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1. Introduction

Quantum field theory on noncommutative spaces has been a subject of much activity in

recent years (see [1, 2] for comprehensive reviews). This attention was originally triggered

by its intimate relationship with string theory, but the study of noncommutative field

theories has interest in its own. From a mathematical physics point of view they provide

us with a class of nonlocal quantum field theories which nonetheless seem to be well defined.

Also, since noncommutative field theories are essentially theories of dipoles [3] they can be

also useful in the analysis of systems with dipolar excitations in condensed matter physics.

In this context, noncommutative Chern-Simons (NCCS) theory in (2 + 1)-dimensions

is specially appealing because of its applications to quantum Hall systems [4, 5]. Here the

noncommutativity is introduced only in the spatial direction and the resulting deformation

of the ordinary gauge invariance into “star-gauge invariance” is essential for the description

of the system which has the area preserving diffeomorphism invariance [4]. Remarkably, a
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finite-N matrix model of NCCS theory is found to have physical states which have one-to-

one correspondence with Laughlin-type wave functions [6]. It has also been pointed out that

instabilities of the NCCS theory can describe the transition to the Wigner crystal, where

spontaneous breakdown of translational invariance is caused by the noncommutativity [7].

In studying noncommutative field theories it is often useful to consider its matrix-

model description. This is reminiscent of its string/M-theoretic connections [8, 9]. Here

the space-time degrees of freedom and the internal (“color”) degrees of freedom are treated

on equal footing, and “star-gauge invariance” is simply described by the global U(∞)

symmetry which acts on the matrix indices. The matrix model description is also useful

for regularizing noncommutative field theories [9]–[13], since finite-N twisted reduced mod-

els [14] are interpreted as a lattice formulation of noncommutative field theories [11, 12, 13].

Such a lattice formulation provides the most reliable method to study the quantum dy-

namics of noncommutative field theories in a fully nonperturbative manner. Recently,

the lattice regulatization has been applied to two-dimensional noncommutative Yang-Mills

theory [15, 16], where (nonperturbative) renormalizability was demonstrated for the first

time in a noncommutative field theory (see also [17]). There the same theory was shown

to have an intriguing infrared property which may be described as the Aharonov-Bohm

effect with the magnetic field identified with the inverse noncommutativity parameter. The

lattice formulation has also been used to explore the phase diagram of noncommutative

scalar field theories [16, 18], which is expected to be richer than in the commutative case,

as indicated by a self-consistent Hartree approximation [19]. In particular, as conjectured

by ref. [19], the ordered phase is found to split into a uniformly ordered phase and a phase

dominated by the stripe pattern. In the latter phase, nonzero momentum modes acquire

vacuum expectation values, and therefore translational invariance is spontaneously broken.

The aim of this paper is two-fold. First we formulate perturbation theory for the

lattice noncommutative gauge theory. Although the most important virtue of the lattice

regularization lies in its capability of nonperturbative studies, it has also been used to

clarify subtle issues in perturbative aspects of gauge theories. We consider this particu-

larly important because the lattice construction of noncommutative chiral gauge theories

suggests a new mechanism of gauge anomaly cancellation, which is not yet known in the

continuum [20]. As an application of the lattice perturbation theory, we pick up a non-

commutative version of three-dimensional QED, where the lattice calculation indeed plays

a crucial role in revealing peculiar properties of the parity anomaly, given in terms of non-

commutative Chern-Simons action. The coefficient of the anomaly is labelled by an integer

depending on the lattice action, which is a counterpart of the phenomenon observed by

Coste and Lüscher [21] in the commutative theory. The commutative limit is smooth when

the fermions are in the fundamental representation, but it is not for fermions in the adjoint

representation due to a characteristic property of noncommutative field theories known as

the UV/IR mixing [22]. As a special case our result includes Chu’s result [23] obtained in

the continuum by using the Pauli-Villars regularization.

Another aim of this work is to construct a lattice regularization of NCCS theory, which

has important applications to quantum Hall systems as mentioned above. In general, defin-

ing a Chern-Simons term on the lattice is not straightforward due to its topological nature.
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A recent proposal [24] is to utilize Ginsparg-Wilson fermions in odd dimensions and to

define the Chern-Simons term using the parity violating part of the effective action in-

duced by the fermion. We show that this proposal works also in the noncommutative

case. As we mentioned above, the parity anomaly in the three-dimensional noncommu-

tative QED is given by the NCCS term in the continuum limit of the lattice theory we

started with. The same result can be obtained from Ginsparg-Wilson fermions, where

the masslessness is guaranteed at finite lattice spacing. This suggests a natural definition

of the lattice-regularized Chern-Simons theory on a noncommutative torus, which could

enable nonperturbative studies of quantum Hall systems. In this regard, we recall that a

finite-N matrix model has been proposed as a regularized description of NCCS theory on

a cylinder [25]. Although our theory can also be mapped to a finite-N matrix model, the

two proposals appear to be quite different.

The rest of the paper is organized as follows. In section 2, we review the lattice for-

mulation of noncommutative gauge theories and formulate a perturbation theory based on

Feynman rules. In section 3, we present calculations of the parity anomaly in noncommu-

tative QED. In section 4 we discuss the parity anomaly using Ginsparg-Wilson fermions,

which leads to a proposal for a lattice-regularized noncommutative Chern-Simon theory.

Section 5 is devoted to summary and discussions. Finally, in appendix A a calculation of

the parity-violating terms in the effective action by the direct evaluation of the fermionic

determinant is presented, while appendix B contains some details of the computation of

the Feynman integrals involved in the diagrammatic calculation of section 3.

2. Lattice perturbation theory in noncommutative geometry

In this section we begin by reviewing the lattice formulation of noncommutative gauge

theories developed in ref. [11, 12, 13] (see [26, 27, 28] for reviews). In the literature it

is common to start from a finite-N matrix model, which is then shown to be equivalent

to the lattice formulation of a noncommutative field theory. Indeed, the matrix model

representation has proven useful for numerical analyses [15, 16, 18, 20]. Here we will work

directly with the lattice formulation and derive the Feynman rules, which are used in the

perturbative evaluation of the effective action induced by fermions. Although we will focus

on noncommutative QED in d = 2m + 1 dimensions, the lattice perturbation theory can

be formulated for any other noncommutative field theories in the same way.

2.1 Noncommutative QED on the lattice

In noncommutative geometry, space-time coordinates are treated as hermitean operators

obeying the commutation relation [x̂µ, x̂ν ] = i θµν , where θµν is a real anti-symmetric

matrix. In (2m+1) dimensions, due to a property of antisymmetric matrices, coordinates

can always be chosen in such a way that one of them commutes with all the others,

resulting in

[x̂i, x̂j ] = i θij , [x̂i, x̂d] = 0 , (i, j = 1, . . . , 2m) , (2.1)
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where, for simplicity, the 2m× 2m noncommutative matrix θij is taken to be of the form

θij ≡ θ εij , ε =










0 −1
1 0

. . .

0 −1
1 0










. (2.2)

We regard the commuting coordinate x̂d as the euclidean time after the Wick rotation. Field

theories on a noncommutative geometry can be obtained by replacing an ordinary field φ(x)

by an operator φ(x̂). An equivalent way to describe noncommutative field theories, which

we are going to use in what follows, is to keep the ordinary field φ(x) but to replace the

ordinary product of fields, say φ1(x) and φ2(x), by the star-product

φ1(x) ? φ2(x) = φ1(x) exp

(
i

2
θµν
←−
∂µ
−→
∂ν

)

φ2(x) . (2.3)

In order to consider the lattice regularization of such theories, we introduce a (2m+1)-

dimensional toroidal lattice ΛL,T defined by

ΛL,T =

{

(x1, . . . , xd) ∈ aZd
∣
∣
∣− aLµ − 1

2
≤ xµ ≤ a

Lµ − 1

2

}

, (2.4)

where a is the lattice spacing and L1 = L2 = · · · = L2m = L, Ld = T . We have assumed

L, T ∈ N to be odd [13]. The dimensionful extent of the lattice is ` = aL in the 2m

spatial directions and τ = aT along the euclidean time. The fields on the lattice are

assumed to obey the periodic boundary condition in all directions1.

