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1.Introduction

Q uantum �eld theory on noncom m utative spaces has been a subjectofm uch activity in

recentyears(see [1,2]forcom prehensivereviews).Thisattention wasoriginally triggered

by its intim ate relationship with string theory, but the study of noncom m utative �eld

theorieshasinterestin itsown. From a m athem aticalphysicspointofview they provide

uswith aclassofnonlocalquantum �eld theorieswhich nonethelessseem tobewellde�ned.

Also,sincenoncom m utative�eld theoriesareessentially theoriesofdipoles[3]they can be

also usefulin theanalysisofsystem swith dipolarexcitationsin condensed m atterphysics.

In thiscontext,noncom m utative Chern-Sim ons(NCCS)theory in (2+ 1)-dim ensions

isspecially appealing becauseofitsapplicationsto quantum Hallsystem s[4,5].Here the

noncom m utativity isintroduced only in thespatialdirection and theresulting deform ation

oftheordinary gaugeinvarianceinto\star-gaugeinvariance" isessentialforthedescription

ofthesystem which hasthe area preserving di�eom orphism invariance [4].Rem arkably,a
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�nite-N m atrix m odelofNCCS theory isfound to havephysicalstateswhich haveone-to-

onecorrespondencewith Laughlin-typewavefunctions[6].Ithasalsobeen pointed outthat

instabilitiesofthe NCCS theory can describe the transition to the W ignercrystal,where

spontaneousbreakdown oftranslationalinvarianceiscaused by thenoncom m utativity [7].

In studying noncom m utative �eld theories it is often usefulto consider its m atrix-

m odeldescription. This is rem iniscent ofits string/M -theoretic connections [8,9]. Here

thespace-tim edegreesoffreedom and theinternal(\color")degreesoffreedom aretreated

on equalfooting, and \star-gauge invariance" is sim ply described by the globalU(1 )

sym m etry which actson them atrix indices.Them atrix m odeldescription isalsousefulfor

regularizingnoncom m utative�eld theories[9,10,11,12,13],since�nite-N twisted reduced

m odels [14]are interpreted as a lattice form ulation ofnoncom m utative �eld theories [11,

12,13].Such alatticeform ulation providesthem ostreliablem ethod tostudy thequantum

dynam ics ofnoncom m utative �eld theories in a fully nonperturbative m anner. Recently,

thelatticeregulatization hasbeen applied to two-dim ensionalnoncom m utativeYang-M ills

theory [15,16],where (nonperturbative)renorm alizability was dem onstrated forthe �rst

tim e in a noncom m utative �eld theory (see also [17]). There the sam e theory wasshown

to have an intriguing infrared property which m ay be described as the Aharonov-Bohm

e�ectwith them agnetic�eld identi�ed with theinversenoncom m utativity param eter.The

lattice form ulation has also been used to explore the phase diagram ofnoncom m utative

scalar�eld theories[16,18],which isexpected to bericherthan in the com m utative case,

asindicated by a self-consistentHartree approxim ation [19].In particular,asconjectured

by Ref.[19],theordered phaseisfound to splitinto a uniform ly ordered phaseand a phase

dom inated by the stripe pattern. In the latter phase,nonzero m om entum m odesacquire

vacuum expectation values,and thereforetranslationalinvarianceisspontaneously broken.

Theaim ofthispaperistwo-fold.Firstweform ulateperturbation theory forthelattice

noncom m utative gauge theory. Although the m ost im portant virtue ofthe lattice regu-

larization liesin itscapability ofnonperturbative studies,ithasalso been used to clarify

subtle issuesin perturbative aspectsofgauge theories. W e consider thisparticularly im -

portantbecausethelattice construction ofnoncom m utative chiralgauge theoriessuggests

a new m echanism ofgaugeanom aly cancellation,which isnotyetknown in thecontinuum

[20]. As an application ofthe lattice perturbation theory,we pick up a noncom m utative

version ofthree-dim ensionalQ ED,wherethelatticecalculation indeed playsa crucialrole

in revealing peculiarpropertiesofthe parity anom aly,given in term sofnoncom m utative

Chern-Sim onsaction.Thecoe�cientoftheanom aly islabelled by an integerdependingon

thelatticeaction,which isacounterpartofthephenom enon observed by Costeand L�uscher

[21]in thecom m utativetheory.Thecom m utativelim itissm ooth when theferm ionsarein

thefundam entalrepresentation,butitisnotforferm ionsin theadjointrepresentation due

to a characteristic property ofnoncom m utative �eld theoriesknown astheUV/IR m ixing

[22]. Asa specialcase ourresultincludesChu’sresult[23]obtained in the continuum by

using the Pauli-Villarsregularization.

Anotheraim ofthiswork istoconstructalatticeregularization ofNCCS theory,which

hasim portantapplicationstoquantum Hallsystem sasm entioned above.In general,de�n-

ing a Chern-Sim onsterm on thelatticeisnotstraightforward dueto itstopologicalnature.
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A recent proposal[24]is to utilize G insparg-W ilson ferm ions in odd dim ensions and to

de�ne the Chern-Sim ons term using the parity violating part ofthe e�ective action in-

duced by the ferm ion. W e show that this proposalworks also in the noncom m utative

case. As we m entioned above,the parity anom aly in the three-dim ensionalnoncom m u-

tative Q ED is given by the NCCS term in the continuum lim it ofthe lattice theory we

started with. The sam e result can be obtained from G insparg-W ilson ferm ions,where

the m asslessnessisguaranteed at�nite lattice spacing. Thissuggestsa naturalde�nition

ofthe lattice-regularized Chern-Sim ons theory on a noncom m utative torus,which could

enable nonperturbative studiesofquantum Hallsystem s. In thisregard,we recallthata

�nite-N m atrix m odelhasbeen proposed asa regularized description ofNCCS theory on

a cylinder[25].Although ourtheory can also be m apped to a �nite-N m atrix m odel,the

two proposalsappearto bequitedi�erent.

The restofthe paperisorganized asfollows. In Section 2,we review the lattice for-

m ulation ofnoncom m utativegaugetheoriesand form ulatea perturbation theory based on

Feynm an rules.In Section 3,wepresentcalculationsoftheparity anom aly in noncom m u-

tative Q ED.In Section 4 we discussthe parity anom aly using G insparg-W ilson ferm ions,

which leads to a proposalfor a lattice-regularized noncom m utative Chern-Sim on theory.

