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Abstract

We consider the Two-Higgs-Doublet Model and determine the range of parameters for
which CP violation and Flavor Changing Neutral Current effects are naturally small. It
corresponds to small values of the mass parameter m2

12, describing soft (φ1, φ2) mixing in
the potential. We discuss how, in this approach, some Higgs bosons can be heavy, with
mass of the order of 1 TeV.

The possibility that at the Tevatron, LHC and an e+e− Linear Collider, only one Higgs
boson will be found, with properties indistinguishable from those in the Standard Model
(SM), we define as the SM-like scenario. While this scenario can be obtained with large
µ2 ∼ Rem2

12 parameter, in which case there is decoupling, we here discuss the opposite
case of small µ2, without decoupling.
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1 Introduction

We consider the following Two-Higgs-Doublet Model (2HDM) potential, with quartic and quad-
ratic terms separated [1, 2, 3, 4, 5]:
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As is well known, both CP violation in the Higgs sector and flavor-changing neutral currents
(FCNC) can be suppressed by imposing a Z2 symmetry [6]. This requires symmetry of the
potential under (φ1 → −φ1, φ2 → φ2) (or vice versa), which implies λ6 = λ7 = m2

12 = 0. We
shall allow soft violation of this symmetry, i.e., we take λ6 = λ7 = 0, but allow m2

12 6= 0 [3, 5, 7].
A simple discussion can be given for this case, in which Im m2

12 6= 0 signals CP violation.

2 CP violation

We shall now consider the simpler case of λ6 = λ7 = 0, and parametrize the minimum of the
potential (or vacuum) as

φ1 =

[

0
1√
2
v1

]

, φ2 =

[

0
1√
2
v2 eiξ

]

. (2)

Naively, the phase ξ violates CP , but it can be removed by a global phase transformation on
the field φ2, together with the phases of λ5, m2

12 and the fermion fields [3, 8]. It is convenient
to define

µ2 = Re(m2
12e

iξ)
v2

v1v2

. (3)

The phase ξ can be found from the equation

Im(m2
12 eiξ) = Im(λ5 e2iξ)v1v2. (4)

Making use of the rephasing invariance [3, 8], we put ξ = 0. With this choice, eq. (4) becomes
a constraint for the relation of Im(m2

12) to Im λ5.

The neutral sector has a mass squared matrix of the form

M2 =







M2
11 M2

12 −1

2
Im λ5v

2 sin β

M2
12 M2

22 −1

2
Im λ5v

2 cos β

−1

2
Im λ5v

2 sin β −1

2
Im λ5v

2 cos β M2
33






(5)

where M2
11, M2

12, M2
22 and M2

33 are the same as in the CP-conserving case. When Im λ5 = 0,
there is no CP violation, the matrix (5) is block diagonal, and the physical states are h, H and
A. When Im λ5 6= 0, all three neutral Higgs states mix; we denote them by h1, h2 and h3.
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The mass-squared matrix may be diagonalized via a rotation matrix, defined by

RM2 RT = diag(M2
1 , M2

2 , M2
3 ). (6)

In the limit of weak CP violation, the masses for h1, h2 and h3 will deviate from those of h, H
and A by terms quadratic in Im λ5.

3 Decoupling or no decoupling?

We shall here consider the scenario of weak (or no) CP violation and large masses of Higgs
particles except one, namely Mh1

∼ Mh. Let us discuss how large masses MA (close to Mh3
)

and MH± arise in such a case. The potential (1) (but with λ6 = λ7 = 0) gives

M2
A = 1

2
µ2 − Reλ5v

2 and M2
H± = 1

2
[µ2 − (λ4 + Reλ5)v

2]. (7)

There are two rather distinct mechanisms for obtaining large mass M2
A and M2

H± : either (i)
µ2 is large (this is extensively discussed by Haber as the decoupling scenario) [2, 5], or (ii) µ2

is small, whereas |Reλ5| is “large” [4, 5]. In the latter case, there are obvious upper bounds
(from perturbativity and positivity) on how large |Reλ5| can be. Decoupling properties of the
Two-Higgs-Doublet Model were studied in [9].

In this model, with weak (or no) CP violation, one can realize a Standard-Model-Like
Scenario:

• There is a light Higgs boson with couplings to the up (e.g. t) and down (e.g. b) type quarks,
and to W and Z, like in the Standard Model,

|gi| ≈ |gSM
i | (i = W, Z, down, up). (8)

• The other Higgs bosons are heavy, O(1 TeV).

Within the Two-Higgs-Doublet Model, this scenario can be realized in two distinct ways.
They are [4]:

− Solutions A. All basic couplings are approximately the same as in the SM, up to an overall
sign.

− Solutions B. Like Solutions A, except that the couplings to either up- or down-type quarks
have opposite signs of those in the SM. This case cannot be realized in the decoupling
scenario.
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4 Model II. Observables

Let us now be more specific, and consider the so-called Model II for Yukawa couplings, where
masses of down- and up-type quarks originate from couplings to φ1 and φ2, respectively. We
denote by χhi

V , χhi

u and χhi

d the ratios of the Higgs couplings to W and Z (V ) and to up and
down-type quarks, with respect to those of the Standard Model. In particular, for the Yukawa
couplings these ratios can be expressed via elements of the rotational matrix R of eq. (6) as

χhi

u =
1

sin β
[Ri2 − iγ5 cos βRi3], χhi

d =
1

cos β
[Ri1 − iγ5 sin βRi3], (9)

where Ri3 is proportional to Im λ5. Note that in accordance with eq. (9), the CP violation
induced by Higgs exchange in tt̄ production [10] provides information on Imλ5.

Furthermore, these relative couplings satisfy a pattern relation [4, 8]:

(χhi

u + χhi

d )χhi

V = 1 + χhi

u χhi

d . (10)

In the CP-conserving case, even with all basic couplings being the same (up to a sign) as
in the SM (8), loop-induced transition rates, like h → γγ, may differ from the SM prediction.
This is due to the different behaviors of the trilinear Higgs coupling hH+H− for small and large
µ. In fact, the ratio of this coupling to its SM value can be written as

χh
H± ≡ −vghH+H−

2M2
H±

=

(

1 − M2
h

2M2
H±

)

χh
V +

M2
h − 1

2
µ2

2M2
H±

(χh
u + χh

d). (11)

Thus, if µ2 ∼ M2
H±

, there is no effect in Γγγ , whereas if µ2 < M2
H±

there is a difference of several
per cent, as illustrated in Fig. 1 (left panel) for the case of Solutions A [4]. Non-decoupling
effects in the 2HDM were studied for other processes in [11, 12].

These deviations from unity are large enough that the form of the 2HDM potential (large
or small µ) can be tested at a γγ Collider [13].

Also, the loop-induced couplings to two gluons may differ from those of the SM-value, but
this occurs only for Solutions B. This effect is also illustrated in Fig. 1 (right panel).
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Figure 1: Ratios of the Higgs boson decay widths in the SM-like 2HDM (II) and the SM as
functions of Mh. Left panel: h → γγ decay widths, solutions A, for MH± = 800 GeV and
µ/

√
2 = xMH± . Right panel: h → gg, solutions B.
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