In order to construct a lattice counterpart of the star-product (2.3), we define the

Fourier transform

φ̃(p) = a4
∑

x∈ΛL,T

φ(x) e−i p·x , (2.5)

where the lattice momentum p is discretized as

pµ =
2πnµ
aLµ

, nµ ∈ Z , (2.6)

and the Fourier modes φ̃(p) are periodic under nµ 7→ nµ+Lµ. Then the lattice star-product

can be defined through its Fourier transform as

φ̃1 ? φ2(p) =
1

adLd−1T

∑

q

exp

{

− i
2
θij(p− q)iqj

}

φ̃1(p− q)φ̃2(q) , (2.7)

where the noncommutativity parameter is taken to be

θ =
1

π
La2 . (2.8)

Here and henceforth we assume that the summation over a momentum is restricted to the

Brillouin zone; namely (2.6) with −(Lµ − 1)/2 ≤ nµ ≤ (Lµ − 1)/2 .

1To formulate a finite-temperature field theory, the boundary condition in the time direction has to be

taken anti-periodic for fermions.
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The above lattice formulation naturally results from matrix model description of non-

commutative field theories, and most importantly it preserves all the algebraic properties

of the star-product. Moreover the definition (2.7) is consistent with the periodicity of

the lattice momentum (2.6) due to (2.8). One can also rewrite this definition (2.7) in an

integral form as

φ1(~x, t) ? φ2(~x, t) =
1

L2m

∑

~y

∑

~z

φ1(~y, t)φ2(~z, t) e
−2 i (θ−1)ij (xi−yi)(xj−zj) , (2.9)

where the summation over ~y and ~z is taken only over the spatial lattice. This expression

is consistent with the periodicity of the fields again due to (2.8). As is clear from these

observations, the lattice regularization of noncommutative field theories inevitably requires

the noncommuting directions to be compactified in a particular way (2.8) consistent with

the noncommutativity. This reflects the UV/IR mixing [22] at a fully nonperturbative

level [12, 13].

Ultimately we have to take the continuum limit a→ 0, and the lattice size should be

sent to infinity L, T →∞. These two limits should be taken more carefully in noncommu-

tive field theories than in commutative ones because we have an extra scale parameter θ

related to a and L by (2.8). In any case we have a hierarchy of the scales

a¿
√
θ¿ ` (2.10)

in the regularized theory. In order to obtain finite θ, the physical extent of the spatial

direction ` = aL should inevitably go to infinity. The extreme case θ → 0 is generally

different from the commutative theory (where θ = 0 for finite a), as we see later in concrete

examples. The limit T →∞ in the time direction can be taken as in commutative theories,

and one can have arbitrary τ independently of θ and `.

The U(1) gauge fields can be put on the lattice by

Uµ(x) = P exp?

(

ig

∫ x+aµ̂

x

Aµ(s) ds

)

=

∞∑

n=0

(ig)n
∫ x+aµ̂

x

dξ1

∫ x+aµ̂

ξ1

dξ2 · · ·
∫ x+aµ̂

ξn−1

dξnAµ(ξ1) ?Aµ(ξ2) ? · · · ?Aµ(ξn) ,(2.11)

where Aµ(x) is the (real) gauge field in the continuum. The path-ordering is necessary

even in the U(1) case, because of the noncommutativity arising from the star-product.

Note also that Uµ(x) is not unitary, but it is “star-unitary”,

Uµ(x) ? Uµ(x)
∗ = Uµ(x)

∗ ? Uµ(x) = 1 . (2.12)

The continuum gauge field Aµ(x) transforms under the “star-gauge transformation” as

Aµ(x) 7→ g(x) ?Aµ(x) ? g(x)
† − i

g
g(x) ?

∂

∂xµ
g(x)† , (2.13)

where g(x) is also star-unitary. Under this transformation, the link field Uµ(x) defined

by (2.11) transforms as

Uµ(x) 7→ g(x) ? Uµ(x) ? g(x+ aµ̂)∗ . (2.14)
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The lattice action for the gauge field is given by

SG = −β
∑

x∈ΛT,N

∑

µ6=ν

Uµ(x) ? Uν(x+ aµ̂) ? Uµ(x+ aν̂)∗ ? Uν(x)
∗ , (2.15)

which is invariant under star-gauge transformation (2.14).

The fermion action is defined by

SF = a3
∑

x

ψ̄(x) ? (Dw −M)ψ(x) , (2.16)

where Dw is the Dirac-Wilson operator

Dw =
1

2

d∑

µ=1

[

γµ(∇∗µ +∇µ) + ra∇∗µ∇µ

]

. (2.17)

The expression of the forward and backward covariant derivatives depends on the trans-

formation properties of the fermion field. In the case where ψ(x) transforms in the funda-

mental representation

ψ(s) 7→ g(x) ? ψ(x) ; ψ̄(x) 7→ ψ̄(x) ? g(x)∗ , (2.18)

they are given respectively by

∇µψ =
1

a
[Uµ(x) ? ψ(x+ aµ̂)− ψ(x)]

∇∗µψ =
1

a
[ψ(x)− Uµ(x− aµ̂)∗ ? ψ(x− aµ̂)] . (2.19)

On the other hand, when fermions transform in the adjoint representation

ψ(x) 7→ g(x) ? ψ(x) ? g(x)∗ ; ψ̄(x) 7→ g(x) ? ψ̄(x) ? g(x)∗ , (2.20)

the forward and backward covariant derivatives are respectively defined by

∇µψ =
1

a
[Uµ(x) ? ψ(x+ aµ̂) ? Uµ(x)

∗ − ψ(x)]

∇∗µψ =
1

a
[ψ(x)− Uµ(x− aµ̂)∗ ? ψ(x− aµ̂) ? Uµ(x− aµ̂)] . (2.21)

In either case, the fermion action (2.16) is star-gauge invariant.

The second term in the Dirac-Wilson operator (2.17) is the Wilson term, which is

introduced to give species doublers a mass of order O(1/a). In the original proposal, the

coefficient r was taken to be unity, but it can take other values, even negative ones, as far

as its magnitude is of order one.
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2.2 Feynman rules

Let us proceed to formulate the perturbation theory for the noncommutative QED on the

lattice. As in the commutative case we start with expanding the link variable Uµ(x) in

terms of the lattice gauge field Aµ(x) as

Uµ(x) = exp? {iagAµ(x)}

= 1 + igaAµ(x)−
g2a2

2
Aµ(x) ? Aµ(x) + . . . . (2.22)

Note that Uµ(x) is star-unitary if and only if Aµ(x) is real. The Feynman rules are read

off from the action (2.16) expressed in terms of the Fourier transformed fields Ãµ(p), ψ̃(p)

and ˜̄ψ(p). The fermion propagator is given by

�p =

{

M +
1

2
rap̂2 − iγ · p̃

}−1

≡ Q(p)−1 , (2.23)

where we have introduced the notation

p̂µ =
2

a
sin

(
1

2
apµ

)

, p̃µ =
1

a
sin(apµ) . (2.24)

That the fermion propagator (2.23) is identical to the one for the commutative lattice QED

is because the θ-dependent phase arising from the star-product (2.7) disappears trivially

in the quadratic term in the action (Set p = 0 in (2.7) and consider the anti-symmetry

of θij). The effect of the noncommutativity will show up only in the interaction vertices

in the form of a phase depending on the momenta flowing into them. For the one-photon

vertex we find

k, µ

p

q

=W(1)(p, q) V (1)
µ (p+ q) , (2.25)

where we have defined

V (1)
µ (p) = ig

{

γµ cos
(a

2
pµ

)

+ ir sin
(a

2
pµ

)}

. (2.26)

The factor W(1)(p, q) represents a sum of θ-dependent phases, which depends on whether

the fermions couple in the fundamental or the adjoint representation

W(1)
fund(p, q) = e

i
2
θ(~p×~q)

W(1)
adj(p, q) = e

i
2
θ(~p×~q) − e−

i
2
θ(~p×~q) . (2.27)

Here we have denoted ~a×~b ≡ −εjkajbk, where εjk is the matrix defined in (2.2).

For the vertex with two photons we find,

k, µ

l, ν

p

q

= W(2)(p, q, k, l) V (2)
µν (p+ q) , (2.28)
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where we defined

V (2)
µν (p) = −ag2δµν

{

r cos
(a

2
pµ

)

+ iγµ sin
(a

2
pµ

)}

. (2.29)

The factor W(2)(p, q, k, l) is now given by

W(2)
fund(p, q, k, l) = e

i
2
θ(~p×~q+~k×~l) (2.30)

W(2)
adj(p, q, k, l) = e

i
2
θ(~p×~q+~k×~l) + e

i
2
θ(−~p×~q+~k×~l) − e

i
2
θ(~p×~l+~k×~q) − e

i
2
θ(~p×~k+~l×~q) .

Above we assumed that the photon momenta are entering into the vertex.