Section 5 isdevoted to sum m ary and discussions.Finally,in Appendix A a calculation of

the parity-violating term sin the e�ective action by the directevaluation ofthe ferm ionic

determ inantis presented,while Appendix B contains som e details ofthe com putation of

the Feynm an integralsinvolved in thediagram m atic calculation ofSection 3.

2.Lattice perturbation theory in noncom m utative geom etry

In this section we begin by reviewing the lattice form ulation ofnoncom m utative gauge

theories developed in Ref.[11,12,13](see [26,27,28]for reviews). In the literature it

is com m on to start from a �nite-N m atrix m odel,which is then shown to be equivalent

to the lattice form ulation ofa noncom m utative �eld theory. Indeed,the m atrix m odel

representation hasproven usefulfornum ericalanalyses[15,16,18,20].Herewewillwork

directly with the lattice form ulation and derive the Feynm an rules,which are used in the

perturbativeevaluation ofthee�ectiveaction induced by ferm ions.Although wewillfocus

on noncom m utative Q ED in d = 2m + 1 dim ensions,the lattice perturbation theory can

beform ulated forany othernoncom m utative �eld theoriesin the sam eway.

2.1 N oncom m utative Q ED on the lattice

In noncom m utative geom etry,space-tim e coordinates are treated as Herm itian operators

obeying the com m utation relation [̂x�;̂x�] = i���, where ��� is a realanti-sym m etric

m atrix.In (2m + 1)dim ensions,dueto a property ofantisym m etricm atrices,coordinates

can alwaysbechosen in such away thatoneofthem com m uteswith alltheothers,resulting

in

[̂xi;̂xj]= i�ij ; [̂xi;x̂d]= 0 ; (i;j= 1;:::;2m ); (2.1)
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where,forsim plicity,the 2m � 2m noncom m utative m atrix �ij istaken to beoftheform

�ij � � "ij ; "=

0

B
B
B
B
B
B
@

0 � 1

1 0

...

0 � 1

1 0

1

C
C
C
C
C
C
A

: (2.2)

W e regard the com m uting coordinate x̂d as the Euclidean tim e after the W ick rotation.

Field theorieson anoncom m utativegeom etrycan beobtained byreplacingan ordinary�eld

�(x) by an operator�(̂x). An equivalent way to describe noncom m utative �eld theories,

which wearegoing to usein whatfollows,isto keep theordinary �eld �(x)butto replace

the ordinary productof�elds,say �1(x)and �2(x),by the star-product

�1(x)?�2(x)= �1(x)exp

�
i

2
���

 �
@�

�!
@�

�

�2(x): (2.3)

In orderto considerthelatticeregularization ofsuch theories,weintroducea(2m + 1)-

dim ensionaltoroidallattice �L;T de�ned by

�L;T =

�

(x1;:::;xd)2 aZ
d
�
�
� � a

L� � 1

2
� x� � a

L� � 1

2

�

; (2.4)

where a isthe lattice spacing and L1 = L2 = � � � = L2m = L,Ld = T. W e have assum ed

L;T 2 N to be odd [13]. The dim ensionfulextent ofthe lattice is ‘ = aL in the 2m

spatialdirections and � = aT along the Euclidean tim e. The �elds on the lattice are

assum ed to obey the periodicboundary condition in alldirections1.

In order to construct a lattice counterpart ofthe star-product (2.3), we de�ne the

Fouriertransform

~�(p)= a
4

X

x2� L ;T

�(x)e�ip�x ; (2.5)

wherethe lattice m om entum p isdiscretized as

p� =
2�n�

aL�
; n� 2 Z ; (2.6)

and theFourierm odes ~�(p)areperiodicundern� 7! n�+ L�.Then thelatticestar-product

can bede�ned through itsFouriertransform as

�̂1 ?�2(p)=
1

adLd�1 T

X

q

exp

�

�
i

2
�ij(p� q)iqj

�

~�1(p� q)~�2(q); (2.7)

wherethe noncom m utativity param eteristaken to be

� =
1

�
L a

2
: (2.8)

1
To form ulate a �nite-tem perature �eld theory,the boundary condition in the tim e direction hasto be

taken anti-periodic forferm ions.
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Hereand henceforth weassum ethatthesum m ation overa m om entum isrestricted to the

Brillouin zone;nam ely (2.6)with � (L� � 1)=2 � n� � (L� � 1)=2 .

Theabovelattice form ulation naturally resultsfrom m atrix m odeldescription ofnon-

com m utative �eld theories,and m ostim portantly itpreservesallthe algebraic properties

of the star-product. M oreover the de�nition (2.7) is consistent with the periodicity of

the lattice m om entum (2.6) due to (2.8). O ne can also rewrite thisde�nition (2.7) in an

integralform as

�1(~x;t)?�2(~x;t)=
1

L2m

X

~y

X

~z

�1(~y;t)�2(~z;t)e
�2i(� � 1)ij (xi�y i)(xj�z j) ; (2.9)

where the sum m ation over~y and ~z istaken only overthe spatiallattice. Thisexpression

is consistent with the periodicity ofthe �elds again due to (2.8). As is clear from these

observations,thelatticeregularization ofnoncom m utative�eld theoriesinevitably requires

the noncom m uting directionsto be com pacti�ed in a particularway (2.8)consistentwith

thenoncom m utativity.ThisreectstheUV/IR m ixing[22]atafully nonperturbativelevel

[12,13].

Ultim ately we have to take the continuum lim ita ! 0,and the lattice size should be

sentto in�nity L;T ! 1 .Thesetwo lim itsshould betaken m orecarefully in noncom m u-

tive �eld theories than in com m utative onesbecause we have an extra scale param eter �

related to a and L by (2.8).In any case we have a hierarchy ofthe scales

a �
p
� � ‘ (2.10)

in the regularized theory. In order to obtain �nite �,the physicalextent ofthe spatial

direction ‘ = aL should inevitably go to in�nity. The extrem e case � ! 0 is generally

di�erentfrom thecom m utativetheory (where� = 0for�nitea),asweseelaterin concrete

exam ples.Thelim itT ! 1 in thetim edirection can betaken asin com m utativetheories,

and one can have arbitrary � independently of� and ‘.

