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1. Introduction

Quantum eld theory on noncomm utative spaces has been a subfct of m uch activity in
recent years (see [1, 2] for com prehensive review s). T his attention was originally triggered
by its Intim ate relationship with string theory, but the study of noncomm utative eld
theories has Interest in its own. From a m athem atical physics point of view they provide
usw ith a classofnonlocalquantum eld theories w hich nonetheless seem to bewellde ned.
A Iso, since noncom m utative eld theordes are essentially theories of dipoles [3]they can be
also usefulin the analysis of systam sw ith dijpolar excitations in condensed m atter physics.

In this context, noncom m utative Chem-Sin ons (NCC S) theory in (2 + 1)-din ensions
is specially appealing because of its applications to quantum Hall system s [4, 5]. H ere the
noncom m utativity is introduced only in the spatialdirection and the resulting deform ation
of the ordinary gauge invariance into \stargauge Invariance" is essential for the description
of the system which has the area preserving di eom orphian invariance [4]. Ram arkably, a
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niteN m atrix m odelof NCC S theory is found to have physical states w hich have one-to—
one correspondence w ith Laughlin—-type w ave functions [6]. Tthasalso been pointed out that
instabilities of the NCC S theory can describe the transition to the W igner crystal, where
spontaneous breakdow n of translational Invariance is caused by the noncom m utativity [7].
In studying noncomm utative eld theordes it is often useful to consider its m atrix—
m odel description. This is rem hniscent of its string/M -theoretic connections [8, 9]. Here
the space-tim e degrees of freedom and the intermal (\color") degrees of freedom are treated
on equal footing, and \stargauge invariance" is sin ply described by the global U (1 )
symm etry which actson them atrix indices. Them atrix m odeldescription is also usefulfor
regularizing noncom m utative el theories [9,10,11,12,13], since niteN tw isted reduced
m odels [14] are Interpreted as a lattice form ulation of noncom m utative eld theories [11,
12,13]. Such a lattice form ulation provides them ost reliable m ethod to study the quantum
dynam ics of noncom m utative eld theories in a fully nonperturbative m anner. R ecently,
the lattice requlatization hasbeen applied to two-din ensional noncom m utative Yang-M ills
theory [15, 16], where (nonperturbative) renom alizability was dem onstrated for the st
tin e In a noncom m utative eld theory (see also [17]). T here the sam e theory was shown
to have an intriguing Infrared property which m ay be describbed as the A haronov-Bohm
e ectw ith them agnetic el denti ed w ith the Inverse noncom m utativity param eter. T he
Jattice form ulation has also been used to explore the phase diagram of noncom m utative
scalar eld theordes [16, 18], which is expected to be richer than in the com m utative case,
as indicated by a selfconsistent H artree approxin ation [19]. In particular, as con jctured
by R ef. [19], the orderaed phase is found to split into a uniform ly ordered phase and a phase
dom inated by the stripe pattem. In the latter phase, nonzero m om entum m odes acquire
vacuum expectation values, and therefore translational invariance is spontaneously broken.
Theain ofthispaper istwo-fold. Firstwe form ulate perturbation theory for the lattice
noncom m utative gauge theory. A lthough the m ost In portant virtue of the lattice regu-
larization lies In its capability of nonperturbative studies, it has also been used to clarify
subtle issues In perturbative agpects of gauge theories. W e consider this particularly in —
portant because the Jattice construction of noncom m utative chiral gauge theories suggests
a new m echanian of gauge anom aly cancellation, which is not yet known in the continuum
[20]. A s an application of the Jattice perturbation theory, we pick up a noncom m utative
version of three-din ensionalQ ED , w here the Jattice calculation indeed plays a crucialrole
in revealing peculiar properties of the parity anom aly, given in termm s of noncom m utative
Chem-Sin onsaction. T he coe cient of the anom aly is lJabelled by an integer depending on
the lattice action, w hich isa counterpart of the phenom enon observed by C oste and Luscher
[21]1in the com m utative theory. T he com m utative 1im it is am ooth w hen the ferm ions are in
the fundam ental representation, but it is not for ferm ions in the ad pint representation due
to a characteristic property of noncom m utative eld theories known as the UV /IR m ixing
[22]. A's a special case our result includes Chu’s result [23] obtained in the continuum by
using the PauliV illars regularization.
Anotheraim ofthiswork is to construct a lattice regularization ofNCC S theory, w hich
has in portant applications to quantum H all system sasm entioned above. In general,de n-—
ing a Chem-Sin onsterm on the lattice is not straightforw ard due to its topological nature.
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A recent proposal [24] is to utilize G ingpargW ilson fermm jons in odd dim ensions and to
de ne the Chem-Sin ons term using the parity violating part of the e ective action in-
duced by the ferm ion. W e show that this proposal works also in the noncom m utative
case. Aswe mentioned above, the parity anom aly in the threedin ensional noncom m u-
tative QED is given by the NCCS term in the continuum lim it of the lattice theory we
started with. The sam e result can be obtained from G inspargW ilson ferm ions, where
the m asslessness is gquaranteed at nite lattice spacing. T his suggests a natural de nition
of the latticeregularized Chem-Sin ons theory on a noncom m utative torus, which could
enable nonperturbative studies of quantum Hall system s. In this regard, we recall that a
niteN m atrix m odel has been proposaed as a regularized description of NCC S theory on
a cylinder [25]. A lthough our theory can also bem apped to a niteN m atrix m odel, the
tw 0 proposals appear to be quite di erent.
T he rest of the paper is organized as follow s. In Section 2, we review the lattice for-
m ulation of noncom m utative gauge theories and form ulate a perturbation theory based on
Feynm an rules. In Section 3, we present calculations of the parity anom aly in noncom m u—
tative Q ED . In Section 4 we discuss the parity anom aly using G insparg-W ilson ferm ions,
which leads to a proposal for a Jatticexegularized noncom m utative C hem-Sin on theory.
Section 5 is devoted to sum m ary and discussions. Finally, in Appendix A a calculation of
the parity-violating termm s in the e ective action by the direct evaluation of the ferm ionic
determ inant is presented, while A ppendix B contains som e details of the com putation of
the Feynm an integrals involved in the diagram m atic calculation of Section 3.

2. Lattice perturbation theory in noncom m utative geom etry

In this section we begin by review ing the lattice form ulation of noncom m utative gauge
theories developed In Ref. [11, 12, 13] (see [26, 27, 28] for review s). In the literature it
iscommon to start from a niteN matrix m odel, which is then shown to be equivalent
to the Jattice form ulation of a noncom m utative eld theory. Indeed, the m atrix m odel
representation has proven useful for num erical analyses [15,16,18,20]. Here we w ill w ork
directly w ith the lattice form ulation and derive the Feynm an rules, which are used in the
perturbative evaluation of the e ective action induced by ferm ions. A Ithough we w ill focus
on noncomm utative QED in d = 2m + 1 dim ensions, the lattice perturbation theory can
be form ulated for any other noncom m utative eld theories in the sam e way.

2.1 N oncommutative Q ED on the lattice

In noncom m utative geom etry, space-tin e coordinates are treated as H erm itian operators
obeying the commutation relation R ;R 1= 1 , where is a real antisymm etric
matrix. In (2m + 1) din ensions, due to a property of antisym m etric m atrices, coordinates
can alwaysbe chosen In such a way that one of them com m utesw ith all the others, resulting
n

RijR5]= 1 155 RijRql= 0, (Lj= L;:::72m ) 5 (2.1)
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w here, for sim plicity, the 2m 2m noncomm utative m atrix ;5 is taken to be of the form
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W e regard the comm uting coordinate R4 as the Euclidean tim e after the W ick rotation.
Field theories on a noncom m utative geom etry can be obtained by replacing an ordinary ed
(x) by an operator (R). An equivalent way to describe noncom m utative eld theories,
which we are golng to use iIn what follow s, is to keep the ordinary eld (x) but to replace

the ordinary product of elds,say 1(x)and »(x),by the starproduct

i !
1xX)? 2(x)= 1(x)exp > @@ Lx): (2.3)
In order to consider the lattice reqularization of such theories, we introducea (2m + 1)-
din ensional toroidal Jattice 1 7 de ned by

LT = (xl;:::;xd)ZaZd a— X a— ; (24)

where a is the Jattice spacing and L1 = L, = B L,Lg= T.W e have assum ed
L;T 2 N to be odd [13]. The din ensionful extent of the lattice is ‘= alL iIn the 2m
spatial directions and = aT alng the Euclidean tine. The elds on the lattice are
assum ed to obey the periodic boundary condition in alldirections'.

In order to construct a lattice counterpart of the starproduct (2.3), we de ne the
Fourder transform %
“(p)= a’ (x)e ¥ ; (2.5)

X2 u;T
w here the lJattice m om entum p is discretized as

2 n
p = ; n 212; (2.6)
aL

and theFourierm odes ~(p) areperiodicundern 7 n + L . Then the lattice starproduct
can be de ned through its Fourder transform as

1 X

1?7 2(p)= exp Elij(p Qg e %@ 2.7)

adrd tT
w here the noncom m utativity param eter is taken to be

1
=-La’: 28)

'To ormulate a  nitetem perature eld theory, the boundary condition in the tin e direction has to be
taken antiperiodic for ferm ions.
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Here and henceforth we assum e that the sum m ation over a m om entum is restricted to the
Brillbouin zone; nam ely (2.6) w ith (L 1)=2 n (L 1)=2 .