In addition, for each vertex there is a Kronecker delta momentum conservation

ad Ld−1 T δp+k+···,q (2.31)

together with a summation over an internal momentum for each loop 1
adLd−1T

∑

p. Finally,

each fermion loop will carry a minus sign. Vertices with more than two photon lines can

be obtained in a similar way.

Together with the fermion propagator (2.23), the Feynman rules of noncommutative

lattice QED also requires the photon and ghost propagators as well as the photon-ghost

and photon self-interaction vertices. In the case of the propagators, because the bilinear

terms in the action are independent of the noncommutativity parameter, they are identical

to the one for ordinary QED [29]. For the interaction vertices, as it is also the case in

the continuum [30], they can be read off from the ones for nonabelian commutative gauge

theories given in [29] by simply replacing the structure constants of the gauge group by the

appropriate noncommutative phases. In the calculation of the effective action, however,

we will need only the fermion-photon vertices.

2.3 Perturbative evaluation of the effective action

The effective action for the gauge field is defined in terms of the fermion determinant as

Γ[U ]eff = − log

[
det (Dw −M)

det (Dw,0 −M)

]

, (2.32)

where Dw,0 is the Dirac-Wilson operator (2.17) evaluated for the trivial gauge configuration

U
(0)
µ (x) = 1. Expanding Uµ(x) with respect to Aµ(x) as in (2.22), the effective action Γ[A]eff

can be written in momentum space as

Γ[A]eff =
1

2

1

adLd−1T

∑

p

Πµν(p)Aµ(p)Aν(−p) +

+
1

3

1

(adLd−1T )2

∑

p,q

Πµνσ(p, q)Aµ(p)Aν(q)Aσ(−p− q) + . . . . (2.33)
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The kernels Πµν(p), Πµνσ(p, q) can be computed using the diagrammatic expansion2.

−Πµν(p) = + (2.34)

−Πµνσ(p, q) = +
1

2

[

+ cyclic perm.

]

+
1

2
. (2.35)

In fact, diagrams containing vertices with three or more photons are irrelevant in the

continuum limit since they are weighted with higher powers of the lattice spacing a [29, 31].

Therefore we can omit the last diagram in (2.35). Applying the Feynman rules, we thus

obtain the following expression.

Πµν(p) =
1

adLd−1T

∑

q

tr
[

V (1)
µ (2q + p)Q (q + p)−1 V (1)

ν (2q + p)Q (q)−1
]

×

×W(1) (q, q + p) W(1) (q + p, q) +

+
1

adLd−1T

∑

q

tr
[

V (2)
µν (2q)Q(q)−1

]

W(2)(q, q, p,−p) , (2.36)

Πµνσ(p1, p2) =
1

adLd−1T

∑

q

tr

[

V (1)
µ (2q + p1)Q (q + p1)

−1 V (1)
ν (2q + 2p1 + p2)×

×Q (q + p1 + p2)
−1 V (1)

σ (2q + p1 + p2)Q (q)−1
]

×

×W(1) (q, q + p1)W(1) (q + p1, q + p1 + p2)W(1) (q + p1 + p2, q) +

+
1

2adLd−1T

∑

q

{

tr
[

V (1)
µ (2q + p1)Q (q + p1)

−1 V (2)
νσ (2q + p1)Q (q)−1

]

×W(1) (q, q + p1)W(2) (q + p1, q, p2,−p1 − p2) +

+ cyclic permutations

}

, (2.37)

where by “cyclic permutations” we indicate the contributions of the other two diagrams

obtained from the second one in eq. (2.35) by performing cyclic permutations on the labels

of the external legs. The expressions for the commutative case can be obtained simply by

omitting the factors W (1), W(2) in the above equations.

3. The parity anomaly in 3D noncommutative QED

From now on we will consider the three-dimensional case (i.e. d ≡ 2m+ 1 = 3) and study

the parity anomaly in noncommutative QED on the lattice. Parity anomaly has been

studied intensively in commutative gauge theories, both in the continuum [32, 33] and on

the lattice [21]. It has a wide application in condensed matter physics [34] including the

quantum Hall effect [35]. We will first briefly review the known results in the commutative

case.

2The combinatorial factors in front of the diagrams take into account the overall factors of 1
2
and 1

3

multiplying the corresponding terms in the effective action.
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3.1 A brief review of the commutative case

In three-dimensional massless QED there is a conflict between parity symmetry and gauge

invariance at the quantum level. As pointed out in [36] and elaborated in [32], a parity

invariant regularization of the fermion determinant leads to non-invariance of the one-

loop effective action under large gauge transformations due to the spectral flow of the

eigenvalues of the Dirac operator, a phenomenon similar to the one behind Witten’s global

anomaly [37]. On the other hand, a gauge invariant regularization of the theory, like

Pauli-Villars, induces a Chern-Simons action at one loop that breaks parity invariance,

with precisely the coefficient required to compensate the variation of the massless fermion

determinant under large gauge transformations.

Despite any similarities, parity anomaly in three-dimensional QED is different from

ordinary anomalies in that the coefficient of the anomaly depends on the regularization

scheme. This peculiar aspect of parity anomaly has been clarified by Coste and Lüscher [21]

by using the lattice regularization, which provides the most rigid way to calculate the

anomaly while preserving gauge invariance. Here we summarize the main results of ref. [21].

First, when M → 0, one obtains in the continuum limit

lim
M→0

Πµν(p) =
1

2π

(

n+
1

2

)

εµνσpσ +
1

16|p|
(
p2δµν − pµpν

)
. (3.1)

The term proportional to the Levi-Civita tensor is parity odd, and hence signals the parity

anomaly. (Note that the continuum action for a massless Dirac fermion in three dimensions

is invariant under parity transformation.) The coefficient of the parity anomaly includes a

parameter n, which can take any integer value depending on the lattice action chosen, i.e.

on the details of the ultraviolet regularization. The essential point, however, is that this

regularization ambiguity does not affect the existence of the parity anomaly itself, since this

is always nonzero for any n ∈ Z. For the standard Wilson fermion, one obtains n = 0,−1,
depending on whether the sign of the Wilson term is positive or negative. In this case

the parity anomaly arises because the Wilson term breaks parity on the lattice, and this

breaking persists in the continuum limit. On the other hand, if one uses the Ginsparg-

Wilson fermion, whose action is invariant under the generalized parity transformation, the

parity anomaly (3.1) arises from the measure [24], thus realizing Fujikawa’s philosophy for

anomalies at a fully regularized level.

In the infinite mass limit, on the other hand, the result for the vacuum polarization is

given by

lim
M→+∞

Πµν(p) =
1

2π
nεµνσpσ

lim
M→−∞

Πµν(p) =
1

2π
(n+ 1)εµνσpσ , (3.2)

where the integer n is the same parameter as the one introduced in (3.1) for the same

lattice action. Thus in general the fermion does not decouple completely in the infinite

mass limit but it leaves behind a certain local term as a remnant. In fact the freedom

of the integer parameter n in both (3.1) and (3.2) is closely related to the fact that the
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remnant (3.2) depends on the sign ± of the limit M → ±∞. By choosing different lattice

action, one essentially introduces different numbers of heavy fermions which have masses

of order O(1/a). The sign of the masses can be assigned as one wishes, and this results in

the arbitrariness represented by n.

3.2 The noncommutative case

Before we present our results on the noncommutative case, let us remark on what we

mean by “parity” when we discuss parity anomaly in noncommutative QED. Conventional

parity refers to a reflection in one spatial direction. In the euclidean formulation in three

dimensions, one can combine the conventional parity transformation with the 180 degrees

rotation in the remaining two directions, to arrive at the transformation

ψ(x) 7→ ψ(−x)
ψ̄(x) 7→ −ψ̄(−x)
Aµ(x) 7→ −Aµ(−x) , (3.3)

which leaves the massless Dirac action in the continuum invariant. In the noncommutative

case, the introduction of the noncommutativity matrix θµν breaks parity in the conventional

sense, but it preserves the invariance under (3.3). It is this invariance of the massless Dirac

action that we refer to when we say ‘parity anomaly’ in noncommutative QED.

Our next task is to compute the effective action (2.32) as discussed in section 2.3 and

to see how the results of Coste and Lüscher [21] are modified by noncommutative geometry.

We analyze separately the cases of fermions in the fundamental and adjoint representation.

We will use a representation of the three-dimensional Dirac matrices satisfying

γµγν = δµν + iεµνσγσ , (3.4)

where the matrices are taken to be hermitean γ†µ = γµ. Hereafter we will fix the sign of M

by demanding M ≥ 0.

3.2.1 Fundamental fermions

We begin with the coefficient Πµν(p) of the bilinear term in the effective action (2.33) for the

gauge field. For fundamental fermions the noncommutative phases in eq. (2.36) cancel out.

