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We derive a closed, model space independent, expression for the electromagnetic cor-
rection factor δ to the scattering length a extracted from a hydrogenic atom with an
extended charge to order α2 and a3 in the limit of a short ranged hadronic interaction.

The strong interaction energy shifts ǫ1s in pionic hydrogen and deuterium have recently
been measured to a remarkable precision [1,2].

ǫ1s(π
−p) = [−7.108 ± 0.013(stat) ± 0.034(syst)] eV; ǫ1s(π

−d) = [2.460 ± 0.048] eV.

It is well known[3,4] that the strong interaction shift is intimately linked to the (com-
plex) scattering length a in the absence of the Coulomb field:

ǫ1s = 4π/2m φ2

B(0) a (1 + δ). (1)

Here φB(r) is the Bohr wave function and m the π−p reduced mass. It is important to
understand the small correction δ transparently and reliably to an accuracy matching
the high experimental precision. This is desirable not only because the hadronic πN
scattering lengths are key testing quantities for chiral physics, but also because they are
needed phenomenologically to a precision of about 1 % [5].

The present standard conversion of experimental data to a scattering length uses the
potential approach of Sigg et al. [6], which describes the πN interaction in terms of coupled
equations using physical pion masses and an isospin invariant non-diagonal potential
matched to scattering lengths. This gives δ(Sigg) = −2.1 ± 0.5%. This scattering length
refers to a calculated ’isospin invariant’ amplitude obtained by setting the neutral pion
mass equal to the charged one in the model.

The approach has some weaknesses. First, the corresponding hadronic scattering am-
plitude does not reproduce properly the low energy s-wave scattering expansion as we
have pointed out [5] and it is then not consistent with gauge invariance. Further, in the
absence of a description for the dispersive correction from the radiative channel π−p→ nγ
they simulate it in an analogous way to that produced by charge exchange. The correction
to isospin invariance is model dependent.
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Recently two calculations of the corrections inside Chiral Perturbation Theory (ChPT)
have appeared with shockingly larger uncertainties. The next to leading order [7] gives
δ(chiral) = −4.3 ± 2.8 % while the next higher order [8] give δ(chiral) = −7.2 ± 2.9 %.
The main origin of the uncertainty is an anomalous photon-quark coupling. This large
difference with Ref.[6] is mainly due to the definition of the scattering length in the chiral
limit with the charged pion mass equal to the neutral one. While this also gives an isospin
invariant amplitude, it is now defined quite differently.

In view of this situation we have carefully examined the extraction of the scattering
length from the energy shift, its definition and corrections. The physics is largely governed
by the low energy expansion of the πN amplitudes in the limit of isospin symmetry. In
units of the charged pion mass mc [9]

[tan (δ0+)/q]π−p→π−p = (a+

0+ + a−0+) + (b+0+ + b−0+)q2 + ... (2)

a−0+ ≃ 0.09m−1

c ; |a+

0+| ≃ (few %)×a−0+; b−0+ = 0.013(6)m−3

c ; b+0+ = −0.044(7)m−3

c .(3)

To elucidate the physics we use both potential approaches and multiple scattering ap-
proaches together with analytical methods provided these reproduce the low energy ex-

pansion consistently. Here our philosophy is close to that of Ref. [10], which takes the
same attitude with respect to the ChPT expansion, but we consider the phenomenologi-
cal consistency with data to be more important. One notes that a) none of the previous
approaches appears to be fully consistent in this perspective; furthermore none of them
converts the energy shift ǫ1s into a physical π−p scattering length without the exter-
nal Coulomb field; b) the finite size shift is very small compared to the hadronic shift:
ǫfs ∼ −1.5% of ǫstrong; c) this atomic problem in most aspects is highly non-relativistic
and close to a long wave-length limit for the interaction.
Corrections. A number of the corrections are associated with the behavior of the un-
perturbed Bohr wave function at the origin: φB(~r) = φB(0)[1 − αmr + ..] where the
r-dependent term is of the order of 10−2 at distances of the size of a hadron.
Vacuum polarisation correction. The Uehling potential is of order α2 but it gives
a rather large contribution independent of the hadronic interaction such that ǫvac ∼
50% of − ǫ1s. It has a long range and can be seen as a modification of the Coulomb field
with a slight change of the wave function δφvac(0):

δvac = 2δφvac(0)/φB(0) = +0.48%. (4)

This correction is very accurate. It has been given explicitly by Eiras and Soto [11], but
is implicitly included previously [6]. It is included in the most recent ChPT effective field
theory (EFT) approach [8], but not in earlier approaches.
Leading corrections from the extended charge. Previously Sigg et al.[6] numerically
investigated the shift in the presence of the combined charge distribution of the π− and
the proton with a charge radius (〈r2

π〉+〈r2
p〉)

1/2 ≃ 1.07 fm. The poorly known range of the
hadron interaction was varied. The EFT approaches do not clearly include the accurately
known electromagnetic form factors and appear to replace its effects by a dimensional
regularisation procedure and effective constants.