T he above Jattice form ulation naturally results from m atrix m odel description of non—
comm utative eld theories, and m ost in portantly it preserves all the algebraic properties
of the starproduct. M oreover the de nition (2.7) is consistent w ith the periodicity of
the Jattice m om entum (2.6) due to (2.8). O ne can also rew rite this de nition (2.7) in an
ntegral form as

1 X X
1,2m
y =

L) 2 o) = Lyt 2(zit)e 20 Do ba vt 25, (29)
w here the summ ation over y and z is taken only over the gpatial lattice. T his expression
is consistent w ith the periodicity of the elds again due to (2.8). A s is clear from these
observations, the Jattice reqularization ofnoncom m utative eld theories inevitably requires
the noncom m uting directions to be com pacti ed in a particular way (2.8) consistent w ith
the noncom m utativity. Thisre ectstheUV /IR m ixing [22]ata fully nonperturbative level
[12,13].

U ltin ately we have to take the continuum Im it a ! 0,and the Jattice size should be
senttoin nity L;T ! 1 . These two lin its should be taken m ore carefully in noncom m u-
tive eld theories than in com m utative ones because we have an extra scale param eter
related to a and L by (2.8). In any case we have a hierarchy of the scales

[
a ‘ (2.10)
In the regularized theory. In order to obtain nite , the physical extent of the spatial
direction * = aL should inevitably go to in nity. The extreme case ! 0 is generally
di erent from the com m utative theory (wWwhere = 0 for nitea),aswe see lJater in concrete
examples. Thelm it T ! 1 in the tin e direction can be taken as in com m utative theories,
and one can have arbitrary  independently of and ‘.
TheU (1) gauge eldscan be puton the lattice by

x+a”
U (x)=Pexp, ig A (s)ds
X
)é- Z x+a” z x+a” z x+a”
= (ig)" d; do dn
n=20 X 1 n 1
A (1)?2A (2)7 CA); (2.11)

where A (x) is the (real) gauge eld in the continuum . T he path-ordering is necessary
even in the U (1) case, because of the noncom m utativity arising from the starproduct.
Note also that U (x) is notunitary, but it is \starunitary",

U x)?U0 (x) =U (x) 20 (x)=1: (212)

The continuum gauge eld A (x) transform s under the \stargauge transform ation" as

A )7 gx)?A (x)?2gx) §g<x>? gV ; (213)

@x
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where g(x) is also starunitary. Under this transform ation, the link eld U (x) de ned by
(2.11) transfom s as

U x)7 gx)?2U0 x)?2gx+ a”) : (2.14)

T he Jattice action for the gauge eld is given by

X X
Sg = U x)?2U0 x+a™M?20 x+a™) 20 (x) ; (2.15)

X2 N 6

w hich is nvariant under stargauge transform ation (2.14).
T he ferm Jon action isde ned by

X
Sp = a’ x)? (D, M) (x); (216)

X

where D, is the D iracW ilson operator

lxd h i
Dy, = 5 (r +r )+ rar r : (2.17)
=1

T he expression of the forward and backward covariant derivatives depends on the trans-
form ation properties of the ferm ion eld. In the case where (x) transform s in the fiinda-
m ental representation

()T gx)? (x); =)7T  &)?gx) ; (2.18)

they are given respectively by

[ ®k) U@ a")? (x al: (2.19)
O n the other hand, when ferm ions transform in the ad pint representation

x)7T gx)? &)?2g9(x); x)7T gx)? &)?2gx) ; (2.20)
the forward and backward covariant derivatives are respectively de ned by
U x)? &x+a")?0 () (x)]
[ x) U&x a™)? x a™n?20x am)]: (2.21)

In either case, the ferm ion action (2.16) is stargauge invariant.

The second term in the D iracW ilson operator (2.17) is the W ilson term , which is
Introduced to give species doublers a m ass of order O (1=a). In the original proposal, the
coe cient r was taken to be unity, but it can take other values, even negative ones, as far

as its m agnitude is of order one.
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2.2 Feynm an rules

Let us proceed to form ulate the perturbation theory for the noncom m utative Q ED on the
lattice. As In the comm utative case we start with expanding the link variable U (x) In
term s of the lattice gauge ed A (x) as

U (x) = exp, fiaghA (x)g
g2a2
1+ igaA (x) TZ—\ (X)?A (xX)+ :::: (2.22)

Note that U (x) is starunitary if and only ifA (x) is real. T he Feynm an rules are read
o from the action (2.16) expressed In term s of the Fourder transform ed elds X (p), ~(p)
and " (p). T he ferm ion propagator is given by

1
P —— = M+5rap2 i p 0m@?t ; (2.23)

w here we have introduced the notation

P = Esjn }ap ; P = }sjn(ap ) : (224)
a 2 a

T hat the ferm ion propagator (2.23) is dentical to the one for the com m utative lattice Q ED
is because the -dependent phase arising from the starproduct (2.7) disappears trivially
In the quadratic term in the action (Setp = 0 In (2.7) and consider the antisymm etry
of i5). The e ect of the noncom m utativity will show up only In the interaction vertices
in the form of a phase depending on them om enta ow ing into them . For the onephoton
vertex we nd

d
K »w-< =W Y v erq; (2.25)
P
w here we have de ned
V(l)(p)= jgn cos %p + irsin gp ° : (2.26)

The factor W ) (p;q) represents a sum of -dependent phases, which depends on whether
the ferm ions couple in the findam ental or the ad pint representation

(1) i
W, piq) = e ®9

1) L a)

W adj(p;q) = e2 e 5 P . 227)

Herewe have denoted a DB "ajb. ,where "y is them atrix de ned in (2.2).
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For the vertex w ith two photonswe nd,

>< = W PE;gk;) V@ e+ q); (2.28)

n o
V(z)(p)= a<f ¥ CoS Ep + 1 s P : (2.29)
2 :

where we de ned

N W

The factor W @) (p;q;k;1) is now given by

2) 1 k1
W ogog Pigik;) = e2 B R D

(2) i k1 i k1 i W K S K+1
Wadj(p;q;k;l): ez ot )4 ez (Pat ) g P FKaq g P X1q) :(2.30)

Above we assum ed that the photon m om enta are entering into the vertex.
In addition, for each vertex there is a K ronecker delta m om entum conservation

LT o g (2.31)

together w ith a sum m ation over an intermalm om entum for each loop ﬁ P o Finalky,
each ferm jon loop will carry a m inus sign. Vertices w ith m ore than two photon lines can
be obtained in a sin ifar way.

Together w ith the ferm ion propagator (2.23), the Feynm an rules of noncom m utative
lattice QED also requires the photon and ghost propagators as well as the photon-ghost
and photon selfinteraction vertices. In the case of the propagators, because the bilinear
term s in the action are Independent of the noncom m utativity param eter, they are dentical
to the one for ordinary QED [29]. For the Interaction vertices, as it is also the case in
the continuum [30], they can be read o from the ones for nonabelian com m utative gauge
theories given in [29]by sin ply replacing the structure constants of the gauge group by the
appropriate noncom m utative phases. In the calculation of the e ective action, how ever,
we w ill need only the ferm ion-photon vertices.

2.3 Perturbative evaluation of the e ective action

The e ective action for the gauge eld isde ned In tem s of the ferm ion determ inant as

UL - pg GeE@. M) o5
e~ P GctDe, M) '

whereD ,, o istheD iracW ilson operator (2.17) evaluated for the trivialgauge con guration
U (O)(x) = 1.ExpandingU (x)with respecttoA (x)asin (222),thee ectiveaction A le
can be written in m om entum gpace as

Bl = };X A (PA ( p)
+ };X (Pia)A (PA @A ( )+ it (2.33)
3(adelT)2 p/q p q p q et

pa
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(p) = "O" + D (2.34)
) 1
(piq) = P\- + Dv + cyclic perm . + E D (2.35)

In fact, diagram s containing vertices w ith three or m ore photons are irrelevant in the
continuum I it since they are weighted w ith higher pow ers of the lattice spacing a [29,311.
T herefore we can om it the last diagram In (235). Applying the Feynm an rules, we thus
obtain the follow Ing expression.

T he kemels ), (p;q) can be com puted using the diagram m atic expansion?

N

1 X h . 1i
)= g7 T VT@+po@rp VP po @

W @a+rp)w Ygr pia)

1 X h 2 ll 2
oy T VPeoo@’ W @@ p) i (2.36)
a9
X h )
. - - (1)
(P1ip2) = ALd it tr V7 (2g+ p)Q @+ pr)

i
VP 2g+ 2o+ P20 @+ pr+ p2) VP g prt )0 (@
WY @ig+ poW P g+ prigt Pt p2)

W g+ pr+ pria) |
1 X n h i
(1) 1 (2) 1
T oadnd it tr V7 2g+ pQ @+ p) o VT 2a+ P (@)
q

w Y @g+ p)W ‘2)0(q+ P2 B R)
+ cyclic pemm utations ; (2.37)

where by \cyclic pemm utations" we indicate the contributions of the other two diagram s
obtained from the second one In Eq. (2.35) by perform ing cyclic perm utations on the labels
of the extermal legs. T he expressions for the com m utative case can be obtained sin ply by
om itting the factorsW ), W @) i the above equations.