The resulting expression is exactly the same as in the commutative case and in particular

the result does not depend on how we take the limits L → ∞, T → ∞ and a → 0, as far

as the physical extent of the space-time (` = aL and τ = aT ) goes to infinity. For instance

we may take the large volume limit L→∞ and T →∞ at fixed lattice spacing a and then

take the continuum limit a → 0. Then the rest of the calculation proceeds exactly as in

ref. [21]. Let us introduce the symbol

Tk(p)f(p) =
k∑

n=0

1

n!

∂n

∂tn
f(tp)

∣
∣
∣
∣
∣
t=0

, (3.5)
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which represents a Taylor subtraction at zero momentum. Thus, in the infinite volume

limit, Πµν(p)fund can be rewritten as

Πµν(p)fund = g2
∫

B

d3q

(2π)3
[1− T0(p)] tr

[

Q
(

q − p

2

)−1
∂µQ(q)Q

(

q +
p

2

)−1
∂νQ(q)

]

,

(3.6)

where the large volume limit L → ∞ and T → ∞ has been taken and consequently

the momentum sum has been replaced by the integral in the Brillouin zone B = {qµ ∈
R3 | − (π/a) ≤ qµ ≤ (π/a)}. The subtraction of the zero external momentum contribution

comes from the tadpole diagram in the first line of eq. (2.34). By using the identity

[1− T0(p)]f(p) = [1− T1(p)]f(p) + pµ∂µf(0) we can write, after some algebra,

Πµν(p)fund = g2a0εµνσpσ + g2
∫

B

d3q

(2π)3
[1− T1(p)]×

×tr
[

Q
(

q − p

2

)−1
∂µQ(q)Q

(

q +
p

2

)−1
∂νQ(q)

]

, (3.7)

and

a0 =
1

48π3

∫

B

d3q εµνσtr
[
Q(q)−1∂µQ(q)Q(q)−1∂νQ(q)Q(q)−1∂σQ(q)

]
. (3.8)

As shown in [21], a0 = 1
2πn is a topological number, where the integer n depends on the

parameter r, but not on the lattice spacing.

Because of the subtraction at zero momentum, the integral in the second term on

the right hand side of (3.7) has negative degree so, according to Reisz theorem [38], its

continuum limit is given by the integral over momentum space of the limit of the integrand

when a→ 0. On symmetry grounds, the two-point function in the continuum has the form

Πµν(p) = A(p)εµνσpσ +B(p)
(
p2δµν − pµpν

)
+ C(p)

θ(p)µθ(p)ν
θ(p)2

, (3.9)

where θ(p)µ ≡ θµνpν . From the previous expressions, we find for the case of fermions in

the fundamental representation

A(p)fund = g2a0 +
g2

4π

∫ 1

0
dx
{

1−M
[
M2 + x(1− x)p2

]− 1
2

}

,

B(p)fund =
g2

2π

∫ 1

0
dxx(1 − x)

[
M2 + x(1− x)p2

]− 1
2 ,

C(p)fund = 0 . (3.10)

In the limits M → 0, M → ∞, we obtain results identical to the commutative case (3.1),

(3.2).

Let us proceed to compute the coefficient Πµνσ(p) of the trilinear term in the effective

action (2.33) for the gauge field. Two types of diagrams contribute to this term. In

both cases it is easy to check that the corresponding noncommutative phases are identical
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and factor out of the sum over the loop momentum. The sum multiplying the global

noncommutative phase is independent of θ, and it can be evaluated in the same limit as

before. Thus we arrive at the expression

Πµνσ(p1, p2)fund = e
i
2
θ(~p1×~p2)

∫

B

d3q

(2π)3
tr

[

V (1)
µ (2q + p1)Q (q + p1)

−1 V (1)
ν (2q + 2p1 + p2)×

×Q (q + p1 + p2)
−1 V (1)

σ (2q + p1 + p2)Q (q)−1
]

+
1

2
e

i
2
θ(~p1×~p2)

{∫

B

d3q

(2π)3
×

× tr

[

V (1)
µ (2q)Q

(

q − p1
2

)−1
V (2)
νσ (2q)Q

(

q +
p1
2

)−1
]

+

+
[

cyclic permutations: (µ, p1)→ (ν, p2)→

→ (σ,−p1 − p2)
]}

, (3.11)

where we have taken the large volume limit L→∞ and T →∞, but the continuum limit

is yet to be taken. In general, the three-point function can be written as

Πµνσ(p1, p2)fund = e
i
2
θ(~p1×~p2)A(p1, p2)fundεµνσ + . . . , (3.12)

where “. . .” stands for terms proportional to rank-three tensors constructed in terms of the

incoming momenta. By looking at the low momentum expansion we find that

A(p1, p2)fund = −g3a0 +O
(
p2
)
, (3.13)

where a0 is given again by eq. (3.8). The remaining momentum-dependent contribution

can be obtained by evaluating

∫

B

d3q

(2π)3
[1− T0(p1, p2)] tr

[

V (1)
µ (2q + p1)Q (q + p1)

−1 V (1)
ν (2q + 2p1 + p2)×

×Q (q + p1 + p2)
−1 V (1)

σ (2q + p1 + p2)Q (q)−1
]

(3.14)

and keeping the terms proportional to εµνσ. Here we have denoted T0(p, q)f(p, q) = f(0, 0).

Note also that the second group of terms in (3.11) does not contribute to A(p1, p2)fund,
since they are symmetric in two of the indices.

In order to retrieve the continuum limit of (3.14) we need to check that the relevant

terms of the integral on the right-hand side converges to the continuum Feynman integral.

By writing the integrand as V (q, p1, p2,M, a)/C(q, p1, p2,M, a) we find that deg V ≤ 8,

whereas degC = 12, so the degree of divergence of the integrand is 3+deg V −degC ≤ −1,
and the contribution of the integral in the continuum limit is given by the integral over the

loop momentum of the a→ 0 limit of the integrand. A careful evaluation of the resulting
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integral using Feynman parameters shows that (see appendix B for the details)

lim
a→0
A(p1, p2)fund = −g3a0 −

g3

2π

∫ 1

0
dx1

∫ 1−x1

0
dx2

[

1−M(M 2 +∆)−
1
2

]

−

− g
3

4π
M p21

∫ 1

0
dx1

∫ 1−x1

0
dx2

(x1 + x2)(1− x1 − x2)
(M2 +∆)

3
2

−

− g
3

4π
M p22

∫ 1

0
dx1

∫ 1−x1

0
dx2

x2(1− x2)
(M2 +∆)

3
2

−

− g
3

8π
M p1 · p2

∫ 1

0
dx1

∫ 1−x1

0
dx2

x1 + 2x2(1− x1 − x2)
(M2 +∆)

3
2

, (3.15)

where for shorthand we have written

∆ ≡ (x1 + x2)(1 − x1 − x2)p21 + x2(1− x2)p22 + 2x2(1− x1 − x2)p1 · p2 . (3.16)

From these results we see that the cubic term in the noncommutative Chern-Simons action

emerges in the limits M → 0 and M → ∞ with coefficients consistent with the quadratic

term calculated above. This is expected from the star-gauge invariance, which is manifestly

preserved in the lattice regularization.

It is straightforward to calculate now the effective action Γ[A]
(fund)
eff in position space

for massless fermions. By using eqs. (3.10) and (3.15) in the limit M → 0 we find for the

parity violating part

Γ[A]
(fund)
eff =

g2

4π

(

n+
1

2

)∫
d3p

(2π)3
εµνσÃµ(p)Ãν(p)pσ − (3.17)

− g
3

6π

(

n+
1

2

)∫
d3p1
(2π)3

∫
d3p1
(2π)3

εµνσÃµ(p1)Ãν(p2)Ãσ(−p1 − p2)e
i
2
θ(~p1×~p2) .

Performing the inverse Fourier transform on Ãµ(p) and definingAµ(x) = igAµ(x) we finally

arrive at

Γ[A](fund)eff =
i

4π

(

n+
1

2

)∫

d3x εµνσ

(

Aµ∂νAσ +
2

3
Aµ ?Aν ?Aσ

)

. (3.18)

In particular, since the NCCS term is not invariant under the parity transformation (3.3),

we have a parity anomaly as in the commutative case.