TheU(1)gauge �eldscan beputon the lattice by

U�(x)= P exp?

�

ig

Z x+ a�̂

x

A �(s)ds

�

=

1X

n= 0

(ig)n
Z x+ a�̂

x

d�1

Z x+ a�̂

�1

d�2� � �

Z x+ a�̂

�n� 1

d�n

A �(�1)?A �(�2)?� � � ?A�(�n); (2.11)

where A �(x) is the (real) gauge �eld in the continuum . The path-ordering is necessary

even in the U(1) case,because ofthe noncom m utativity arising from the star-product.

Note also thatU�(x)isnotunitary,butitis\star-unitary",

U�(x)?U�(x)
� = U�(x)

�
?U�(x)= 1 : (2.12)

Thecontinuum gauge �eld A �(x)transform sunderthe\star-gauge transform ation" as

A �(x)7! g(x)?A �(x)?g(x)
y �

i

g
g(x)?

@

@x�
g(x)y ; (2.13)
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where g(x)isalso star-unitary.Underthistransform ation,thelink �eld U �(x)de�ned by

(2.11)transform sas

U�(x)7! g(x)?U�(x)?g(x + a�̂)� : (2.14)

Thelattice action forthe gauge �eld isgiven by

SG = � �
X

x2� T ;N

X

�6= �

U�(x)?U�(x + a�̂)?U�(x + a�̂)� ?U�(x)
�
; (2.15)

which isinvariantunderstar-gauge transform ation (2.14).

Theferm ion action isde�ned by

SF = a
3
X

x

� (x)?(D w � M ) (x); (2.16)

whereD w isthe Dirac-W ilson operator

D w =
1

2

dX

�= 1

h

�(r
�
� + r �)+ rar �

�r �

i

: (2.17)

The expression ofthe forward and backward covariant derivatives dependson the trans-

form ation propertiesoftheferm ion �eld.In thecase where (x)transform sin thefunda-

m entalrepresentation

 (s)7! g(x)? (x); � (x)7! � (x)?g(x)� ; (2.18)

they are given respectively by

r � =
1

a
[U�(x)? (x + a�̂)�  (x)]

r �
� =

1

a
[ (x)� U�(x � a�̂)� ? (x � a�̂)] : (2.19)

O n the otherhand,when ferm ionstransform in theadjointrepresentation

 (x)7! g(x)? (x)?g(x)�; � (x)7! g(x)? � (x)?g(x)� ; (2.20)

the forward and backward covariantderivativesare respectively de�ned by

r � =
1

a
[U�(x)? (x + a�̂)?U�(x)

� �  (x)]

r �
� =

1

a
[ (x)� U�(x � a�̂)� ? (x � a�̂)?U�(x � a�̂)] : (2.21)

In eithercase,theferm ion action (2.16)isstar-gauge invariant.

The second term in the Dirac-W ilson operator (2.17) is the W ilson term ,which is

introduced to give speciesdoublersa m assoforderO (1=a). In the originalproposal,the

coe�cientr wastaken to beunity,butitcan take othervalues,even negative ones,asfar

asitsm agnitudeisoforderone.
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2.2 Feynm an rules

Letusproceed to form ulate theperturbation theory forthenoncom m utative Q ED on the

lattice. As in the com m utative case we start with expanding the link variable U�(x) in

term softhe lattice gauge �eld A �(x)as

U�(x)= exp?fiagA �(x)g

= 1+ igaA �(x)�
g2a2

2
A �(x)?A �(x)+ ::: : (2.22)

Note thatU�(x)isstar-unitary ifand only ifA �(x)isreal. The Feynm an rulesare read

o� from theaction (2.16)expressed in term softheFouriertransform ed �elds ~A �(p), ~ (p)

and ~� (p).Theferm ion propagatorisgiven by�p =

�

M +
1

2
rap̂

2 � i � ~p

� �1

� Q (p)�1 ; (2.23)

wherewe have introduced thenotation

p̂� =
2

a
sin

�
1

2
ap�

�

; ~p� =
1

a
sin(ap�): (2.24)

Thattheferm ion propagator(2.23)isidenticaltotheoneforthecom m utativelatticeQ ED

is because the �-dependentphase arising from the star-product(2.7) disappearstrivially

in the quadratic term in the action (Set p = 0 in (2.7) and consider the anti-sym m etry

of�ij). The e�ect ofthe noncom m utativity willshow up only in the interaction vertices

in the form ofa phase depending on the m om enta owing into them .Forthe one-photon

vertex we �nd �k;�

p

q

= W (1)(p;q)V (1)
� (p+ q); (2.25)

wherewe have de�ned

V
(1)
� (p)= ig

n

� cos

�
a

2
p�

�

+ irsin

�
a

2
p�

�o

: (2.26)

The factorW (1)(p;q)representsa sum of�-dependentphases,which dependson whether

the ferm ionscouple in thefundam entalorthe adjointrepresentation

W
(1)

fund
(p;q)= e

i

2
�(~p�~q)

W
(1)

adj
(p;q)= e

i

2
�(~p�~q) � e�

i

2
�(~p�~q)

: (2.27)

Here we have denoted ~a� ~b� � "jkajbk,where"jk isthem atrix de�ned in (2.2).
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Forthe vertex with two photonswe �nd,

�
k;�

l;�

p

q

= W (2)(p;q;k;l)V (2)
�� (p+ q); (2.28)

wherewe de�ned

V
(2)
�� (p)= � ag

2
���

n

rcos

�
a

2
p�

�

+ i� sin

�
a

2
p�

�o

: (2.29)

ThefactorW (2)(p;q;k;l)isnow given by

W
(2)

fund
(p;q;k;l)= e

i

2
�(~p�~q+ ~k�~l)

W
(2)

adj
(p;q;k;l)= e

i

2
�(~p�~q+ ~k�~l)+ e

i

2
�(�~p�~q+ ~k�~l)� e

i

2
�(~p�~l+ ~k�~q) � e

i

2
�(~p�~k+~l�~q)

:(2.30)

Above we assum ed thatthe photon m om enta are entering into thevertex.