3. The parity anom aly in 3D noncom m utative Q ED

From now on we w ill consider the three-din ensional case (ie. d 2m + 1= 3) and study
the parity anom aly In noncomm utative Q ED on the lattice. Parity anom aly has been
studied intensively in com m utative gauge theories, both in the continuum [32, 33]and on
the Jattice [21]. It has a w de application in condensed m atter physics [34] including the

2T he com binatorial factors in front of the diagram s take Into account the overall factors of % and %
m ultiplying the corresponding term s in the e ective action.
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quantum Halle ect [35]. W ew ill rstbrie y review the known results in the com m utative

case.

3.1 A brief review of the com m utative case

In threedin ensionalm asslessQ ED there isa con ict between parity sym m etry and gauge
nvariance at the quantum Jlevel. A s pointed out In [36] and elaborated In [32], a parity
nvariant regularization of the ferm ion determ inant leads to non-invariance of the one-loop
e ective action under large gauge transform ationsdue to the spectral ow ofthe elgenvalues
of the D irac operator, a phenom enon sin ilar to the one behind W itten’s global anom aly
[37]. On the other hand, a gauge invariant reqularization of the theory, lke PauliV illars,
induces a Chem-Sin ons action at one loop that breaks parity invariance, w ith precisely
the coe cient required to com pensate the variation of the m assless ferm ion determ inant
under large gauge transform ations.

D espite any sin ilarities, parity anom aly in threedin ensional Q ED is di erent from
ordinary anom alies In that the coe cient of the anom aly depends on the regularization
schem e. T his peculiar aspect of parity anom aly has been clari ed by Coste and Luscher
[21 ] by using the lattice regularization, w hich provides the m ost rigid way to calculate the
anom aly while preserving gauge invariance. Here we summ arize the m ain results of R ef.
[21]. First, when M ! 0, one obtains in the continuum Ilim it

1 1 1 5

Iim (p)=2— n+ — P+ (e

- : 31
Mo 2 1693 PP ) (31)

T he term proportional to the Levi€ wwita tensor is parity odd, and hence signals the parity
anom aly. (N ote that the continuum action foram assless D irac ferm ion In three din ensions
is Invariant under parity transform ation.) T he coe cient of the parity anom aly Includes a
param eter n, which can take any integer value depending on the lattice action chosen, ie.
on the details of the ultraviolet regularization. T he essential point, however, is that this
regularization am biguity doesnota ect the existence of the parity anom aly itself, since this
isalways nonzero forany n 2 Z . For the standard W ilson ferm ion, one obtainsn = 0; 1,
depending on whether the sign of the W ilson termm is positive or negative. In this case
the parity anom aly arises because the W ilson term breaks parity on the lattice, and this
breaking persists in the continuum lim it. On the other hand, if one uses the G insparg-
W ilson ferm ion, whose action is Invariant under the generalized parity transform ation, the
parity anom aly (3.1) arises from them easure [24], thus realizing Fujkawa’s philosophy for
anom alies at a fully reqularized level.

In the in nitem ass lin it, on the other hand, the result for the vacuum polarization is

given by
Iin (P)= —n p
M ! o+1 2
) 1
Iin P)= —m+ 1) p (32)
M! 1 2

where the integer n is the sam e param eter as the one introduced in (3.1) for the sam e
lattice action. Thus in general the ferm ion does not decouple com pletely in the in nite
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m ass lin it but it leaves behind a certain local term as a ram nant. In fact the freedom
of the integer param eter n in both (3.1) and (3.2) is closely related to the fact that the
rem nant (3.2) depends on the sign ofthe lim it M ! 1 . By choosing di erent Jattice
action, one essentially introduces di erent num bers of heavy ferm ions which have m asses
of order O (1=a). The sign of them asses can be assigned as one w ishes, and this results in
the arbitrariness represented by n.

3.2 The noncom m utative case

Before we present our results on the noncom m utative case, let us ram ark on what we
m ean by \pariy" when we discuss parity anom aly in noncom m utative Q ED . C onventional
parity refers to a re ection in one spatial direction. In the Euclidean form ulation in three
din ensions, one can com bine the conventional parity transform ation w ith the 180 degrees
rotation In the rem aining two directions, to arrive at the transform ation

A (x)7 A( x); (3.3)

w hich leaves them assless D irac action in the continuum invariant. In the noncom m utative
case, the introduction of the noncom m utativity m atrix breaksparity in the conventional
sense, but it preserves the invariance under (3.3). It is this nvariance of them assless D irac
action that we refer to when we say ‘parity anom aly’ in noncom m utative Q ED .

O ur next task is to com pute the e ective action (2.32) as discussed in Section 2.3 and
to see how the results 0f C oste and Luscher [21 Jarem odi ed by noncom m utative geom etry.
W e analyze separately the cases of ferm ions In the findam entaland ad pint representation.
W e will use a representation of the three-din ensionalD irac m atrices satisfying

= + 1 ; (34)
w here the m atrices are taken to be Hem itian ¥ = .Hereafterwewill x the sign ofM
by dem anding M 0.
3.2.1 Fundam ental ferm ions
W e begin with the coe cient (p) of the bilnear term In the e ective action (2.33)

for the gauge eld. For fundam ental ferm ions the noncom m utative phases n Eq. (2.36)
cancelout. T he resulting expression is exactly the sam e as in the com m utative case and in
particular the resultdoesnotdepend on how wetakethelmitsL ! 1 ,T ! 1 anda! O,
as far as the physical extent of the spacetime (‘= al and = aT ) goes to In nity. For
instance wem ay take the large volume Iimit L ! 1 and T ! 1 at xed Jattice spacing
a and then take the continuum Ilmita ! 0. Then the rest of the calculation proceads
exactly as iIn Ref. [21]. Let us introduce the sym bol
X< 1 en

Tx(P)IE (p) = — =) ; (3.5)

0 n!'ee

=0
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which represents a Taylor subtraction at zero m om entum . Thus, In the in nite volum e
Iim it, (P)fuing Can be rew ritten as

Z

1 p 1
©)fana = 9

@QO@Q g+ > @ Q@ ;(36)

Q.
w
Q
N g

where the arge volume Imit L ! 1 and T ! 1 has been taken and consequently
the m om entum sum has been replaced by the integral in the Brillouin zone B = fqg 2
R3 3 ( =a) q ( =a)g. T he subtraction of the zero extermalm om entum contribution
com es from the tadpole diagram in the st line of Eq. (2.34). By using the dentity
I TEEP=0101 TEIEE+p @ £(0)wecan write, after som e algebra,

(P)fina = gZaZo P (3.7)
d’q p ! p 1
2
tr = = 7
g L@ )3[ 1P)ltr 0 g > @Q@ao quz @ Q@
and
1 Z
=3 44 To@'eo@o@leo@o@iEo@  (38)
B
Asshown in [21], a9 = %n is a topological num ber, where the integer n depends on the

param eter r, but not on the lattice spacing.

Because of the subtraction at zero m om entum , the integral in the second temm on
the right hand side of (3.7) has negative degree so, according to R eisz theorem [38], its
continuum lin it is given by the integral overm om entum space of the 1 it of the integrand
whena ! 0.0n symm etry grounds, the two-point function in the continuum has the form

z ® ®

P)=A(P) p +BPIP pp )+ C(p) o7 ; (39)
where (p) p . From the previous expressions, we nd for the case of ferm ions in
the fundam ental representation

241 n e

- 2 ) 2 2

A(mna = gao+ — dx 1 M MZ+x(1 x)P ;
2 %1 too
1

_ 9 2 2

B(Plna = - dxx(l x)M 7+ x(Q x)g 2 ;
0

C (P)aung = O : (3.10)

In thelmisM ! O,M ! 1 ,we obtain results dentical to the com m utative case (3.1),
(32).

Let us procead to com pute the coe cient (p) of the trilinear term in the e ective
action (2.33) for the gauge eld. Two types of diagram s contribute to this term . In
both cases it is easy to check that the corresponding noncom m utative phases are dentical
and factor out of the sum over the loop momentum . The sum multiplying the global
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noncom m utative phase is lndependent of , and it can be evaluated in the sam e Iim it as
before. Thus we arrive at the expression
Z
3 h

i d’g
(rip2dang = & P2 o=sm VI Ra p0 @+ P (311)
B

i
VP 2g+ 2o+ P20 @+ Pt p2) VP g prt )0 (@

Z
1 i a 1 1
+ Ze2 = p2) q3t|_’ v (1) (2q)Q q E v (2) (2q)Q g+ g
2 g (2 ) 2 o 2
+ [cyclic permutations: ( ;1) ! (;2)! (; - ®)1 5

where we have taken the hrgevolume lmitL ! 1 and T ! 1 ,butthe continuum Ilin it
is yet to be taken. In general, the threepoint function can be w ritten as

©102)mna = € ® PR (p1ipo)ana + it (312)

where \:::" stands for tem s proportional to rank-three tensors constructed in termm s of the
incom ing m om enta. By looking at the low m om entum expansion we nd that

A (P1iP2)ana = Jao+ O (0°); (313)

where ag is given again by Eqg. (3.8). The rem aining m om entum -dependent contribution
can be obtained by evaluating

d’q " (1) 1 @)
It L DEp)lr V5 Q2a+ p)Q (g+ p) - V' (2g+ 2p1 + p2)
B .
i
0 @+p+p) VPRg+ pr+ p)0 (@7 (3.14)
and keeping the termm s proportional to . Here we have denoted Tq (p;9)f (p;q) = £(0;0).