It is important to notice that in the θ → 0 limit we retrieve the results obtained in

ref. [21] for ordinary (commutative) QED. The fact that the commutative limit turned

out to be smooth in the present case is due to the cancellation of the noncommutative

phases involving loop momenta, which would otherwise cause the UV/IR mixing. Such a

cancellation can be understood in a transparent way [22] if one uses the so-called double-line

notation known from large-N gauge theory. Feynman rules should be re-derived accordingly

and in particular each of the interaction vertices will have a single noncommutative phase

factor instead of a sum of phases. Usefulness of the double-line notation in noncommutative

field theories can be understood if one recalls that the algebraic property of the star-product

is the same as that of matrix product. In the double-line notation, “planar diagrams” can
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be defined as diagrams which can be drawn on a plane without any crossings of lines.

In fact for any planar diagrams the noncommutative phase factors out of the momentum

integration, leaving a global phase depending only on external momenta [39, 40, 41]. For

fermions in the fundamental representation, the interaction with the gauge field occurs

only on one side of the fermion propagator (represented as a double-line), and therefore all

the diagrams that appear in the calculation of the effective action are actually planar.

3.2.2 Adjoint fermions

Contrary to the case studied above, the effective action for noncommutative gauge theories

with fermions in the adjoint representation does not have a smooth commutative limit.

Note that the original theory in the θµν → 0 limit is just a free massless fermion and a

free photon, which is parity invariant. However, if we take the continuum limit for finite

θ we will see that the adjoint fermions induce the NCCS action, which reduces to an

ordinary (commutative) U(1) Chern-Simons term in the θµν → 0 limit. Using a Pauli-

Villars fermion of mass Mreg as a regulator in the continuum [23] this is the result of

the fact that the two limits θµν → 0 and Mreg → ∞ do not commute with each other, a

phenomenon characteristic of noncommutative quantum field theories both at zero [22] and

finite temperature [44]. This comes about because of the existence of nonplanar diagrams

in which the UV divergences are regulated at the scale3 θ|~p|.
Plugging in the factors W (1), W(2) for the adjoint fermions (2.27), (2.30), the expres-

sion (2.36) for the two-point function becomes

Πµν(p)adj = 2Πµν(p)fund−

− 2

a3L2T

∑

q

tr
[

V (1)
µ (2q + p)Q (q + p)−1 V (1)

ν (2q + p)Q (q)−1
]

cos [θ (~p× ~q )]−

− 2

a3L2T

∑

q

tr
[

V (2)
µν (2q)Q(q)−1

]

cos [θ (~p× ~q )] , (3.19)

where Πµν(p)fund is the two-point function for fermions in the fundamental representation

calculated above. In the language of the double-line notation (See the end of section 3.2.1),

the first term represents the contribution from the planar diagram and the other two

terms correspond to the nonplanar contributions. Interestingly the third term, which is

the non-planar contribution from the tadpole diagram, exactly vanishes in the continuum

limit. Therefore the effect of the tadpole diagram is just to subtract the zero-momentum

contribution from the planar terms, which has the effect of making the amplitude finite in

the continuum limit, as seen above. Note that the second term of (3.19) is finite by itself,

since the noncommutative phase introduces an effective cutoff to the loop momentum at

the scale θ|~p|.
To obtain the continuum limit of the second term we have to take into account that

this limit has to be taken at the same time with the large volume limit in such a way that

θ ∝ a2L is kept fixed. A long but straightforward calculation shows that the resulting

3The role of nonplanar amplitudes in the calculation of the chiral anomaly has attracted some attention

recently (see, for example, [42, 43]).
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integrals can be written in terms of modified Bessel functions of the second kind. The

resulting two-point function has the form given in eq. (3.9) now with (see appendix B for

details)

A(p)adj = 2A(p)fund +
g2

2π

√

2

π
|θ (~p ) | 12 ×

×
∫ 1

0
dx

{

M
[
M2 + x(1− x)p2

]− 1
4 K 1

2

(

θ|~p |
[
M2 + x(1− x)p2

] 1
2

)}

,

B(p)adj = 2B(p)fund −
g2

π

√

2

π
|θ (~p ) | 12 ×

×
∫ 1

0
dx

{

x(1−x)[M 2 + x(1−x)p2]− 1
4K 1

2

(

θ|~p |[M 2 + x(1− x)p2] 12
)}

, (3.20)

C(p)adj =
g2

π

√

2

π
|θ(p)| 12

∫ 1

0
dx
{ [
M2 + x(1− x)p2

] 3
4 K 3

2

(

θ|~p |
[
M2 + x(1− x)p2

] 1
2

)}

.

Using the asymptotic expansion for large arguments of the Bessel functions, Kν(z) ∼
ez/
√
2πz it is easy to see that the nonplanar terms in the amplitude are exponentially

suppressed in the limit of large M (cf. [23]). In the M → 0 limit, on the other hand, one

finds that the nonplanar contributions to the parity violating term vanishes. Thus in both

limits we find that the parity violating term in the effective action comes solely from the

planar part, and its magnitude is twice the one for fundamental fermions. Later we will

offer a physical explanation of this phenomenon.

For finite values of the noncommutative parameter θ the three-dimensional euclidean

group SO(3) is broken down to SO(2), acting as rotations on the noncommutative plane.

An important consequence of the smooth commutative limit (θ → 0) of noncommutative

QED with fundamental fermions is that the full euclidean group SO(3) is restored in

that limit. This means that the “generalized parity” anomaly studied here is mapped to

the usual parity anomaly of commutative QED. On the other hand, for adjoint fermions

the situation is radically different, since the Euclid-breaking term in the effective action,

third equation in (3.20), does not disappear in the commutative limit and actually induces

divergences when θ → 0, while keeping the SO(2) symmetry unbroken (see the discussion

at the end of this subsection). The reason is that in this case, because of UV/IR mixing,

the noncommutative theory is not a smooth deformation of (free) commutative QED with

neutral fermions.

Let us now turn to the evaluation of the three-point function. After a short manipu-

lation of the noncommutative phases, the three-point function can be written as

Πµνσ(p1, p2)adj =
[(

e
i
2
θ(~p1×~p2) − e−

i
2
θ(~p1×~p2)

)

A(p1, p2)fund +A(p1, p2, θ)NP
]

εµνσ + . . . ,

(3.21)

where A(p1, p2)fund is the same function appearing in eq. (3.12) and A(p1, p2, θ)NP is the

nonplanar contribution. As above the ellipsis denotes further terms whose tensor structure

depends on the external momenta. The nonplanar function A(p1, p2)NP is calculated by
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evaluating the sum

1

a3L2T

∑

q

tr

[

V (1)
µ (2q + p1)Q (q + p1)

−1 V (1)
ν (2q + 2p1 + p2)×

×Q (q + p1 + p2)
−1 V (1)

σ (2q + p1 + p2)Q (q)−1
]

W(p1, p2, q)NP (3.22)

and keeping the terms proportional to εµνσ. Here the “nonplanar” part of the noncommu-

tative phase W(p1, p2, q)NP is given by

W(p1, p2, q)NP = e
i
2
θ(~p1×~p2)

[

eiθ(~q×~p2) − e−iθ(~q×~p1) − eiθ~q×(~p1+~p2)
]

−

−e− i
2
θ(~p1×~p2)

[

e−iθ(~q×~p2) − eiθ(~q×~p1) − e−iθ~q×(~p1+~p2)
]

. (3.23)

A(p1, p2)NP can be computed in the continuum limit a → 0 at infinite volume with a2L

fixed and expressed in terms of the modified Bessel functions of the second kind. In this

limit, A(p1, p2, θ)NP is expressed in terms of sum of integrals of the form

g3M

∫
d3q

(2π)3
M2 + q2 + (p1 + p2) · q

[M2 + (q + p1)2][M2 + (q + p1 + p2)2](M2 + q2)
eiθ(~w×~q) , (3.24)

where ~w = α ~p1 + β ~p2 (α, β = 0,±1) is a linear combination of the incoming momenta,

that can be read off from eq. (3.23). These integrals can be computed again in terms of

modified Bessel functions of the second kind. As it was the case also for the two-point

functions, all the terms contributing to A(p1, p2, θ)NP vanish both in the limit M → 0, due

to the global factor of M in front of the integral, and as M → ∞, this time due to the

exponential damping of the modified Bessel function for large values of the argument. The

final conclusion is that in the continuum limit

lim
M→0

A(p1, p2, θ)NP = lim
M→∞

A(p1, p2, θ)NP = 0 . (3.25)

As a consequence, in these two limits, the coefficient of the Chern-Simons action is only

determined by the first term on the right-hand side of (3.21) and its value is consistent

with the one calculated above from the two-point function. This, again, follows from the

fact that the lattice regularization preserves star-gauge invariance.