In addition,foreach vertex thereisa K roneckerdelta m om entum conservation

a
d
L
d�1

T �p+ k+ ���;q (2.31)

togetherwith a sum m ation overan internalm om entum foreach loop 1

adLd� 1T

P

p
.Finally,

each ferm ion loop willcarry a m inussign. Vertices with m ore than two photon linescan

beobtained in a sim ilarway.

Together with the ferm ion propagator (2.23),the Feynm an rulesofnoncom m utative

lattice Q ED also requires the photon and ghost propagators as wellas the photon-ghost

and photon self-interaction vertices. In the case ofthe propagators,because the bilinear

term sin theaction areindependentofthenoncom m utativity param eter,they areidentical

to the one for ordinary Q ED [29]. For the interaction vertices,as it is also the case in

the continuum [30],they can beread o� from theonesfornonabelian com m utative gauge

theoriesgiven in [29]by sim ply replacing thestructureconstantsofthegaugegroup by the

appropriate noncom m utative phases. In the calculation ofthe e�ective action,however,

we willneed only theferm ion-photon vertices.

2.3 Perturbative evaluation ofthe e�ective action

Thee�ective action forthe gauge �eld isde�ned in term softheferm ion determ inantas

�[U ]e� = � log

�
det(D w � M )

det(D w ;0 � M )

�

; (2.32)

whereD w ;0 istheDirac-W ilson operator(2.17)evaluated forthetrivialgaugecon�guration

U
(0)
� (x)= 1.ExpandingU�(x)with respecttoA �(x)asin (2.22),thee�ectiveaction �[A]e�

can bewritten in m om entum space as

�[A]e� =
1

2

1

adLd�1 T

X

p

� ��(p)A �(p)A �(� p)

+
1

3

1

(adLd�1 T)2

X

p;q

� ���(p;q)A �(p)A �(q)A �(� p� q)+ ::: : (2.33)

{ 8 {



Thekernels� ��(p),� ���(p;q)can becom puted using the diagram m atic expansion2.

� ���(p)= � +� (2.34)

� ����(p;q)=� +
1

2

�� + cyclic perm .

�

+
1

2� (2.35)

In fact, diagram s containing vertices with three or m ore photons are irrelevant in the

continuum lim itsincethey areweighted with higherpowersofthelatticespacinga [29,31].

Therefore we can om it the last diagram in (2.35). Applying the Feynm an rules,we thus

obtain the following expression.

� ��(p)=
1

adLd�1 T

X

q

tr

h

V
(1)
� (2q+ p)Q (q+ p)

�1
V
(1)
� (2q+ p)Q (q)

�1
i

� W (1)(q;q+ p)W (1)(q+ p;q)

+
1

adLd�1 T

X

q

tr

h

V
(2)
�� (2q)Q (q)

�1
i

W (2)(q;q;p;� p); (2.36)

� ���(p1;p2)=
1

adLd�1 T

X

q

tr

h

V
(1)
� (2q+ p1)Q (q+ p1)

�1

� V
(1)
� (2q+ 2p1 + p2)Q (q+ p1 + p2)

�1
V
(1)
� (2q+ p1 + p2)Q (q)

�1
i

� W (1)(q;q+ p1)W
(1)(q+ p1;q+ p1 + p2)

� W (1)(q+ p1 + p2;q)

+
1

2adLd�1 T

X

q

n

tr

h

V
(1)
� (2q+ p1)Q (q+ p1)

�1
V
(2)
�� (2q+ p1)Q (q)

�1
i

� W (1)(q;q+ p1)W
(2)(q+ p1;q;p2;� p1 � p2)

+ cyclic perm utations

o

; (2.37)

where by \cyclic perm utations" we indicate the contributions ofthe other two diagram s

obtained from thesecond onein Eq.(2.35)by perform ingcyclicperm utationson thelabels

ofthe externallegs.Theexpressionsforthe com m utative case can beobtained sim ply by

om itting the factorsW (1),W (2) in the above equations.

3.T he parity anom aly in 3D noncom m utative Q ED

From now on we willconsiderthe three-dim ensionalcase (i.e.d � 2m + 1 = 3)and study

the parity anom aly in noncom m utative Q ED on the lattice. Parity anom aly has been

studied intensively in com m utative gauge theories,both in the continuum [32,33]and on

the lattice [21]. Ithas a wide application in condensed m atter physics[34]including the

2
The com binatorialfactors in front ofthe diagram s take into account the overallfactors of

1

2
and

1

3

m ultiplying the corresponding term sin the e�ective action.
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quantum Halle�ect[35].W ewill�rstbriey review theknown resultsin thecom m utative

case.

3.1 A briefreview ofthe com m utative case

In three-dim ensionalm asslessQ ED thereisa conictbetween parity sym m etry and gauge

invariance at the quantum level. As pointed out in [36]and elaborated in [32],a parity

invariantregularization oftheferm ion determ inantleadsto non-invarianceoftheone-loop

e�ectiveaction underlargegaugetransform ationsduetothespectralow oftheeigenvalues

ofthe Dirac operator,a phenom enon sim ilar to the one behind W itten’s globalanom aly

[37].O n the otherhand,a gauge invariantregularization ofthe theory,like Pauli-Villars,

induces a Chern-Sim ons action at one loop that breaks parity invariance,with precisely

the coe�cient required to com pensate the variation ofthe m assless ferm ion determ inant

underlarge gauge transform ations.

Despite any sim ilarities,parity anom aly in three-dim ensionalQ ED is di�erent from

ordinary anom alies in that the coe�cient ofthe anom aly depends on the regularization

schem e. Thispeculiar aspectofparity anom aly hasbeen clari�ed by Coste and L�uscher

[21]by using thelattice regularization,which providesthem ostrigid way to calculate the

anom aly while preserving gauge invariance. Here we sum m arize the m ain resultsofRef.