Note also that the second group of term s in (3.11) does not contribute to A (P1 ;02 )fund r
since they are symm etric In two of the indices.

In order to retrieve the continuum lin it of (3.14) we nesd to check that the relevant
term s of the integral on the right-hand side converges to the continuum Feynm an integral.
By writing the integrand as V (g;p1/p2/M ;a)=C (Q;p1;p2/M ;a) we nd that degV 8,
whereasdegC = 12, so the degree of divergence of the integrand is 3+ degV ~ degC 1,
and the contribution of the Integral in the continuum Iin it is given by the integral over the
loop mom entum ofthea ! 0 lin it of the integrand. A careful evaluation of the resulting
integral using Feynm an param eters show s that (see A ppendix B for the details)

gBZl 1y, h i
g-"imOA(pll'pZ)ﬁmd: Jag > dxq dx; 1 M M?+ ) 2
! 0 0
g’ zzl o ex)d om wm)
—M pj dx; dxo, 3
4 0 0 ™2+ )z
Z Z
3 1 1 x1 %5 (1
I M2 ax ax, 22t %) (315)
4 0 0 ™2+ )2
g 1 axn 0w wm)
—Mpr P dx dxo 3 ;
8 0 0 ™2+ )2
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w here for shorthand we have w ritten

(x1+ x)(1  x®  w)PP+ x(1 mPE+ 21 x %o o (316)

From these resultswe see that the cubic term in the noncom m utative C hern-Sinm ons action
anerges in the limitsM ! Oand M ! 1 with coe cients consistent w ith the quadratic
term calculated above. T his is expected from the stargauge nvariance, w hich ism anifestly
preserved in the lattice regularization.

It is sraightforward to calculate now the e ective action [A ]éﬁmd) In position space
for m assless ferm ions. By using Egs. (3.10) and (315) in thelmitM ! Owe nd for the
parity violating part

2 3
(and) _ 9 1 d’p
= = n+ = K (P& 317
Bl S 0t @, PE (PP (3-17)
3 3 3
g 1 d’pr d'p (
Z n+ = K (o)X (pp)E ™ P2,
e "t P ©7 PAE P2)K ( p ple?

Perform ing the inverse Fourier transform on £ (p) and de ningA (x)= igA (x)we nally
arrive at

2
d>x A Q@A +§A 2A ?A (3.18)

In particular, since the NCC S term is not Invariant under the parity transform ation (3.3),
we have a parity anom aly as in the com m utative case.

It is in portant to notice that n the ! 0 lin it we retrieve the results obtained in
Ref. [21] for ordinary (commutative) Q ED . The fact that the com m utative lim it tumed
out to be an ooth in the present case is due to the cancellation of the noncom m utative
phases involving loop m om enta, which would otherw ise cause the UV /IR m ixing. Such a
cancellation can beunderstood in a transparentway [22 ]ifone uses the socalled double-line
notation known from largeN gauge theory. Feynm an rules should be rederived accordingly
and in particular each of the interaction vertices w ill have a single noncom m utative phase
factor nstead ofa sum ofphases. U sefuness of the double-line notation in noncom m utative

eld theories can be understood ifone recalls that the algebraic property of the starproduct
is the sam e as that of m atrix product. In the double-line notation, \planar diagram s" can
be de ned as diagram s which can be drawn on a plne without any crossings of lines.
In fact for any planar diagram s the noncom m utative phase factors out of the m om entum
integration, leaving a global phase depending only on extemalm om enta [39, 40, 41]. For
ferm jons in the fundam ental representation, the interaction with the gauge eld occurs
only on one side of the ferm ion propagator (represented as a double-line), and therefore all
the diagram s that appear in the calculation of the e ective action are actually planar.

3.2.2 AdJpint ferm ions

C ontrary to the case studied above, the e ective action for noncom m utative gauge theories
w ith ferm ions In the ad pint representation does not have a sm ooth com m utative lim it.
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N ote that the original theory in the ' 0 Iim it is just a free m assless ferm ion and a
free photon, which is parity Invariant. H owever, if we take the continuum Ilin it for nite
we will see that the ad pint ferm ions induce the NCC S action, which reduces to an

ordinary (commutative) U (1) Chem-Sin ons term In the ! 0 limit. Using a Pauli-
Villars ferm ion of mass M g as a regulator in the continuum [23] this is the result of
the fact that the two lin its ! 0and M g ! 1 do not commute with each other, a

phenom enon characteristic of noncom m utative quantum eld theories both at zero [22]and
nite tem perature [44]. T his com es about because of the existence of nonplanar diagram s
in which the UV divergences are requlated at the scale® 3.
P lugging in the factorsW ) ,w @) for the ad pint ferm dons (2.27), (2.30), the expression
(2.36) for the twopoint function becom es

(Plagij= 2 (Plana .
2 X b 1 1 1 1 +
tr VP @2g+ p)o @+ p) VP 2g+ p)Q (@ T cosl (@ Q)]

a’L?T
5 X h o ) i
—_ tr V 2 cos ; 3.19
12T (29)Q () [ o] (3.19)
w here (P)fung s the twopoint function for ferm ions in the fundam ental representation

calculated above. In the language of the double-line notation (See the end of Sec.321),
the 1rst termm represents the contribution from the planar diagram and the other two
term s correspond to the nonplanar contrbutions. Interestingly the third tem , which is
the non-planar contribution from the tadpole diagram , exactly vanishes in the continuum
lim it. T herefore the e ect of the tadpole diagram is just to subtract the zero-m om entum
contribution from the planar temm s, which has the e ect of m aking the am plitude nite in
the continuum lin it, as seen above. N ote that the second term of (3.19) is nite by itself,
since the noncom m utative phase introduces an e ective cuto to the loop m om entum at
the scale P
To obtain the continuum Iim it of the second term we have to take into account that

this lin it has to be taken at the sam e tin e w ith the Jarge volum e lin it in such a way that

/ &L is kept xed. A long but straightfrward calculation show s that the resulting
Integrals can be written in tem s of m odi ed Bessel functions of the second kind. The
resulting two-point fiinction has the form given In Eq. (3.9) now with (see Appendix B for
details)

r
g2 2. iZ 1 n 5 l
B (Elaj= 22 @t = =3 (@) dx MM+ x( x)B] 1
Ol o
K: $#M%+x1 x)PBE ;
2 r Z
2 2 1 n

B (P)agi = 2B ®)aing J ()3 dx x@ M2+ x(1  x)F] ¢

>T he role of nonplanar am plitudes in the calculation of the chiralanom aly has attracted som e attention
recently (see, for exam ple, [42, 43]).
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C (p)adj =

O
K: $M%+x(1 =x)BP (3.20)
2

U sjgg the asym ptotic expansion for large argum ents of the Bessel functions, K (z)
e’= 2 z it is easy to see that the nonplanar temm s In the am plitude are exponentially
suppressed in the lin it of large M (cf. [23]). In theM ! 0 lin it, on the other hand, one

nds that the nonplanar contributions to the parity violating term wvanishes. T hus in both
lin tswe nd that the parity violating term in the e ective action com es solely from the
planar part, and its m agnitude is tw ice the one for fundam ental ferm ions. Later we w ill
o er a physical explanation of this phenom enon.

For nite values of the noncom m utative param eter the threedim ensional Euclidean
group SO (3) is broken down to SO (2), acting as rotations on the noncom m utative plane.
An In portant consequence of the sn ooth comm utative lim it ( ! 0) of noncom m utative
QED with fundam ental ferm ions is that the full Euclidean group SO (3) is restored in
that Im it. Thism eans that the \generalized parity" anom aly studied here is m apped to
the usual parity anom aly of comm utative Q ED . O n the other hand, for ad pint ferm ions
the situation is radically di erent, since the Euclid-breaking term in the e ective action,
third equation in (3.20), does not disappear in the com m utative lin it and actually induces
divergenceswhen ! 0,while keeping the SO (2) sym m etry unbroken (see the discussion
at the end of this subsection). T he reason is that in this case, because of UV /IR m ixing,
the noncom m utative theory is not a am ooth deform ation of (free) comm utative Q ED w ith
neutral ferm ions.