We can now study the parity-odd part of the induced effective action in the limit M →
0. From the two- and three-point amplitudes calculated above we find that Γ[A](adj)eff =

2Γ[A](fund)eff where Γ[A](fund)eff is given in eq. (3.18). Note that we have considered that the

adjoint fermions are of Dirac type. The minimal form of the anomaly, however, is obtained

by imposing the Majorana condition. In this case there is an extra factor of 1
2 in front of

the fermionic determinant and the effective action for Majorana fermions in the adjoint

representation agrees with eq. (3.18) [23].

To conclude, let us try to understand in physical terms the vanishing of the nonplanar

contribution to the parity-violating part of the effective action in the limit of zero fermion

mass. As mentioned in section 3.1 the parity anomaly in commutative gauge theories

results from the impossibility of finding a parity-invariant UV cutoff which at the same
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time preserves Lorentz and gauge symmetries. This is clear from the analysis of [32] where

the introduction of a parity-invariant UV cutoff Λ in the integrals results in the presence

of a term g2Ληµν in the two-point function which breaks the Ward identity.

Because of the presence of the noncommutative phases depending on the loop mo-

mentum, we can see the nonplanar contribution to the two-point function of massless

noncommutative QED as a regularization of the corresponding amplitude in ordinary (com-

mutative) massless QED. In this case the noncommutative momentum θ|~p| ≡ Λ−1 plays

the role of an UV cutoff. Moreover, this cutoff preserve the parity invariance of the theory.

Therefore one expects that the parity-breaking terms in the amplitudes will vanish. Indeed,

using the nonplanar part in (3.20) we find the two-point function of massless QED in this

regularization to be

Πµν(p)
θ
QED =

g2

2π|p| 12

√

2

π
Λ−

1
2 (p2δµν − pµpµ)

∫ 1

0
dx[x(1−x)] 34K 1

2

(

Λ−1
[
x(1−x)p2

] 1
2

)

−

− g
2

2π

√

2

π
|p| 32Λ− 1

2
θ(p)µθ(p)ν
θ(p)2

∫ 1

0
dx[x(1−x)] 34K 3

2

(

Λ−1
[
x(1−x)p2

] 1
2

)

, (3.26)

i.e. the two-point function does not contain parity-breaking terms and satisfies the Ward

identity. However, because of the presence of the last term, it breaks euclidean symmetry.

Thus the “θ-regularization” of massless QED provides a regularization scheme in which

both parity and gauge symmetries are maintained at the cost of breaking euclidean (or

lorentzian) invariance. In the limit in which the cutoff is sent to infinity, Λ → ∞, the

coefficient of the first term in the right-hand side of (3.26) tends to g2/(16|p|) whereas

the second Euclid-breaking term diverges linearly with Λ. Euclidean invariance can be

restored by introducing a Pauli-Villars fermion with mass Mreg which subtracts the diver-

gent part of the two-point function (3.26). However, this procedure results in the breaking

of parity invariance and as a consequence a Chern-Simons term is again induced in the

limit Mreg → ∞. This is somewhat reminiscent to the analysis of nonplanar anomalies in

noncommutative gauge theories presented in [43].

4. Noncommutative Chern-Simons theory on the lattice

In this section our results in the previous sections are used to define a lattice-regularized

noncommutative Chern-Simons theory following the proposal made in ref. [24] in the com-

mutative case. The basic idea is to use the parity breaking part of the effective action in-

duced by the Ginsparg-Wilson fermion. Since masslessness of the Ginsparg-Wilson fermion

is guaranteed on the lattice, one obtains the correct noncommutative Chern-Simons action

in the continuum limit without fine-tuning.

The Dirac operator D for the Ginsparg-Wilson fermion is characterized by the

Ginsparg-Wilson relation [45] which, in the form applicable to both even and odd di-

mensions, is given by [24]

D +D† = aD†D . (4.1)
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The general solution to eq. (4.1) can be written as

D =
1

a
(1− V ) , (4.2)

where V is a unitary operator, which should turn into the identity operator in the naive

continuum limit. In even dimensions, assuming further the “γ5-Hermiticity”

D† = γ5Dγ5 , (4.3)

one arrives at the original Ginsparg-Wilson relation [45]

Dγ5 + γ5D = aDγ5D . (4.4)

This relation guarantees that the fermion action including the operator D is invariant

under a generalized chiral symmetry [46], which reduces to the ordinary chiral symmetry

in the continuum limit. The role of the “γ5-Hermiticity” is played in odd dimensions by

the property

D(U)† = RD(UP )R , (4.5)

where UP is the parity transformed gauge configuration,

UP
µ (x) = Uµ(−x)† , (4.6)

and R is the space-time reflection operator, R : x 7→ −x. Combining (4.1) and (4.5)

one can show the invariance of the corresponding fermion action under a generalized parity

transformation [24]. The measure, however, is not invariant under the same transformation.

As a consequence, the fermion determinant is not invariant but transforms as

detD(UP ) = (det V )∗ detD(U) . (4.7)

So far we have discussed general properties of the Ginsparg-Wilson operator, which

satisfies (4.1). In fact the unitary operator V has to be chosen appropriately in order to

guarantee that the operator D has sensible properties as a Dirac operator such as locality

(with exponentially decaying tails) and the absence of species doublers. Such an operator

has been derived from the overlap formalism [47], and it is given explicitly by [48]

V = Aw

(

A†wAw

)− 1
2

(4.8)

Aw = 1− aDw(r = −1) , (4.9)

where Dw(r = −1) is the Dirac-Wilson operator, which has the form (2.17) with ordi-

nary covariant derivatives. The noncommutative version of the Ginsparg-Wilson fermion

can be obtained by simply using the covariant derivatives (2.19) or (2.21) depending on

the representation, instead of the usual ones without star-products. In even dimensions

Ginsparg-Wilson fermions played a crucial role in introducing chirality on a discretized

noncommutative torus [20]. Recently an analogous construction has been worked out on a

fuzzy sphere [49].
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For the choice (4.8), detV in (4.7) is nothing but the phase of detAw, which is essen-

tially the fermion determinant of the Wilson-Dirac operator with r = −1 and M = 1/a.

Thus one can translate the result obtained for the Wilson fermion in the infinite mass limit

into the parity anomaly for the Ginsparg-Wilson fermion. In the commutative case this

is how the correct parity anomaly has been reproduced by [50] in the overlap formalism4.

In the noncommutative case, on the other hand, our results in the previous section with

r = −1 in the limit M →∞ implies that the parity anomaly obtained for Ginsparg-Wilson

fermions coincides with the result for Wilson fermions with r = −1 in the massless limit

M → 0.

As in the commutative case [24], the parity anomaly for the Ginsparg-Wilson fermion

suggests a natural definition of the noncommutative Chern-Simons term on the lattice.

Namely we define it as SCS in

eiSCS
def
=

detAw

|detAw|
, (4.10)

where Aw is defined by (4.9) with the covariant derivative (2.19) for the fundamental

representation. Here we remind the reader that AW is related to the infinite-mass Dirac

determinant as we discussed in the previous paragraph. According to our calculations, the

quantity SCS indeed becomes the noncommutative Chern-Simons action in the continuum

limit. In the continuum, on the other hand, noncommutative Chern-Simons term is known

to transform as [52]5

SCS 7→ SCS + 2πν , (4.11)

under a gauge transformation, where ν is the winding number characterizing this gauge

transformation. The gauge invariance requires the coefficient of the noncommutative

Chern-Simons action to be quantized. That eq. (4.10) defines SCS only up to modulo

2π is therefore not a problem for most practical purposes. Note in this regard that the

right-hand side of eq. (4.10) is indeed manifestly gauge invariant.

5. Concluding remarks

In the present paper we have studied the emergence of parity anomaly on the lattice for

three-dimensional noncommutative QED, both with fermions in the fundamental and the

adjoint representation. Induced Chern-Simons actions in noncommutative gauge theories

have been studied in the continuum in [23, 54] using the Pauli-Villars regularization (see

also [55] for an incomplete list of references). However, the main advantage of the lattice

analysis presented here lies in making explicit the dependence of the coefficient of the in-

duced Chern-Simons term on the regularization scheme used. Thus, the results obtained

in ref. [23] corresponds to the cases n = 0,−1 in our analysis using the lattice regulariza-

tion. Notice that the quantization of the scheme-dependent term in the effective action is

4See also [51] for an earlier work on the overlap formalism in odd dimensions, where a parity invariant

phase choice has been made.
5This gauge violation was also concluded in ref. [53], although it was overlooked in its first version.
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consistent with the star-gauge invariance of the fermion determinant under “large” trans-

formations [52], as required by the fact that the lattice regularization respects star-gauge

invariance.