Since the combined charge radius is larger than a typical hadronic interaction range it
is natural to approach the problem from the limit of a zero range hadron interaction of
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scattering length a as a leading approximation. The relation between scattering length
and energy shift can then be obtained by matching the wave function to the scattering
length condition at the origin. We first observe that this problem has an exact solution
for a charge placed on a sphere of radius R. The Coulomb potential inside this radius is
constant, i.e., a square well, and consequently the wave function is explicitly known. By
matching to the outside Coulomb wave function, the well known Whittaker function, the
exact condition for the binding is obtained and we retain the solution to order α2.

We then consider the effect of the difference in the Coulomb potential between the
soluble case and an actual charge distribution. This interaction potential is perfectly
regular and can be treated perturbatively. The result is the following closed expression
for the scattering length correction, where C is the Euler constant:

δ = −2mα 〈r〉em + 2mα a [2 − C − ln (2α) − 〈ln (mr)〉em] . (5)

This relation ressembles superficially the Trueman formula, but the physics is quite
different. The Trueman relation is expressed in terms of hadronic effective range and
does not describe the finite size charge distribution which is the essential point here. There
is no immediate relation between Trueman’s effective range parameter and the accurately
known electromagnetic expectation values 〈r〉em and 〈ln r〉em above. The chiral approach
is also different at this point since it does not include the effect of the extended charge.

The terms in eq. (5) have a clear physical interpretation and are generated by the
renormalization of the wave function at the origin. The first term appears since the wave
function of the extended charge at the origin is

φfs(0)/φB(0) = 1 −mα〈r〉em + ... (6)

This value for the wave function could have been used directly in the leading expression
for the energy shift as a better first approximation than the wave function in the point
Coulomb field. The second term proportional to the hadronic scattering length is due to
the effective incident field producing the hadron scattering and may be viewed as a cusp
effect by the Coulomb field. We can show that the hadronic modification of the regular
wave function at the origin is exactly the one in the expression (5) above:

ψreg(0)/φfs(0) = 1 + 2mα a [2 − C − ln (2α) − 〈ln (mr)〉em] + ..... (7)

Consequently to the order stated above the relation between the energy shift and the
hadronic scattering length is fully understood in the limit of a zero range interaction.
Correction for the q2 dependence of the πN amplitude. In the zero range limit the
scattering amplitude depends but trivially on the energy. The actual scattering occurs
in an attractive (Coulomb) potential of -2.5 MeV at the origin. The amplitude (2) has
a momentum (energy) dependence which must included consistently respecting gauge
invariance. The corresponding expansion term b is closely linked to the σ-term [12]. This
term can be included [13] in an energy representation using gauge invariance or as a
momentum dependent interaction to leading order. Substituting ω → ω − eVC(0) in the
hadronic amplitude (2) gives an additional term

a δq2 = b 2mα 〈1/r〉em. (8)
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This term expresses that the hadronic amplitude is evaluated at the local energy in the
Coulomb field (but with the correct, nearly vanishing, physical phase space for scattering).
With the parameters (3) for the π−p→ π−p scattering the correction is −1.2±0.4%, where
the uncertainty is due to the experimental uncertainty of the phenomenological constants
of Eq. (2). The extended charge is essential here, since this contribution otherwise will be
divergent. This correction appears to correspond to the anomalous photon-quark coupling
in the chiral EFT description, which represents a large source of uncertainty there.

The total correction in the determination of the scattering length with the external
Coulomb field switched off, is therefore δtotal = −1.1± 0.4%. This is a small, well defined
correction. The scattering length contains isospin violating terms and is complex since
both the physical π0n and the γn channels are open.

We can thus unambiguously convert the strong interaction energy shift into a corre-
sponding scattering length. In the limit we consider, no model assumptions are needed
and the resulting scattering length preserves the initial precision of the experiment. It
is a separate problem to convert this physical quantity into into an isospin symmetric or
chiral scattering length.

The π−p scattering length deduced here refers to scattering from a neutral system. It
definition is closely analogous to the one in the charge symmetric π+n channel, which is in
principle directly measurable. The open decay channel and mass differences correspond
exactly in the charge symmetry limit. This defines a natural starting point for the further
discussion of its relation to isospin breaking and the chiral limit.

We are presently [14] investigating the sensitivity of our procedure to plausible as-
sumptions of the dependence of the physical hadronic amplitude on range etc. as well
as the dispersive effects produced by the open decay channels. We recall that the scat-
tering length a with the external Coulomb field removed still contains internal Coulomb
corrections such as mass differences and polarizability effects.

The present method applies with minor modifications to other pionic atoms, such as
the π+π−, the π−K+ and π−d systems.
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