Let usnow tum to the evaluation of the threepoint function. A fter a short m anipu-

lation of the noncom m utative phases, the threepoint function can be w ritten as
h i

i

(P17P2)acy = 2 ® P2 e? ® P2 A (D ip)ang + A (P1iP2; Wb
+ it (3.21)

where A (p1 ;02 )uing 1S the sam e function appearing in Eq. (3.12) and A (p1;p2; Np is the
nonplanar contribution . A s above the ellipsis denotes further term s w hose tensor structure
depends on the externalm om enta. The nonplanar function A (p1 ;02 v is calculated by
evaluating the sum

1 x b

ez v eg+ p)o @+ p) T VYot 2p + po) (322)

i
Q@+tr+p) VPCag+pi+p)Q @ W (prip2ide

and keeping the temm s proportional to . Here the \nonplanar" part of the noncom m u—
tative phase W (p17p2;9he is given by
, h i
W (p13P2iTp = e% ® p2) i @p2) el @p ) g g (P1+p2)
, h i
ez B P2) gi@p2) 4 @p) Jla@Eite) (323)
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A (P12 np can be com puted In the continuum Ilimit a ! 0 at in nite volum e w ith a’L
xed and expressed in temm s of the m odi ed Bessel functions of the second kind. In this

Iim it, A (p1;p2; Np is expressed in temm s of sum of integrals of the form
Z

3 d3q M2+q2+(pl+p2) q i(wq)‘
gM 3 2 2 2 2 2 22 © ’ (324)
2 rM-+ @+t+p )M+ @+t pr+t p2)° 1M -+ g)
wherew = p1+ P (; = 0; 1) isa linear combination of the incom ing m om enta,

that can be read o from Eqg. (323). These Integrals can be com puted again In term s
ofm odi ed Bessel functions of the second kind. A s it was the case also for the two-point
functions, all the term s contributing to A (p1;p2; Np vanish both in thelm itM ! 0,due
to the global factor of M In front of the Integral, and asM ! 1 , this tin e due to the
exponentialdam ping of them odi ed Bessel function for large values of the argum ent. T he
nal conclusion is that in the continuum Iim it

MljgnOA (P1iP2; ke = Mh!'ml A (p1ip2; ke = 0: (325)
A s a consequence, in these two lim its, the coe cient of the Chem-Sim ons action is only
determ ined by the st term on the righthand side of (3.21) and its value is consistent
w ith the one calculated above from the two-point function. T his, again, follow s from the
fact that the Jattice reqularization preserves stargauge invariance.

W e can now study the parity-odd part of the induced e ective action in the Iim itM !

0. From the two—-and threepoint am plitudes calculated above we nd that [RA ](adj) =

e
2 R ]éﬁmd) where [A ]éﬁmd) isgiven In Eq. (3.18). Note that we have considered that the
ad pint ferm ions are of D irac type. Them Inin alform of the anom aly, how ever, is obtained
by im posing the M a prana condition. In this case there is an extra factor of% In front of
the ferm ionic determ inant and the e ective action for M a prana ferm ions in the ad pint
representation agreesw ith Eq. (3.18) [231].

To conclude, et us try to understand in physical term s the vanishing of the nonplanar
contrbution to the parity-violating part of the e ective action in the lim it of zero ferm ion
mass. Asmentioned in Section 3.1 the parity anom aly In comm utative gauge theories
results from the in possbility of nding a parity-invariant UV cuto which at the same
tin e preserves Lorentz and gauge sym m etries. T his is clear from the analysis of [32]w here
the introduction of a parity-invariant UV cuto in the integrals results in the presence
ofa term g° n the twopoint function which breaks the W ard dentity.

Because of the presence of the noncom m utative phases depending on the loop m o-
mentum , we can see the nonplnar contribution to the two-point function of m asskss
noncom m utative Q ED asa regularization of the corregponding am plitude in ordinary (com —
! plhys
the role ofan UV cuto .M oreover, thiscuto preserve the parity invariance of the theory.
T herefore one expects that the parity-breaking term s In the am plitudesw ill vanish . Indeed,
using the nonplanar part in (3.20) we nd the twopoint function ofm asslessQ ED in this
regularization to be

mutative) m assless Q ED . In this case the noncom m utative m om entum  j

r_ Z
gZ 2 1 1
—_ 2

2P

Plogp =

e
o
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2 = Z
g 2 P) (P)
2 (pY 0
ie. the twopoint function does not contain parity-breaking tem s and satis es the W ard
dentity. H ow ever, because of the presence of the last tem , it breaks Euclidean symm etry.

P

NI

3 1 1
dx k(1  x)IK: k(1 x)BF ; (326)

e

Thus the \ —regularization" of m assless Q ED provides a regularization schem e in which
both parity and gauge sym m etries are m aintained at the cost of breaking Euclidean (or
Lorentzian) invariance. In the Iim it in which the cuto issent to in nity, ! 1 , the

coe cient of the rst term in the right-hand side of (326) tends to g 2=(16j'pj) w hereas
the second Euclid-breaking term diverges linearly with . Euclidean invariance can be
restored by Introducing a PauliV illars ferm ion w ith m ass M oy which subtracts the diver—
gent part of the twopoint function (3.26). H owever, this procedure results in the breaking
of parity invariance and as a consequence a Chern-Sin ons tem is again induced in the
IiniM g ! 1 . Thisis som ewhat ran iniscent to the analysis of nonplanar anom alies in
noncom m utative gauge theories presented in [43].

4. N oncom m utative C hern-Sim ons theory on the lattice

In this section our results in the previous sections are used to de ne a latticeregularized
noncom m utative C hermn-Sim ons theory follow ing the proposalm ade in R ef. [24]in the com —
m utative case. T he basic dea is to use the parity breaking part of the e ective action in-
duced by the G insparg-W ilson ferm ion. Sincem asslessness of the G insparg-W ilson ferm ion
is guaranteed on the lattice, one obtains the correct noncom m utative C hem-Sin ons action
in the continuum lin it w ithout nesuning.

TheD irac operatorD fortheG insparg-W ilson ferm jon is characterized by the G insparg-
W ilson relation [45]which, in the form applicable to both even and odd dim ensions, is given
by [24]

D+DY=aD'D : (4.1)

T he general solution to Eqg. (4.1) can be w ritten as
D=-(1 V); (4.2)

where V is a unitary operator, which should tum into the identity operator in the naive
continuum lim it. In even din ensions, assum ing further the \ 5-H em iticity"

D Y= 5D 5 7 (4 -3)
one arrives at the original G insparg-W ilson relation [45]
D 5+ 5D =abD sD : (44)

This relation guarantees that the ferm ion action including the operator D is Invariant
under a generalized chiral symm etry [46], which reduces to the ordinary chiral sym m etry
In the contihhuum lin it. The role of the \ s-Hem iticity" is played in odd dim ensions by
the property

D@U)Y=RDU"R ; (45)
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where UF is the parity transform ed gauge con guration,
Ut x)=U ( xV; (46)

and R is the gpacetin e re ection operator, R :x 7 x. Combining (4.1) and (4.5)
one can show the Invariance of the corresponding ferm ion action under a generalized parity
transformm ation [24]. T hem easure, how ever, isnot invariant under the sam e transform ation.
A s a consequence, the ferm ion determm inant is not invariant but transfom s as

detD (UF )= (detV ) detD (U) : (4.7)

So far we have discussed general properties of the G Insparg-W ilson operator, which
satis es (4.1). In fact the unitary operator V has to be chosen appropriately in order to
guarantee that the operator D has sensible properties as a D irac operator such as locality
(w ith exponentially decaying tails) and the absence of species doublers. Such an operator
has been derived from the overlhp form alism [47], and it is given explicitly by [48]

aq
V = Ay= A%Aw (48)
A, =1 aDy(r= 1) ; (49)
where D, (r = 1) is the D iracW ilson operator, which has the form (2.17) with ordi-

nary covariant derivatives. T he noncom m utative version of the G insparg-W ilson ferm ion
can be obtained by sim ply using the covariant derivatives (2.19) or (2.21) depending on
the representation, instead of the usual ones w ithout starproducts. In even din ensions
G Insparg-W ilson ferm ions played a crucial role in introducing chirality on a discretized
noncom m utative torus [20]. R ecently an analogous construction has been worked out on a
fuzzy sphere [491].

For the choice (4.8),detV in (4.7) is nothing but the phase of detA, ,which is essen-
tially the ferm ion determ inant of the W ilson-D irac operator with r = land M = 1=a.
T hus one can transhte the result obtained for the W ilson ferm ion in the in nitem ass lin it
nto the parity anom aly for the G Insparg-W ilson ferm ion. In the com m utative case this
is how the correct parity anom aly has been reproduced by [50] in the overlap form alisn 4.
In the noncom m utative case, on the other hand, our results in the previous section w ith
r= 1ihthelmiM ! 1 inpliesthat the parity anom aly obtained for G lnsparg-W ilson
ferm jons coincides w ith the result for W ilson ferm ions with r = 1 in the m assless Iim it
M ! 0.

A s In the com m utative case [24], the parity anom aly for the G inspargW ilson ferm ion
suggests a natural de nition of the noncom m utative Chem-Sin ons term on the lattice.

Namely wede neitasScg In
iS. g def detA

idetA, '
where A, is de ned by (4.9) with the covariant derivative (2.19) for the fundam ental
representation. Here we ram ind the reader that Ay is related to the in nitem ass D irac

(4.10)

“See also [51] for an earlier work on the overlap form alisn in odd dim ensions, where a parity invariant
phase choice has been m ade.

{19 {



determ nant as we discussed in the previous paragraph. A ccording to our calculations, the
quantity Scs Indeed becom es the noncom m utative C hem-Sin ons action in the continuum

lim it. In the continuum , on the other hand, noncom m utative C hem-Sim ons term is known
to transform as [527F

SCSV SCS+2 H (4.11)

under a gauge transform ation, where  is the w inding num ber characterizing this gauge
transform ation. The gauge invariance requires the coe cient of the noncom m utative

Chem-Sin ons action to be quantized. That Eqg. (4.10) de nes S¢cs only up to m odulo
2 is therefore not a problem for m ost practical purposes. Note in this regard that the
right-hand side of eg. (4.10) is Indeed m anifestly gauge invariant.