We have also proposed a lattice-regularized Chern-Simons action on a noncommutative

torus using Ginsparg-Wilson fermions. As the lattice formulation of noncommutative field

theories has been useful to extract their interesting nonperturbative dynamics [15, 16, 18],

we hope that the lattice formulation of noncommutative Chern-Simons action is useful to

deepen our understanding of quantum Hall systems.

Finally we would like to emphasize that the lattice noncommutative field theories

studied in the present paper can be mapped on to a finite N matrix model. The anomaly

calculation in matrix models has recently attracted attention in the context of large-N

gauge theory [56, 57] and noncommutative geometry [58, 49]. We expect that the calcu-

lation method developed in this paper is useful to study various anomalies in noncommu-

tative geometry. In particular we would like to revisit the gauge anomaly cancellation in

chiral gauge theories on a noncommutative torus [20]. We hope that such developments

will eventually lead us to a deeper understanding of the stringy nature of the space-time

structure.
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A. Functional determinants

In the following we will provide an alternative calculation of the effective action Γ[A]eff on

the lattice by direct evaluation of the fermionic determinant (2.32). From the definition of

the Dirac-Wilson operator (2.17) and the expansion of the link field Uµ(x) in terms of the

lattice gauge field Aµ(x) (2.22), one can write

Dw =
∞∑

k=0

gkDw,k . (A.1)

Using this expansion, the effective action can be expressed as

Γ[A]eff = − log

[
det (Dw −M)

det (Dw,0 −M)

]

= − log det

[

1 + (Dw,0 −M)−1
∞∑

k=1

gkDw,k

]

= −Tr log
[

1 +
∞∑

k=1

gk(Dw,0 −M)−1Dw,k

]

, (A.2)
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which leads to the following series for Γ[A]eff :

Γ[A]eff = g2Γ2[A] + g3Γ3[A] + . . . (A.3)

with

Γ2[A] = Tr

{
1

2

[
(Dw,0 −M)−1Dw,1

]2 − (Dw,0 −M)−1Dw,2

}

(A.4)

Γ3[A] = Tr

{

− 1

3

[
(Dw,0 −M)−1Dw,1

]3
+
[
(Dw,0 −M)−1Dw,1(Dw,0 −M)−1Dw,2

]
−

− (Dw,0 −M)−1Dw,3

}

. (A.5)

By comparing with eqs. (2.34) and (2.35) we can identify each term in the previous equa-

tions with the contribution of a particular Feynman diagram.

A quick computation shows that for fermions in the fundamental representation the

operator Dw,k appearing in eq. (A.1) is given by

D
(fund)
w,k ψ(x) =

(ia)k

2ak!

d∑

µ=1

[

(r + γµ)Aµ(x)
?k ? ψ(x+ aµ̂) +

+ (−1)k(r − γµ)Aµ(x− aµ̂) ?k ? ψ(x− aµ̂)
]

, (A.6)

whereas when the fermions are in the adjoint representation the result is

D
(adj)
w,k ψ(x) =

(ia)k

2ak!

d∑

µ=1

k∑

m=0

(−1)m
(
k

m

)[

(r + γµ)Aµ(x)
?(k−m) ? ψ(x+ aµ̂) ? Aµ(x)

?m +

+ (r − γµ)Aµ(x− aµ̂) ?m ? ψ(x− aµ̂) ?

? Aµ(x− aµ̂) ?(k−m)

]

. (A.7)

In both expressions we have used the notation φ(x) ?n ≡
n

︷ ︸︸ ︷

φ(x) ? . . . ? φ(x).

In order to evaluate each term in eq. (A.4)-(A.5) it is convenient to work in momentum

space. In the following we will detail the calculation for fundamental fermions, leaving the

adjoint case for the reader. Using eq. (2.5) together with

Ãµ(p) = a3
∑

x∈ΛL,T

Aµ(x)e
−ip·(x+ 1

2
aµ̂) (A.8)

one can easily find the action of the operators in eqs. (A.4)-(A.5) on ψ̃(p). For the free

propagator we have

(Dw,0 −M)−1ψ̃(p) = −Q(p)−1ψ̃(p) , (A.9)
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whereas the result for Dw,1 can be written as

gD1ψ̃(p) =
ig

a3L2T

∑

q∈B

3∑

µ=1

{

γµ cos
[a

2
(p+ q)µ

]

+ ir sin
[a

2
(p+ q)µ

]}

e
i
2
θ(~p×~q) ×

×Ãµ(p− q)ψ̃(q)

=
1

a3L2T

∑

q∈B

3∑

µ=1

V (1)
µ (p+ q)W(1)

fund(p, q)Ãµ(p− q)ψ̃(q) . (A.10)

Here V
(1)
µ (p) and W(1)

fund(p, q) are defined in eqs. (2.26) and (2.27) respectively. For Dw,2

we arrive at

g2Dw,2ψ̃(p) = − ag2

2(a3L2T )2

∑

q,q′∈B

3∑

µ=1

{

r cos
[a

2
(p+ q)µ

]

+ iγµ sin
[a

2
(p+ q)µ

]}

×

× e
i
2
θ[~p×~q+~q ′×(~p−~q−~q ′)]Ãµ(q

′)Ãµ(p− q − q′)ψ̃(q)

=
1

2(a3L2T )2

∑

q,q′∈B

3∑

µ,ν=1

V (2)
µν (p+ q)W(2)

fund(p, q, q
′, p− q − q′)×

×Ãµ(q
′)Ãν(p− q − q′)ψ̃(q) . (A.11)

As in the previous case we have introduced the vertex function and the noncommutative

phase defined in eqs. (2.29) and (2.30) respectively. Finally, for Dw,3 the result is

g3Dw,3ψ̃(p) =
ag3

3!(a3L2T )3

∑

q,q′,q′′∈B

3∑

µ=1

{

r sin
[a

2
(p+ q)µ

]

− iγµ cos
[a

2
(p+ q)µ

]}

×

× e
i
2
θ[~q×~q ′+~q×~q ′′+~q ′×~q ′′+~p×(~q−~q ′−~q ′′)] ×

×Ãµ(q
′)Ãµ(q

′′)Ãµ(p− q − q′ − q′′)ψ̃(q) . (A.12)

This term is associated with the three-photon vertex in the diagramatic expansion that, as

argued in section 2.2, is irrelevant in the continuum limit.

We have seen that, when written in momentum space, all operators appearing in

eqs. (A.4)–(A.5) are expressed as finite matrices, Oψ̃(p) =∑q∈BO(p, q)ψ̃(q), whose traces
can be easily calculated. Let us begin with Γ2[A]. The first trace to be computed is

g2Tr

{
1

2

[
(Dw,0 −M)−1Dw,1

]2
}

=
1

2(a3L2T )2

3∑

µ,ν=1

∑

p,q∈B

Ãµ(p)Ãν(−p)× (A.13)

×tr
[

V (1)
µ (2q + p)Q (q + p)−1 V (1)

ν (2q + p)Q (q)−1
]

,

where “tr” indicates the trace over Dirac indices. In the same way, for the second trace

in (A.4) the result is

−g2Tr
[
(Dw,0 −M)−1Dw,2

]
=

1

2(a3L2T )2

3∑

µ,ν=1

∑

p,q∈B

Ãµ(p)Ãν(−p)×

×tr
[

V (2)
µν (2q)Q(q)−1

]

. (A.14)
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Adding these two terms to get Γ2[A] and extracting the kernel Πµν(p) defined in (2.33),

we recover eq. (2.36).

The cubic term Γ3[A] in the effective action can be computed along similar lines. The

first term in (A.5) gives

−1

3
Tr
{[

(Dw,0 −M)−1Dw,1

]3
}

=
1

3(a3L2T )3

3∑

µ,ν,σ=1

∑

p,q,q′∈B

Ãµ(q)Ãν(q
′)Ãσ(−q − q′)

×e i
2
θ(~q×~q ′)tr

[

V (1)
µ (2p+ q)Q (p+ q)−1 ×

× V (1)
ν (2p+ 2q + q′)Q

(
p+ q + q′

)−1 ×

× V (1)
σ (2p+ q + q′)Q (p)−1

]

, (A.15)

whereas the second trace renders

Tr
[
(Dw,0 −M)−1Dw,1(Dw,0 −M)−1Dw,2

]
=

=
1

2(a3L2T )3

3∑

µ,ν,σ=1

∑

p,q,q′∈B

Ãµ(q)Ãν(q
′)Ãσ(−q − q′)×

×e i
2
θ(~q×~q ′) tr

[

V (1)
µ (2p+ q)Q (p+ q)−1 V (2)

νσ (2p+ q)Q (p+ q)−1
]

. (A.16)

The third term Tr
{
[Dw,0 −M ]−1Dw,3

}
corresponds to the contribution of the tadpole

diagram which is irrelevant in the continuum limit. Adding together (A.15) and (A.16),

and identifying the kernel Πµνσ, we recover the result of eq. (2.37).