[21].First,when M ! 0,one obtainsin thecontinuum lim it

lim
M ! 0

� ��(p)=
1

2�

�

n +
1

2

�

����p� +
1

16jpj
(p2��� � p�p�): (3.1)

Theterm proportionalto theLevi-Civita tensorisparity odd,and hencesignalstheparity

anom aly.(Notethatthecontinuum action foram asslessDiracferm ion in threedim ensions

isinvariantunderparity transform ation.) Thecoe�cientoftheparity anom aly includesa

param etern,which can take any integervalue depending on thelattice action chosen,i.e.

on the details ofthe ultraviolet regularization. The essentialpoint,however,is thatthis

regularization am biguity doesnota�ecttheexistenceoftheparity anom aly itself,sincethis

isalwaysnonzero forany n 2 Z.Forthe standard W ilson ferm ion,one obtainsn = 0;� 1,

depending on whether the sign ofthe W ilson term is positive or negative. In this case

the parity anom aly arises because the W ilson term breaksparity on the lattice,and this

breaking persists in the continuum lim it. O n the other hand,ifone uses the G insparg-

W ilson ferm ion,whoseaction isinvariantunderthegeneralized parity transform ation,the

parity anom aly (3.1)arisesfrom them easure[24],thusrealizing Fujikawa’sphilosophy for

anom aliesata fully regularized level.

In thein�nitem asslim it,on theotherhand,theresultforthevacuum polarization is

given by

lim
M ! + 1

� ��(p)=
1

2�
n����p�

lim
M ! �1

� ��(p)=
1

2�
(n + 1)����p� ; (3.2)

where the integer n is the sam e param eter as the one introduced in (3.1) for the sam e

lattice action. Thus in generalthe ferm ion does not decouple com pletely in the in�nite
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m ass lim it but it leaves behind a certain localterm as a rem nant. In fact the freedom

ofthe integer param eter n in both (3.1) and (3.2) is closely related to the fact that the

rem nant(3.2)dependson the sign � ofthe lim itM ! � 1 .By choosing di�erentlattice

action,one essentially introducesdi�erentnum bersofheavy ferm ionswhich have m asses

oforderO (1=a).Thesign ofthem assescan beassigned asonewishes,and thisresultsin

the arbitrarinessrepresented by n.

3.2 T he noncom m utative case

Before we present our results on the noncom m utative case, let us rem ark on what we

m ean by \parity" when wediscussparity anom aly in noncom m utativeQ ED.Conventional

parity refersto a reection in one spatialdirection.In the Euclidean form ulation in three

dim ensions,one can com bine the conventionalparity transform ation with the 180 degrees

rotation in the rem aining two directions,to arrive atthetransform ation

 (x)7!  (� x)

� (x)7! � � (� x)

A �(x)7! � A�(� x); (3.3)

which leavesthem asslessDiracaction in thecontinuum invariant.In thenoncom m utative

case,theintroduction ofthenoncom m utativity m atrix��� breaksparityin theconventional

sense,butitpreservestheinvarianceunder(3.3).Itisthisinvarianceofthem asslessDirac

action thatwe referto when wesay ‘parity anom aly’in noncom m utative Q ED.

O urnexttask isto com putethee�ective action (2.32)asdiscussed in Section 2.3 and

toseehow theresultsofCosteand L�uscher[21]arem odi�ed by noncom m utativegeom etry.

W eanalyzeseparately thecasesofferm ionsin thefundam entaland adjointrepresentation.

W e willusea representation ofthethree-dim ensionalDirac m atricessatisfying

�� = ��� + i����� ; (3.4)

wherethem atricesaretaken to beHerm itian 
y
� = �.Hereafterwewill�x thesign ofM

by dem anding M � 0.

3.2.1 Fundam entalferm ions

W e begin with the coe�cient � ��(p) ofthe bilinear term in the e�ective action (2.33)

for the gauge �eld. For fundam entalferm ions the noncom m utative phases in Eq. (2.36)

cancelout.Theresulting expression isexactly thesam easin thecom m utativecaseand in

particulartheresultdoesnotdepend on how wetakethelim itsL ! 1 ,T ! 1 and a ! 0,

asfarasthe physicalextentofthe space-tim e (‘= aL and � = aT)goesto in�nity. For

instance we m ay take the large volum e lim itL ! 1 and T ! 1 at�xed lattice spacing

a and then take the continuum lim it a ! 0. Then the rest ofthe calculation proceeds

exactly asin Ref.[21].Letusintroducethesym bol

Tk(p)f(p)=

kX

n= 0

1

n!

@n

@tn
f(tp)

�
�
�
�
�
t= 0

; (3.5)
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which represents a Taylor subtraction at zero m om entum . Thus,in the in�nite volum e

lim it,� ��(p)fund can berewritten as

� ��(p)fund = g
2

Z

B

d3q

(2�)3
[1� T0(p)]tr

�

Q

�

q�
p

2

��1
@�Q (q)Q

�

q+
p

2

��1
@�Q (q)

�

;(3.6)

where the large volum e lim it L ! 1 and T ! 1 has been taken and consequently

the m om entum sum has been replaced by the integralin the Brillouin zone B = fq� 2

R
3j� (�=a)� q� � (�=a)g.Thesubtraction ofthezero externalm om entum contribution

com es from the tadpole diagram in the �rst line ofEq. (2.34). By using the identity

[1� T0(p)]f(p)= [1� T1(p)]f(p)+ p�@�f(0)we can write,aftersom ealgebra,

� ��(p)fund = g
2
a0����p� (3.7)

+ g
2

Z

B

d3q

(2�)3
[1� T1(p)]tr

�

Q

�

q�
p

2

��1
@�Q (q)Q

�

q+
p

2

��1
@�Q (q)

�

;

and

a0 =
1

48�3

Z

B

d
3
q����tr

�
Q (q)�1 @�Q (q)Q (q)

�1
@�Q (q)Q (q)

�1
@�Q (q)

�
: (3.8)

As shown in [21],a0 =
1
2�
n isa topologicalnum ber,where the integer n dependson the

param eterr,butnoton the lattice spacing.