5. Concluding rem arks

In the present paper we have studied the em ergence of parity anom aly on the Jattice for
three-din ensional noncom m utative Q ED , both w ith ferm ions in the fundam ental and the
ad pint representation. Induced C hem-Sin ons actions in noncom m utative gauge theories
havebeen studied in the continuum in [23,54 Jusing the PauliV illars reqularization (seealso
[55]foran incom plete list of references). H ow ever, them ain advantage of the lattice analysis
presented here lies In m aking explicit the dependence of the coe cient of the induced C hem-—

Sin ons term on the regularization schem e used. Thus, the results obtained In Ref. [23]
corresponds to the casesn = 0; 1 iIn our analysis using the lattice reqularization. N otice
that the quantization of the schem edependent term in the e ective action is consistent
w ith the stargauge nvariance of the ferm ion determ inant under \large" transform ations
[52], as required by the fact that the Jattice reqularization respects stargauge nvariance.

W e have also proposed a latticeregularized C hern-Sin onsaction on a noncom m utative
torus using G inspargW ilson ferm ions. A s the Jattice form ulation of noncom m utative eld
theories has been useful to extract their interesting nonperturbative dynam ics [15,16, 18],
we hope that the lattice form ulation of noncom m utative C hermn-Sim ons action is useful to
desgpen our understanding of quantum H all system s.

Finally we would lke to em phasize that the lattice noncom m utative eld theordies
studied in the present paper can bem apped on to a nite N m atrix m odel. T he anom aly
calculation In m atrix m odels has recently attracted attention in the context of largeN
gauge theory [56, 57] and noncom m utative geom etry [58, 49]. W e expect that the calcu-
lation m ethod developed in this paper is useful to study various anom alies in noncom m u—
tative geom etry. In particular we would lke to revisit the gauge anom aly cancellation in
chiral gauge theories on a noncom m utative torus [20]. W e hope that such developm ents
w il eventually lead us to a deeper understanding of the stringy nature of the spacetin e
structure.

T his gauge violation was also concluded i Ref. [53], although it was overlooked i its st version.
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A . Functional determ inants

In the follow Ing we w ill provide an altemative calculation of the e ective action [A ]c on
the Jattice by direct evaluation of the ferm ionic determm inant (2.32). From the de nition of
the D iracW ilson operator (2.17) and the expansion of the Iink eld U (x) in tem s of the
lattice gauge ed A (x) (222), one can w rite
®
Dy=  JDyx: @ 1)
k=0

U sing this expansion, the e ective action can be expressed as

n #
A ] o det®. M) logdet 1+ (D M)1Xl “D
= = e 4
e gdet(Dw,o M) g w ;0 k_lg w oK
" # -
®
= Trbg 1+ FOupo M) Dysx ; @ 2)
k=1
which leads to the follow ing serdes for R Lo :
Rl =d 2RI+ 3R+ i (@ 3)
w ith
1 1 2 1
2B 1= Tr 5 (Dw;O M) Dyga (Dw;O M) Dyp A 4)
n
1 1 3 1 1
3R 1= Tr 5 (Dw;O M) Dya + (Dw;O M) Dw;l(Dw;O M) Dup
o
Dwpo M) Dug : & 5)

By com paring with Egs. (2.34) and (2.35) we can dentify each term in the previous
equations w ith the contribution of a particular Feynm an diagram .

A quick com putation show s that for ferm ions in the fundam ental representation the
operator D, x appearing in Eq. (A 1) is given by

. d h
(fund) (fa)k X ? ~
Dy )= —— B r+ A x)F?2 (x+an)
- i
+ (1% B (x ar)yr? x an) ; @ 6)
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w hereas when the ferm ions are in the ad pint representation the result is
1

kX4 Xk " h
(adj) (ia) k 2k m) m
D X) = 1 r+ A (X ?7 (x+ at™)?A (x
w k (x) Skl ( b n ( A (x) ( ) (x)
=1lm=0 .
i
+ (r A (x at)y™m? (x  a”)?A (x  arykm) o @ 7)
z—f) {
In both expressions we have used the notation (x)™ (x)7?:::? (x).

In order to evaluate each term In Eqg. (A 4)—(A 5) it isconvenient to work in m om entum
space. In the follow Ing we w illdetail the calculation for fundam ental ferm ions, leaving the
ad pint case for the reader. U sing Eg. (2.5) together w ith

X (p)= a’ A (x)e?® (x+3a”) @ 8)

X2 g1

one can easily nd the action of the operators in Egs. (A 4)—«A 5) on 7 (p). For the free
propagator we have

Dwo MHI' "= 0@ ~®); @ 9)

w hereas the result for D, ; can be written as

ig X X3 n ha i ha io |
D1 (p) = cos —(p+ + irsin —(p+ ez (B
gD 1 " (p) LT 2(p a) 2(p a)
q2B =1
£ P a7«
7 X %3 0 1)
T Sner VPt @ g EIE (P @)@ @ 10)
qg2B =1

HereV m(p) and W f(ulr:d (p;q) arede ned in Egs. (2.26) and (2.27) respectively. ForD  »
we arrive at

’D w2 () = ag’ x e nrcosha( + q) l+ i sjnha( + )lo
g W,'2 p 2(a3L2T )2 , 2 p q 2 p q
gqa’2B =1

i

g Pea’ead Mg (Ox o g § Q)

! XX o (2) 0
T 2@LIT P V@ @+ W o eiaidie g §
aga2B ;=1
E @& e g § @ @ 11)

A's In the previous case we have Introduced the vertex function and the noncom m utative
phase de ned In Egs. (2.29) and (2.30) respectively. Finally, for D ,, 3 the result is

5 . .
ag3 X X3 n h i h io

3 ~ , a , a
gDws (P = 5o rsn —(p+ q) i cos z(p+ Q)
BUSTLET ) o o1 2 2

ba®+agaPq’gPp g g0

é
EdEOE e g & DHrw: @ 12)
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This term is associated w ith the threephoton vertex in the diagram atic expansion that, as
argued in Section 2.2, is irrelevant in the continuum Iim it.

W e have seen that, when w ritten in m om entum spf)ace, all operators appearing in Egs.
(A 4)—A 5) are expressed as nitem atrices, O “(p) = 92 B O (p;a) ~(g), whose traces can
be easily calculated. Let usbegin with ,[A ]. The rst trace to be com puted is

3

5 1 y 5 1 X X

g°Tr > Dwp M) Dyja = &L ) E @)X ( p)
;i =1lpa2B

h i
tr v 2g+ p @+ p) P VP gr po @' ;@ a3)
where \tr" indicates the trace over D irac Indices. In the sam e way, for the second trace in
(A 4) the result is

3
FTr Dy M )'D,p 1 X ()& ( p)
! ! 2(@3L2T )2
i =lpp2B |,
h i
tr vPeqo @t : @A 14)

Adding these two termm s to get  ,[A ] and extracting the kemel (p) de ned in (2.33),
we recover Eq. (2.36).
The cubic term  3[A ]In the e ective action can be com puted along sin ilar lines. T he
rst term in (A 5) gives

n o X3 X

1 1 3 1 0

ETr DOwp M) Dya = m E@F @& (g §
n i i =1 pgn®B

i 0
e @ vP2p+ g0 e+ a) VP ep+ 29+ 0 p+ g+ &

1

v ep+ g+ 0 @) @ 15)

w hereas the second trace renders

Tr ODyp M)'Dya@up M )'Dyp

1 X3 X . 8
= - X iy iy
2L P @& (@)X (g )
ii=1pgn2B .
i 0 h 1 ll
e 90 v 2p+ 90 p+q) VB Cp+ 9)0 p+ q) : (A 16)

The thid temn Tr Dyp M *'D w3 corresponds to the contrbution of the tadpole
diagram which is frrelevant in the continuum lim it. Adding together (A 15) and (A .16),
and dentifying the kemel , we recover the result of Eqg. (2.37).

In the case of ad pint ferm ions, the calculation is analogous to the one describe above,
them ain di erence being the noncom m utative phases. A gain the results of Section 2.3 are
recovered .
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B . Evaluation of the Feynm an integrals

In this Appendix we w ill provide the reader w ith details of the calculation of som e of the
Feynm an Integrals In Sections 3.2.1 and 32.2. A sexplained above, we consider a herm itian
representation of the 2 2 gamm a m atrices satisfying = + 1 . This in plies
the follow Ing trace dentities:

B .1 Fundam ental ferm ions

A sshown in [21], the integrand of the second term in Eq. (3.7) has negative degree so the
continuum lin it exists and gives rise to the Integral

z
P d*q rf M +ig+p)] M+ i

1 T
ey PP g i e )

(B .2)

By using the trace dentities (B .l) and writing the denom inator as an integral over a
Feynm an param eter

Z

1 L 2 2 2

N @ e T ), At g Ty 63)
one arrives at
Z 4 Z BE n
q

I = 2¢ d&x =50 T@IM p 29 +2x(1 xpp

0

o
+ Mz+q2 x(1 x)f) q2+M2+x(1 x)ﬁ 2: (B 4)

The nalresult (3.10) isreadily obtained by com puting them om entum integral. N ote that,
because of the zero-m om entum subtraction, the Integral in (B 4) is free of divergences.

