of a vector-particle exchange, irrespective of the chiralities of the couplings. This may in
part explain why the present bounds are much looser than those of the model-dependent
analyses.

Also, it should be stressed that we do not assume full lepton universality in this analysis.
The muon and tau data are combined, but the couplings to those currents are not taken to
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be the same as the couplings to the electron of the initial state. If lepton universality were
imposed, one would have the additional constraint εLR = εRL. Also, full lepton universality
would imply the product εLL εRR > 0, and much of the allowed part of Fig. 1 would be
excluded. We note that there are models without flavour universality, where εLL and εRR

can have opposite signs (see, e.g. [17, 18]).

Figure 3: Similar to Fig. 1, for tau data only.

Up to this point, we have combined the muon and tau data. It is also interesting to
study these two data sets separately. In Fig. 3 we show the contours which bound the
allowed regions in the (εLL, εRR) and (εLR, εRL) planes for e+e− → τ+τ− (i.e., without using
the muon data). The general shapes of these allowed regions are rather similar to those
obtained from the combined data, but they are significantly larger. The corresponding
allowed intervals of the ε parameters are given in Table 3, the analogue of Table 2. The
model-independent global limits, for example, are looser than the combined muon and tau
analysis by up to 40%. The muon data alone give shapes and allowed intervals quite similar
to those in Fig. 3 and Table 3, respectively, but narrower, essentially reflecting the larger
total error in the τ case.

In specific models, there are often constraints on these deviations εαβ . For example,
the Z ′ couplings of E6 models lead to the constraints [19]:

Z ′
χ : εLR = εRL < 0, εLL = 9 εRR < 0, (23)

Z ′
ψ : εLR = εRL > 0, εLL = εRR < 0, (24)

Z ′
η : εLR = εRL < 0, εLL =

1

4
εRR < 0. (25)

These signs are given by the signs of the couplings, together with the low-energy limit of
the propagator. The leptonic data studied here, lead to the MZ′ bounds: Z ′

χ: 600 GeV;
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Table 3: Similar to Table 2, for final-state τ pairs only.

Parameter Model independent Model dependent

[TeV−2] central value global limits

εLL 0.0005 (−0.249, 0.113) −0.0032+0.0118
−0.0120

εRR −0.0125 (−0.258, 0.136) −0.0035+0.0129
−0.0131

εLR −0.016 (−0.273, 0.066) −0.0036+0.0188
−0.0202

εRL 0.0085 (−0.273, 0.066) −0.0036+0.0188
−0.0202

Z ′
ψ: 330 GeV; Z ′

η: 340 GeV. The corresponding bounds from all data [3] are 670 GeV,
480 GeV and 430 GeV, respectively.

Also, in the case of models with TeV-scale extra dimensions (with Kaluza–Klein excita-
tions of the photon and the Z), there are relations among the couplings [20]: εLR = εRL < 0,
and εLL = εRR/4s2

W ' εRR < 0. For one extra dimension, the bound on the compactifica-
tion scale [21] is Mc > 2.2 TeV.

Figure 4: Similar to Fig. 1 (right panel), but magnification of the region of small εLR and
εRL, for χ2

CL = 5.99. The diagonal line corresponds to the constraint of the anomalous
gauge coupling model.

As anticipated in the Introduction, we shall here consider an example application,
namely the effects of anomalous gauge couplings [17] in the process (1). We note that this
model, which assumes universality, is characterized by two parameters, fDB and fDW . The
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deviations (7) will take the form

εLL = αe.m.

(
f̃DW
2s2

W

+
2f̃DB
c2
W

)
, εRR = αe.m.

8f̃DB
c2
W

, εLR = εRL = αe.m.
4f̃DB
c2
W

, (26)

where f̃DB and f̃DW are related to fDB and fDW of ref. [17] by f̃ = f/m2
t . In this model, one

has εLR = εRL, so any deviation would be restricted to lie along the dashed line in Fig. 4,
which shows a magnification of the allowed band in Fig. 1 (right panel) for χ2

CL = 5.99,
corresponding to two parameters. The intersections with the allowed bounds allow us to set
a limit on |f̃DB| < 0.21 TeV−2. This also amounts to a bound on εRR. From the analogue of
Fig. 1 (left panel), corresponding to two parameters, one can extract bounds on εLL. Using
Eq. (26), these can then be converted to the bounds: −1.7 TeV−2 < f̃DW < 1.1 TeV−2.

We have not analyzed the quark data, which is of poorer quality, due to the limited
efficiency of b-tagging, together with the problem of distinguishing b from b̄ jets (see,
however, Ref. [22]).

At the Linear Collider, where polarization would be available, more observables can be
studied, such as ALR and ALR,FB. Thus, and because of the higher energy, dramatically
tighter constraints are foreseen [9].
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