Because ofthe subtraction at zero m om entum ,the integralin the second term on

the right hand side of(3.7) has negative degree so,according to Reisz theorem [38],its

continuum lim itisgiven by theintegraloverm om entum spaceofthelim itoftheintegrand

when a ! 0.O n sym m etry grounds,thetwo-pointfunction in thecontinuum hastheform

� ��(p)= A(p)����p� + B (p)(p2��� � p�p�)+ C (p)
�(p)��(p)�

�(p)2
; (3.9)

where �(p)� � ���p�. From the previous expressions,we �nd for the case offerm ionsin

the fundam entalrepresentation

A(p)fund = g
2
a0 +

g2

4�

Z 1

0

dx

n

1� M
�
M

2 + x(1� x)p2
�� 1

2

o

;

B (p)fund =
g2

2�

Z 1

0

dxx(1� x)
�
M

2 + x(1� x)p2
�� 1

2 ;

C (p)fund = 0 : (3.10)

In the lim itsM ! 0,M ! 1 ,we obtain resultsidenticalto the com m utative case (3.1),

(3.2).

Letusproceed to com putethecoe�cient� ���(p)ofthetrilinearterm in thee�ective

action (2.33) for the gauge �eld. Two types of diagram s contribute to this term . In

both casesitiseasy to check thatthecorresponding noncom m utative phasesareidentical

and factor out ofthe sum over the loop m om entum . The sum m ultiplying the global
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noncom m utative phase is independentof�,and it can be evaluated in the sam e lim it as

before.Thuswe arrive atthe expression

� ���(p1;p2)fund = e
i

2
�(~p1�~p 2)

Z

B

d3q

(2�)3
tr

h

V
(1)
� (2q+ p1)Q (q+ p1)

�1
(3.11)

� V
(1)
� (2q+ 2p1 + p2)Q (q+ p1 + p2)

�1
V
(1)
� (2q+ p1 + p2)Q (q)

�1
i

+
1

2
e
i

2
�(~p1�~p 2)

�Z

B

d3q

(2�)3
tr

�

V
(1)
� (2q)Q

�

q�
p1

2

��1
V
(2)
�� (2q)Q

�

q+
p1

2

��1
�

+ [cyclic perm utations:(�;p1)! (�;p2)! (�;� p1 � p2)]

o

;

wherewehave taken thelarge volum elim itL ! 1 and T ! 1 ,butthecontinuum lim it

isyetto betaken.In general,the three-pointfunction can bewritten as

� ���(p1;p2)fund = e
i

2
�(~p1�~p 2)A (p1;p2)fund���� + ::: ; (3.12)

where\:::" standsforterm sproportionalto rank-threetensorsconstructed in term softhe

incom ing m om enta.By looking atthe low m om entum expansion we �nd that

A (p1;p2)fund = � g
3
a0 + O (p2); (3.13)

where a0 isgiven again by Eq. (3.8). The rem aining m om entum -dependentcontribution

can beobtained by evaluating

Z

B

d3q

(2�)3
[1� T0(p1;p2)]tr

h

V
(1)
� (2q+ p1)Q (q+ p1)

�1
V
(1)
� (2q+ 2p1 + p2)

� Q (q+ p1 + p2)
�1

V
(1)
� (2q+ p1 + p2)Q (q)

�1
i

(3.14)

and keeping theterm sproportionalto����.Herewehavedenoted T0(p;q)f(p;q)= f(0;0).

Note also that the second group ofterm s in (3.11) does not contribute to A (p1;p2)fund,

since they are sym m etricin two oftheindices.

In orderto retrieve the continuum lim itof(3.14) we need to check thatthe relevant

term softheintegralon theright-hand sideconvergesto thecontinuum Feynm an integral.

By writing the integrand as V (q;p1;p2;M ;a)=C (q;p1;p2;M ;a) we �nd that degV � 8,

whereasdegC = 12,sothedegreeofdivergenceoftheintegrand is3+ degV � degC � � 1,

and thecontribution oftheintegralin thecontinuum lim itisgiven by theintegraloverthe

loop m om entum ofthe a ! 0 lim itofthe integrand.A carefulevaluation ofthe resulting

integralusing Feynm an param etersshowsthat(see Appendix B forthedetails)

lim
a! 0

A (p1;p2)fund = � g
3
a0 �

g3

2�

Z 1

0

dx1

Z 1�x 1

0

dx2

h

1� M (M 2 + �)�
1

2

i

�
g3

4�
M p

2
1

Z 1

0

dx1

Z 1�x 1

0

dx2
(x1 + x2)(1� x1 � x2)

(M 2 + �)
3

2

�
g3

4�
M p

2
2

Z 1

0

dx1

Z 1�x 1

0

dx2
x2(1� x2)

(M 2 + �)
3

2

(3.15)

�
g3

8�
M p1 � p2

Z 1

0

dx1

Z 1�x 1

0

dx2
x1 + 2x2(1� x1 � x2)

(M 2 + �)
3

2

;
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whereforshorthand wehave written

�� (x1 + x2)(1� x1 � x2)p
2
1 + x2(1� x2)p

2
2 + 2x2(1� x1 � x2)p1 � p2 : (3.16)

From theseresultsweseethatthecubicterm in thenoncom m utativeChern-Sim onsaction

em ergesin the lim itsM ! 0 and M ! 1 with coe�cientsconsistentwith the quadratic

term calculated above.Thisisexpected from thestar-gaugeinvariance,which ism anifestly

preserved in thelattice regularization.

Itisstraightforward to calculate now the e�ective action �[A]
(fund)

e�
in position space

form asslessferm ions.By using Eqs.(3.10)and (3.15)in the lim itM ! 0 we �nd forthe

parity violating part

�[A]
(fund)

e�
=

g2

4�

�

n +
1

2

� Z
d3p

(2�)3
����

~A �(p)~A �(p)p� (3.17)

�
g3

6�

�

n +
1

2

� Z
d3p1

(2�)3

Z
d3p1

(2�)3
����

~A �(p1)~A �(p2)~A �(� p1 � p2)e
i

2
�(~p1�~p 2):

Perform ingtheinverseFouriertransform on ~A �(p)and de�ningA �(x)= igA �(x)we�nally

arrive at

�[A ]
(fund)

e�
=

i

4�

�

n +
1

2

� Z

d
3
x����

�

A �@�A � +
2

3
A � ?A � ?A �

�

(3.18)

In particular,sincetheNCCS term isnotinvariantundertheparity transform ation (3.3),

we have a parity anom aly asin the com m utative case.