W enow evaluate the function A (p1 ;02 )aing I (312). T he relevant ntegral to calculate
is the continuum lin it of Eqg. (3.14) which can be cast into

—— 1 Tpi;p2)]
(@]
tr M + ig+ )] M+ ig+e+ )] M + Ig)

B .5
M2+ @+ p1)?’ 1M %+ @+ p1+ P2)? 1M 2+ &) ® =)

In order to com pute A (pP1 ;P2 )aind We need to retain only those termm s proportional to the
Levi<€ wita tensor . By expanding the trace in the num erator and using Egs. (B 1) it
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is straightforward to check that only two tem s, proportionalto M ° and M , contribute to

A (P17P2 )fund » Nam ely

4 3 4 1 Z 1 x
3 d’q ’
A (P1iP2)ana = M g IPBE dxs dx2 1 To(p1ip2)]
0 0
MZ2+ @+ P+ p2) a
T o3 (B .6)

[+ (x1+ x)p1 + Xopp T +

w here we have reduced the denom inator of (B .5) by introducing Feynm an param eters and
isde ned in Eq. (3.16). The integral can be easily evaluated using standard techniques
to nd the result given in Eqg. (3.15).

B .2 AdJpint ferm ions

In the case when the ferm jons are In the ad pint representation, the evaluation of the Feyn—
m an integrals is m ore Involved due to the presence of noncom m utative phases dependent
on the loop m om entum . Let us focus rst on the twopoint fiinction. A s explained above,
contrary to the planar part where the tadpole diagram Introduces the zero m om entum

subtraction that m akes the whole am plitude nite, in the nonplanar sector the tadpole
diagram cancels exactly. T his can be seen by noticing that, up to a total derivative term

that cancels in the continuum lim it, the nonplanar contrbution of the tadpole diagram in
the continuum lin it is given by

(0; _ 4922 Lq 017+ ) 249 s ¢ )]
Lr )adj tadpole - (Z? )3 (q2 + M 2)2 COSs i g
Ta g
2 4 )
+ 4g° (p) 2 PEru ssin[ (g 9)l: B.7)

T he relevant integrals can be easily solved in term s of m odi ed Bessel functions of the
second kind (! 2 R):

r
d’q 299 ¢ i ®a 1 2,z L
= —  ZHa % ( [ =l
2 P (F+ 12) € 3 7 P2 K%( PJdt J
. ©) °
2Ks (P33 S ; (B 8)
. . (Y
d3q et ®a 1 E_' o1 "lK e -
= —_— p— 2 2 -
2 PP+ 12) 3 F3z0 PJj %( i3 J); (B .9)
Z r __
qu g9 i@ 9 i (p) 2 1 3
= ——— —( P FK P ) : B .10
2 Pf+ 12 F— ( PPIFK: ( PIFI: (B 10)

Substituting these expressions into (B.7) one nds a cancellation between the di erent
term s.

A s for the nonplanar part of the twopoint function com ing from the rstdiagram in
Eqg. (2.34), the relevant Integral to evaluate is

Z . .
I = ¢ dPgtrf M +ig+p)] M +lq]gei(pq):

B 11
2)»Y M2+ @+ pPlM 2+ P) ( )
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Here one can follow the sam e steps as in the case of fiindam ental ferm ions, leading to

Z, Z 4
I = 26 dx . (B 12)
0 2 )
M P 29 +2x(1 x)pp + M?+ ¢ x(1 x)pP R

P+ M2+ x(1 x)BT

Oncem ore, by using (B 8)=(B .10) one readily nds the expressions (3.20).
To conclude, we outline the calculation of the function A (p1;p2; ke In Eg. (3.21).
A s in the case of the two point function, the only di erence w ith respect to the planar part
analyzed in the previous subsection [cf. Eq. (B .6)] is the presence of the noncom m utative
phase. This yields
Z Z 44 .
PRE , dx; . dx,

M2+ @+ (pr+p) g
m CRil o<W (P1ipzidhei (B A3)

g+ (x1+ x2)py + xop2 T +

A(pip2; hp = M g°

w here the phases are given In Eq. (323). Because of the structure of the noncom m utative
phases, A (p1;02; Np is Indeed a sum of tem s of the form (3.24). A fter shifting the loop

m om entum , the Integral can be evaluated w ith the help of Eqg. (B .9) together w ith
7 r__

d’q ge D i (p) 2001 bR ( B D
) r
d3q el P q9) 1 2 3.3 o
2 P @+ 127 32 —( PP 2K ( PIHI: (B 14)

In our case the constant ! is replaced by . Thus, for large values of the ferm ion m ass
and at xed incom ing m om enta the argum ent of the B essel functions is very large and the
corresponding ntegrals vanish exponentially. In the sam eway, ifM ! 0at nitem om enta

is nonzero and the corresponding integrals rem ain nite. T hus, because of the presence
of an overallpower of M in front of (B .13), all the integrals contributing to the fiinction
A (p1;p2; Np willvanish In that lin it.

R eferences

[l1M .R.Douglasand N .A .Nekrasov, \Noncomm utative el theory,” Rev.M od.Phys. 73,
977 (2001) [hep—th/0106048].
2] R.J.Szabo, \Quantum eld theory on noncom m utative spaces," hep-th/0109162].

[3]1M .M . Sheikh-Jabbari, \O pen strings in a B— eld background as electric dipoles," Phys. Lett.
B 455,129 (1999) hep—+h/9901080].
D .Biattiand L. Susskind, \M agnetic elds, branes and noncom m utative geom etry," Phys.
Rev.D 62,066004 (2000) hep-th/9908056].

[4] L. Susskind, \The quantum Hall uid and non-com m utative C hern Sin ons theory,"
hep-th/0101029.

{ 26 {



[5] A .P.Polychronakos, \Q uantum Hall states asm atrix C hem-Sim ons theory," J.H igh Energy
Phys.0104,011 (2001) hep-th/0103013].

E.Fradkin,V .Jejpla and R .G . Leigh, \N on-com m utative C hem-Sin ons for the Q uantum
Hall System and D uality," cond-m at/0205653.

[6] S.Hellerm an and M .Van Raam sdonk, \Q uantum H all physics equals noncom m utative eld
theory," J.H igh Energy Phys. 0110, 039 (2001) hep-th/0103179].

[7] J.L.Barbon and A . Paredes, \Noncom m utative eld theory and the dynam ics of quantum
Hall uids,” Int.J.M od.Phys.A 17,3589 (2002) hhep-th/0112185].

[B] A .Connes,M .R .Douglasand A . Schwarz, \N oncom m utative geom etry and m atrix theory:
Com pacti cation on tori," J.H igh Energy Phys. 9802, 003 (1998) hep-th/9711162].

O] H.A0kLN.Ishbashi, S.Iso,H .Kawai, Y .K itazawa and T . Tada, \N oncom m utative
YangM ills In TIB m atrix m odel," Nucl Phys.B 565 (2000) 176 hep-th/99081411.

[10] I.Barsand D .M inic, \N on-com m utative geom etry on a discrete periodic Jattice and gauge
theory," Phys.Rev.D 62 (2000) 105018 hep-th/99100911].

[l1]J.Ambjm,Y .M .M akeenko,J.Nishinura and R . J. Szabo, \Finite N m atrix m odels of
noncom m utative gauge theory," J.H igh Energy Phys. 9911, 029 (1999) hep-th/99110411.

[12] J.Ambjm,Y .M .M akeenko,J.Nishin ura and R . J. Szabo, \N onperturbative dynam ics of
noncom m utative gauge theory," Phys. Lett. B 480,399 (2000) hep-th/0002158].

[13] J.Ambjm,Y .M .M akeenko,J.Nishin ura and R . J. Szabo, \Lattice gauge elds and
discrete noncom m utative Yang-M ills theory," J. H igh Energy Phys. 0005, 023 (2000)
lhep—th/0004147].

[14] A .GonzalezArroyo and M .Okawa, \The Tw isted EquchiK awaiM odel: A Reduced M odel
For Large N Lattice G auge T heory," Phys.Rev.D 27,2397 (1983).

[15] W .Bietenholz, F.Hofheinz and J.N ishin ura, \A non-perturbative study of gauge theory on
a non-com m utative plane," J.H igh Energy Phys. 0209, 009 (2002) [hep-th/02031511].

[16] W .Bietenholz, F.Hofheinz and J.N ishin ura, \Sin ulating non-com m utative eld theory,"
hep-1at/0209021.

[17] S.Profum o, \N oncom m utative P rincipal C hiralM odels," J.H igh Energy Phys. 0205, 014
(2002) hep—+th/0111285].

[18] J.Ambjm and S.Catterall, \Stripes from (noncom m utative) stars," hep-lat/0209106.

[19] S.S.Gubser and S. L. Sondhi, \Phase structure of non-comm utative scalar eld theories,"
Nucl Phys.B 605 (2001) 395 [hep-th/0006119].

[20] J.Nishinura and M .A .V azquezM ozo, \N oncom m utative chiral gauge theories on the
lattice w ith m anifest stargauge invariance," J.H igh Energy Phys. 0108, 033 (2001)
thep—+th/0107110].

[21] A .Costeand M . Luscher, \Parity Anom aly And Ferm ion Boson Transm utation In
ThreeD Im ensional Lattice QED ," Nucl. Phys.B 323,631 (1989).

[22] S.M Inwalla,M .Van Raam sdonk and N . Selberg, \N oncom m utative perturbative dynam ics,"
J.High Energy Phys. 0002, 020 (2000) hep-th/9912072].

{27 {



23] C.S.Chu, \Induced Chem-Simonsand W ZW action in noncom m utative spacetin e," Nucl
Phys.B 580,352 (2000) hep-th/0003007].