In the case of adjoint fermions, the calculation is analogous to the one describe above,

the main difference being the noncommutative phases. Again the results of section 2.3 are

recovered.

B. Evaluation of the Feynman integrals

In this appendix we will provide the reader with details of the calculation of some of the

Feynman integrals in sections 3.2.1 and 3.2.2. As explained above, we consider a hermitian

representation of the 2× 2 gamma matrices satisfying γµγν = δµν + iεµνσγσ. This implies

the following trace identities:

tr (γµγνγσ) = 2iεµνσ ,

tr (γµγνγσγλ) = 2 (δµνδσλ + δµλδνσ − δµσδνλ) ,
tr (γµγνγσγλγα) = 2i (δµνεσλα + δλαεµνσ + δσλεµνα − δσαεµνλ) ,

tr (γµγνγσγλγαγβ) = 2
(

δµνδσλδαβ + δµνδσβδλα − δµνδσαδλβ − δαβδµσδνλ +

+ δαβδµλδνσ − δλαδµσδνβ + δλαδµβδνσ + δλβδµσδνα −
− δλβδµαδνσ − εµνσελαβ

)

. (B.1)
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B.1 Fundamental fermions

As shown in [21], the integrand of the second term in eq. (3.7) has negative degree so the

continuum limit exists and gives rise to the integral

Iµν = −g2
∫

d3q

(2π)3
[1− T1(p)]

tr {γµ [M + i(q/+ p/)] γν [M + iq/]}
[M2 + (q + p)2] (M2 + q2)

. (B.2)

By using the trace identities (B.1) and writing the denominator as an integral over a

Feynman parameter

1

[M2 + (q + p)2] (M2 + q2)
=

∫ 1

0
dx
[
(q + xp)2 +M2 + x(1− x)p2

]−2
, (B.3)

one arrives at

Iµν = −2g2
∫ 1

0
dx

∫
d3q

(2π)3
[1− T1(p)]×

×
{

Mεµναpα − 2qµν + 2x(1 − x)pµpν +
[
M2 + q2 − x(1− x)p2

]
δµν

}

×

×
[
q2 +M2 + x(1− x)p2

]−2
. (B.4)

The final result (3.10) is readily obtained by computing the momentum integral. Note that,

because of the zero-momentum subtraction, the integral in (B.4) is free of divergences.

We now evaluate the function A(p1, p2)fund in (3.12). The relevant integral to calculate

is the continuum limit of eq. (3.14) which can be cast into

Iµνσ = −ig3
∫

d3q

(2π)3
[1− T0(p1, p2)]×

×
tr
{

γµ [M + i(q/+ p/1)] γν [M + i(q/+ p/1 + p/2)] γσ(M + iq/)
}

[M2 + (q + p1)2] [M2 + (q + p1 + p2)2] (M2 + q2)
. (B.5)

In order to compute A(p1, p2)fund we need to retain only those terms proportional to the

Levi-Civita tensor εµνσ. By expanding the trace in the numerator and using eqs. (B.1) it

is straightforward to check that only two terms, proportional to M 3 and M , contribute to

A(p1, p2)fund, namely

A(p1, p2)fund = 4Mg3
∫

d3q

(2π)3

∫ 1

0
dx1

∫ 1−x2

0
dx2 [1− T0(p1, p2)]×

× M2 + q2 + (p1 + p2) · q
{

[q + (x1 + x2)p1 + x2p2]
2 +∆

}3 , (B.6)

where we have reduced the denominator of (B.5) by introducing Feynman parameters and

∆ is defined in eq. (3.16). The integral can be easily evaluated using standard techniques

to find the result given in eq. (3.15).
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B.2 Adjoint fermions

In the case when the fermions are in the adjoint representation, the evaluation of the Feyn-

man integrals is more involved due to the presence of noncommutative phases dependent

on the loop momentum. Let us focus first on the two-point function. As explained above,

contrary to the planar part where the tadpole diagram introduces the zero momentum

subtraction that makes the whole amplitude finite, in the nonplanar sector the tadpole

diagram cancels exactly. This can be seen by noticing that, up to a total derivative term

that cancels in the continuum limit, the nonplanar contribution of the tadpole diagram in

the continuum limit is given by

Πµν(p, θ)adj

∣
∣
∣
tadpole

= −4g2
∫

d3q

(2π)3
(M2 + q2)δµν − 2qµqν

(q2 +M2)2
cos [θ(~p× ~q)] +

+4g2θ(p)ν

∫
d3q

(2π)3
qµ

q2 +M2
sin [θ(~p× ~q)] . (B.7)

The relevant integrals can be easily solved in terms of modified Bessel functions of the

second kind (ω ∈ R):

∫
d3q

(2π)3
2qµqν − q2δµν
(q2 + ω2)2

eiθ(~p×~q) =
1

8π

√

2

π
|ω| 32 (θ|~p|) 1

2 × (B.8)

×
{

K 1
2
(θ|~p| |ω|) δµν − 2K 3

2
(θ|~p| |ω|) θ(p)µθ(p)ν

θ(p)2

}

,

∫
d3q

(2π)3
eiθ(~p×~q)

(q2 + ω2)2
=

1

8π

√

2

π
|ω|− 1

2 (θ|~p|) 1
2K 1

2
(θ|~p| |ω|) , (B.9)

∫
d3q

(2π)3
qµ

q2 + ω2
eiθ(~p×~q) =

i

4π

θ(p)µ
θ(p)2

√

2

π
(θ|~p|) 1

2 |ω| 32K 3
2
(θ|~p| |ω|) . (B.10)

Substituting these expressions into (B.7) one finds a cancellation between the different

terms.

As for the nonplanar part of the two-point function coming from the first diagram in

eq. (2.34), the relevant integral to evaluate is

Iθµν = −g2
∫

d3q

(2π)3
tr {γµ [M + i(q/+ p/)] γν [M + iq/]}

[M2 + (q + p)2] (M2 + q2)
eiθ(~p×~q) . (B.11)

Here one can follow the same steps as in the case of fundamental fermions, leading to

Iθµν = −2g2
∫ 1

0
dx

∫
d3q

(2π)3
× (B.12)

×Mεµναpα − 2qµν + 2x(1− x)pµpν +
[
M2 + q2 − x(1− x)p2

]
δµν

[q2 +M2 + x(1− x)p2]2
eiθ(~p×~q) .

Once more, by using (B.8)-(B.10) one readily finds the expressions (3.20).

To conclude, we outline the calculation of the function A(p1, p2, θ)NP in eq. (3.21). As

in the case of the two point function, the only difference with respect to the planar part
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analyzed in the previous subsection [cf. eq. (B.6)] is the presence of the noncommutative

phase. This yields

A(p1, p2, θ)NP = 4Mg3
∫

d3q

(2π)3

∫ 1

0
dx1

∫ 1−x2

0
dx2 ×

× M2 + q2 + (p1 + p2) · q
{

[q + (x1 + x2)p1 + x2p2]
2 +∆

}3W(p1, p2, q)NP, (B.13)

where the phases are given in eq. (3.23). Because of the structure of the noncommutative

phases, A(p1, p2, θ)NP is indeed a sum of terms of the form (3.24). After shifting the loop

momentum, the integral can be evaluated with the help of eq. (B.9) together with

∫
d3q

(2π)3
qµe

iθ(~p×~q)

(q2 + ω2)3
=

i

32π

θ(p)µ
θ(p)2

√

2

π
|ω|− 1

2 (θ|~p|) 5
2K 1

2
(θ|~p| |ω|) ,

∫
d3q

(2π)3
eiθ(~p×~q)

(q2 + ω2)3
=

1

32π

√

2

π
(θ|~p|) 3

2 |ω|− 3
2K 3

2
(θ|~p| |ω|) . (B.14)

In our case the constant ω is replaced by ∆. Thus, for large values of the fermion mass

and at fixed incoming momenta the argument of the Bessel functions is very large and the

corresponding integrals vanish exponentially. In the same way, if M → 0 at finite momenta

∆ is nonzero and the corresponding integrals remain finite. Thus, because of the presence

of an overall power of M in front of (B.13), all the integrals contributing to the function

A(p1, p2, θ)NP will vanish in that limit.
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