It is im portant to notice that in the � ! 0 lim it we retrieve the results obtained in

Ref. [21]for ordinary (com m utative) Q ED.The fact that the com m utative lim it turned

out to be sm ooth in the present case is due to the cancellation ofthe noncom m utative

phasesinvolving loop m om enta,which would otherwise cause the UV/IR m ixing. Such a

cancellation can beunderstood in atransparentway[22]ifoneusestheso-called double-line

notation known from large-N gaugetheory.Feynm an rulesshould bere-derived accordingly

and in particulareach ofthe interaction verticeswillhave a single noncom m utative phase

factorinstead ofasum ofphases.Usefulnessofthedouble-linenotation in noncom m utative

�eld theoriescan beunderstood ifonerecallsthatthealgebraicpropertyofthestar-product

isthesam easthatofm atrix product.In thedouble-linenotation,\planardiagram s" can

be de�ned as diagram s which can be drawn on a plane without any crossings oflines.

In factforany planardiagram sthe noncom m utative phase factorsoutofthe m om entum

integration,leaving a globalphase depending only on externalm om enta [39,40,41]. For

ferm ions in the fundam entalrepresentation,the interaction with the gauge �eld occurs

only on onesideoftheferm ion propagator(represented asa double-line),and thereforeall

the diagram sthatappearin the calculation ofthe e�ective action are actually planar.

3.2.2 A djoint ferm ions

Contrary to thecasestudied above,thee�ectiveaction fornoncom m utativegaugetheories

with ferm ions in the adjoint representation does not have a sm ooth com m utative lim it.
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Note that the originaltheory in the ��� ! 0 lim it is just a free m assless ferm ion and a

free photon,which isparity invariant. However,ifwe take the continuum lim itfor�nite

� we willsee that the adjoint ferm ions induce the NCCS action, which reduces to an

ordinary (com m utative) U(1) Chern-Sim ons term in the ��� ! 0 lim it. Using a Pauli-

Villars ferm ion ofm ass M reg as a regulator in the continuum [23]this is the result of

the factthatthe two lim its ��� ! 0 and M reg ! 1 do notcom m ute with each other,a

phenom enon characteristicofnoncom m utativequantum �eld theoriesboth atzero[22]and

�nite tem perature[44].Thiscom esaboutbecause oftheexistence ofnonplanardiagram s

in which theUV divergencesare regulated atthescale3 �j~pj.

Pluggingin thefactorsW (1),W (2)fortheadjointferm ions(2.27),(2.30),theexpression

(2.36)forthe two-pointfunction becom es

� ��(p)adj = 2� ��(p)fund

�
2

a3L2T

X

q

tr

h

V
(1)
� (2q+ p)Q (q+ p)

�1
V
(1)
� (2q+ p)Q (q)

�1
i

cos[�(~p� ~q)]

�
2

a3L2T

X

q

tr

h

V
(2)
�� (2q)Q (q)

�1
i

cos[�(~p� ~q)] ; (3.19)

where� ��(p)fund isthetwo-pointfunction forferm ionsin thefundam entalrepresentation

calculated above. In the language ofthe double-line notation (See the end ofSec.3.2.1),

the �rst term represents the contribution from the planar diagram and the other two

term s correspond to the nonplanar contributions. Interestingly the third term ,which is

the non-planarcontribution from the tadpole diagram ,exactly vanishesin the continuum

lim it. Therefore the e�ectofthe tadpole diagram isjustto subtractthe zero-m om entum

contribution from theplanarterm s,which hasthee�ectofm aking theam plitude�nitein

the continuum lim it,asseen above.Note thatthe second term of(3.19)is�niteby itself,

since the noncom m utative phase introducesan e�ective cuto� to the loop m om entum at

the scale �j~pj.

To obtain the continuum lim itofthe second term we have to take into accountthat

thislim ithasto betaken atthesam etim ewith thelarge volum elim itin such a way that

� / a2L is kept �xed. A long but straightforward calculation shows that the resulting

integrals can be written in term s ofm odi�ed Besselfunctions ofthe second kind. The

resulting two-pointfunction hastheform given in Eq.(3.9)now with (seeAppendix B for

details)

A(p)adj = 2A(p)fund +
g2

2�

r
2

�
j�(~p)j

1

2

Z 1

0

dx

n

M [M 2 + x(1� x)p2]�
1

4

� K 1

2

�

�j~pj[M 2 + x(1� x)p2]
1

2

� o

;

B (p)adj = 2B (p)fund �
g2

�

r
2

�
j�(~p)j

1

2

Z 1

0

dx

n

x(1� x)[M 2 + x(1� x)p2]�
1

4

3
Theroleofnonplanaram plitudesin thecalculation ofthechiralanom aly hasattracted som eattention

recently (see,forexam ple,[42,43]).
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� K 1

2

�

�j~pj[M 2 + x(1� x)p2]
1

2

� o

;

C (p)adj =
g2

�

r
2

�
j�(p)j

1

2

Z 1

0

dx

n �
M

2 + x(1� x)p2
�3
4

� K 3

2

�

�j~pj[M 2 + x(1� x)p2]
1

2

� o

: (3.20)

Using the asym ptotic expansion for large argum ents of the Besselfunctions, K �(z) �

ez=
p
2�z it is easy to see that the nonplanar term s in the am plitude are exponentially

suppressed in the lim itoflarge M (cf.[23]). In the M ! 0 lim it,on the otherhand,one

�ndsthatthenonplanarcontributionsto theparity violating term vanishes.Thusin both

lim itswe �nd thatthe parity violating term in the e�ective action com essolely from the

planar part,and its m agnitude is twice the one for fundam entalferm ions. Later we will

o�era physicalexplanation ofthisphenom enon.

For�nitevaluesofthenoncom m utative param eter� thethree-dim ensionalEuclidean

group SO (3)isbroken down to SO (2),acting asrotationson the noncom m utative plane.