[24] W .Bietenholz and J.N ishin ura, \G ingparg-W ilson ferm ions in odd dim ensions," J. H igh
Energy Phys. 0107 (2001) 015, [hep-1at/00120207;
W .Bietenholz, J.N ishin ura and P. Sodano, \C hemm-Sin ons theory on the lattice,"
lhep-1at/02070101.

[25] A . P.Polychronakos, \Q uantum H all states on the cylinder as unitary m atrix C hem-Sin ons
theory," J.High Energy Phys. 0106, 070 (2001) hep-th/01060111].

[26] Y .M akeenko, \R educed m odels and noncom m utative gauge theories," JETP Lett. 72 (2000)
393 hep-th/0009028].

[27] R .J.Szabo, \D iscrete noncom m utative gauge theory," M od.Phys.Lett. A 16,367 (2001)
lhep—th/0101216].

[28]1 Y .M akeenko,M ethods of C ontem porary G auge T heories, C am bridge 2002.

[29] H.Kawai, R .Nakayam a and K . Seo, \C om parison O f T he Lattice Lam bda Param eter W ith
The Continuum Lam bda Param eter Tn M asslessQCD ," NucL Phys.B 189,40 (1981).

[30] M .M . Sheikh-Jabbari, \R enom alizability of the supersym m etric Yang-M ills theories on the
noncom m utative torus," J. H igh Energy Phys. 9906, 015 (1999) hep-th/9903107].
A .Am oni, \Comm ents on perturbative dynam ics of non-com m utative Yang-M ills theory,"
Nucl Phys.B 593,229 (2001) hep-th/0005208].

[31] I.M ontvay and G .M unster, Q uantum FieHds on the Latiioce, Cam bridge 1994.

[32] A .N .Redlich, \G auge N oninvariance A nd Parity N onconservation O £ T hree-D in ensional
Fem jons," Phys.Rev.Lett. 52,18 (1984).
A .N .Redlich, \Parity V iolation A nd G auge Noninvariance O fThe E ective G auge F ield
Action In ThreeD In ensions," Phys.Rev.D 29,2366 (1984).

B3]A.J.Nimiand G .W .Semeno , \AxialAnomaly Induced Ferm ion Fractionization A nd
E ective G auge T heory A ctions In O dd D in ensional Space-T in es," Phys.Rev. Lett. 51,
2077 (1983).

L.AarezGaume,S.Dela Pitraand G .W .M oore, \Anom alies And O dd D in ensions,"
AnnalsPhys.163,288 (1985).

A .N.Redlich and L.C .W ifwardhana, \Induced C hem-Sin ons Term s At H igh
Tem peratures And Finite D ensities," Phys.Rev. Lett. 54,970 (1985).

S.Deser,L.G riguolo and D . Sem inara, \G auge invariance, nite tem perature and parity
anomaly m D = 3," Phys.Rev.Lett. 79,1976 (1997) [hep-th/9705052].

[34] G .V .Dunne, \A gpects of Chem-Sin ons theory," hep-th/9902115.

[35] D .K hveshchenko and P.B .W iegm ann, \PhysicalR ealization O £ The Parity Anom aly And
Quantum HallE ect,” Phys.Lett.B 225 (1989) 279.

[36] L.A varez-Gaum eand E .W itten, \G ravitationalA nom alies," Nucl Phys.B 234,269 (1984).

[37] E.W itten, \An SU (2) Anom aly," Phys.Lett.B 117,324 (1982).

{ 28 {



[38] T .Reisz, \A Power Counting T heorem For Feynm an IntegralsOn The Lattice," Comm un.
M ath.Phys.116,81 (1988).

T .Reisz, \A Convergence T heorem For Lattice Feynm an Integrals W ith M assless
Propagators," Commun.M ath.Phys. 116,573 (1988).

[39] A .G onzalezA rroyo and C . P.K orthals A Ites, \R educed M odel For Large N C ontinuum
Fied Theories," Phys.Lett.B 131,396 (1983).

[40] T .Fik, \D vergencies In A Field Theory On Quantum Space," Phys.Lett.B 376 (1996) 53.

[41] N . Ishibashi, S.Iso,H .Kawaiand Y .K itazawa, \W ilson loops in noncom m utative
YangM ills," Nucl. Phys.B 573 (2000) 573 [hep-th/9910004 1.

[42] F.Ardalan and N . Sadooghi, \A nom aly and nonplanar diagram s In noncom m utative gauge
theordes," Int.J.M od.Phys.A 17,123 (2002) [hep-th/0009233].

K .A . Intriligator and J.K um ar, \*-w ars episode I: T he phantom anom aly," Nucl Phys.B
620,315 (2002) [hep-th/0107199].
L.Bonora and A . Sorin, \Chiralanom alies in noncom m utative YM theories," Phys. Lett. B

521,421 (2001) hep-th/01092041].

C .P.M artin, \T he covariant form of the gauge anom aly on noncom m utative R 2" " NuclL
Phys.B 623,150 (2002) thep-+th/01100461.

[43]A.Amoni E.Lopez and S. Theisen, \N onplanar anom alies In noncom m utative theories and
the G reen-Schw arz m echanism ," J.H igh Energy Phys. 0206, 050 (2002) hep-th/0203165].

[44] G .Arcioniand M .A .VazquezM ozo, \Them ale ects In perturbative noncom m utative
gauge theories," J.H igh Energy Phys. 0001, 028 (2000) hep-th/99121401.

[45] P.G ngparg and K .W ilson, \A rem nant of chiral sym m etry on the lattice",Phys.Rev.D 25
(1982) 2649.

[46] M . Luscher, \E xact chiral sym m etry on the lattice and the G ingparg-W ilson relation",Phys.
Lett.B 428 (1998) 342, hep-J1at/9802011.

[47] R .Narayanan and H . Neuberger, \A construction of Jattice chiral gauge theories", N ucl
Phys.B 443 (1995) 305, hep+h/9411108.

[48] H . N euberger, \E xactly m assless quarks on the lattice" Phys. Lett. 417 (1998) 141,
hep-lat/9707022; \M ore about exactly m assless quarks on the lattice", Phys. Lett. 427
(1998) 353, hep—1at/9801031.

[49] H .Aoki, S.Iso and K .Nagao, \G ingpargW ilson R elation, Topological Invariants and F inite
N oncom m utative G eom etry," hep—-th/0209223.

[50] Y . K kukawa and H . N euberger, \O verlap in odd din ensions," NucL Phys.B 513 (1998) 735
thep-1at/9707016].

[51] R .Narayanan and J.N ishim ura, \Parity—invariant lattice regularization of a
three-din ensional gauge-ferm ion system " Nucl. Phys.B 508 (1997) 371 [hep-th/9703109].

[52] V.P.Nairand A . P.Polychronakos, \O n level quantization for the noncom m utative
Chem-Sin ons theory," Phys.Rev. Lett. 87, 030403 (2001) hep-th/01021811].

D.Bak,K .M .Leeand J.H .Park, \C hem-Sin ons theories on noncom m utative plane," Phys.
Rev.Lett. 87, 030402 (2001) hep-th/0102188].

{29 {



[53] M .M . Sheikh-Jabbari, \A note on noncom m utative C hemn-Sin ons theories," Phys. Lett. B
510,247 (2001) [hep—th/0102092].

[54] E.F .M oreno and F.A . Schaposnik, \The W essZum inoW itten term in non-com m utative
tw o-din ensional ferm ion m odels," J. H igh Energy Phys. 0003, 032 (2000) hep-th/00022361.

E.F.M oreno and F .A . Schaposnik, \W essZum ino-W itten and ferm ion m odels in
noncom m utative space," Nucl. Phys.B 596,439 (2001) hep-th/00081181.

[55] A .H .Cham seddine and J. Frohlich, \T he Chem-Sin ons A ction In N oncom m utative
Geometry," J.M ath.Phys. 35,5195 (1994) hep-+th/9406013].

G.H.Chenand Y .S.W u, \Oneloop shift In noncom m utative C hem-Sim ons coupling,"
Nucl. Phys.B 593,562 (2001) hep-th/0006114].

N.Grandiand G .A . Silva, \C hem-Sin ons action In noncom m utative space," Phys. Lett. B
507,345 (2001) [hep-th/0010113].

A . P.Polychronakos, \N oncom m utative C hern-Sin ons termm s and the noncom m utative
vacuum " J.H igh Energy Phys. 0011, 008 (2000) hep-th/00102641.

J.K luson, \M atrix m odel and noncom m utative C hem-Sin ons theory," Phys. Lett. B 505,
243 (2001) hep—+th/0012184].

A .K.Dasand M .M . Sheikh-Jabbari, \A bsence of higher order corrections to

noncom m utative C hem-Sin ons coupling," J.H igh Energy Phys. 0106, 028 (2001)
lhep—th/0103139].

C.P.M artin, \C om puting noncom m utative C hern-Sin ons theory radiative corrections on the

back of an envelope," Phys. Lett.B 515,185 (2001) hep-th/0104091].

[56] J.K iskis,R .Narayanan and H . N euberger, \P roposal for the num erical solution of planar
QCD " Phys.Rev.D 66 (2002) 025019 hep-lat/0203005].

[57] Y .K kukawa and H . Suzuki, \C hiral anom alies in the reduced m odel," J.H igh Energy Phys.

0209 (2002) 032 hep-lat/0207009].

[58] H .Aoki, S.Iso and K .Nagao, \Chiralanom aly on fuzzy 2-sphere," hep-th/0209137.

{ 30 {