An im portantconsequence ofthe sm ooth com m utative lim it(� ! 0)ofnoncom m utative

Q ED with fundam entalferm ions is that the fullEuclidean group SO (3) is restored in

thatlim it. Thism eansthatthe \generalized parity" anom aly studied here ism apped to

the usualparity anom aly ofcom m utative Q ED.O n the other hand,foradjoint ferm ions

the situation is radically di�erent,since the Euclid-breaking term in the e�ective action,

third equation in (3.20),doesnotdisappearin thecom m utativelim itand actually induces

divergenceswhen � ! 0,while keeping the SO (2)sym m etry unbroken (see the discussion

atthe end ofthissubsection). The reason isthatin thiscase,because ofUV/IR m ixing,

thenoncom m utativetheory isnota sm ooth deform ation of(free)com m utative Q ED with

neutralferm ions.

Letusnow turn to the evaluation ofthe three-pointfunction. Aftera shortm anipu-

lation ofthenoncom m utative phases,thethree-pointfunction can bewritten as

� ���(p1;p2)adj =

h�

e
i

2
�(~p1�~p 2)� e�

i

2
�(~p1�~p 2)

�

A (p1;p2)fund + A (p1;p2;�)N P

i

����

+ ::: ; (3.21)

where A (p1;p2)fund isthe sam e function appearing in Eq.(3.12)and A (p1;p2;�)N P isthe

nonplanarcontribution.Asabovetheellipsisdenotesfurtherterm swhosetensorstructure

depends on the externalm om enta. The nonplanar function A (p1;p2)N P is calculated by

evaluating the sum

1

a3L2T

X

q

tr

h

V
(1)
� (2q+ p1)Q (q+ p1)

�1
V
(1)
� (2q+ 2p1 + p2) (3.22)

� Q (q+ p1 + p2)
�1
V
(1)
� (2q+ p1 + p2)Q (q)

�1
i

W (p1;p2;q)N P

and keeping theterm sproportionalto ����.Herethe\nonplanar" partofthenoncom m u-

tative phaseW (p1;p2;q)N P isgiven by

W (p1;p2;q)N P = e
i

2
�(~p1�~p 2)

h

ei�(~q�~p 2)� e�i�(~q�~p 1)� ei�~q�(~p 1+ ~p2)
i

� e�
i

2
�(~p1�~p 2)

h

e�i�(~q�~p 2)� ei�(~q�~p 1)� e�i�~q�(~p 1+ ~p2)
i

: (3.23)
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A (p1;p2)N P can be com puted in the continuum lim it a ! 0 at in�nite volum e with a2L

�xed and expressed in term softhe m odi�ed Besselfunctionsofthe second kind. In this

lim it,A (p1;p2;�)N P isexpressed in term sofsum ofintegralsofthe form

g
3
M

Z
d3q

(2�)3

M 2 + q2 + (p1 + p2)� q

[M 2 + (q+ p1)
2][M 2 + (q+ p1 + p2)

2](M 2 + q2)
ei�(~w �~q); (3.24)

where ~w = �~p1 + � ~p2 (�;� = 0;� 1) is a linear com bination ofthe incom ing m om enta,

that can be read o� from Eq. (3.23). These integrals can be com puted again in term s

ofm odi�ed Besselfunctionsofthe second kind. Asitwasthe case also forthe two-point

functions,alltheterm scontributing to A (p1;p2;�)N P vanish both in thelim itM ! 0,due

to the globalfactor ofM in front ofthe integral,and as M ! 1 ,this tim e due to the

exponentialdam ping ofthem odi�ed Besselfunction forlargevaluesoftheargum ent.The

�nalconclusion isthatin thecontinuum lim it

lim
M ! 0

A (p1;p2;�)N P = lim
M ! 1

A (p1;p2;�)N P = 0: (3.25)

As a consequence,in these two lim its,the coe�cient ofthe Chern-Sim onsaction is only

determ ined by the �rst term on the right-hand side of(3.21) and its value is consistent

with the one calculated above from the two-pointfunction. This,again,followsfrom the

factthatthelattice regularization preservesstar-gauge invariance.

W ecan now study theparity-odd partoftheinduced e�ectiveaction in thelim itM !

0. From the two-and three-point am plitudes calculated above we �nd that �[A ]
(adj)

e�
=

2�[A ]
(fund)

e�
where�[A ]

(fund)

e�
isgiven in Eq.(3.18).Note thatwe have considered thatthe

adjointferm ionsareofDiractype.Them inim alform oftheanom aly,however,isobtained

by im posing the M ajorana condition. In thiscase there isan extra factorof 1
2
in frontof

the ferm ionic determ inant and the e�ective action for M ajorana ferm ions in the adjoint

representation agreeswith Eq.(3.18)[23].

To conclude,letustry to understand in physicalterm sthevanishing ofthenonplanar

contribution to theparity-violating partofthee�ective action in thelim itofzero ferm ion

m ass. As m entioned in Section 3.1 the parity anom aly in com m utative gauge theories

results from the im possibility of�nding a parity-invariant UV cuto� which at the sam e

tim epreservesLorentzand gaugesym m etries.Thisisclearfrom theanalysisof[32]where

the introduction ofa parity-invariantUV cuto� � in the integrals resultsin the presence

ofa term g2���� in thetwo-pointfunction which breaksthe W ard identity.

Because ofthe presence ofthe noncom m utative phases depending on the loop m o-

m entum , we can see the nonplanar contribution to the two-point function of m assless

noncom m utativeQ ED asaregularization ofthecorrespondingam plitudein ordinary(com -

m utative) m assless Q ED.In this case the noncom m utative m om entum �j~pj� ��1 plays

theroleofan UV cuto�.M oreover,thiscuto� preservetheparity invarianceofthetheory.

Thereforeoneexpectsthattheparity-breakingterm sin theam plitudeswillvanish.Indeed,

using thenonplanarpartin (3.20)we �nd the two-pointfunction ofm asslessQ ED in this

regularization to be

� ��(p)
�
Q ED =

g2

2�jpj
1

2

r
2

�
��

1

2(p2��� � p�p�)

Z 1

0

dx[x(1� x)]
3

4K 1

2

�

��1 [x(1� x)p2]
1

2

�
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�
g2

2�

r
2

�
jpj

3

2��
1

2
�(p)��(p)�

�(p)2

Z 1

0

dx[x(1� x)]
3

4K 3

2

�

��1 [x(1� x)p2]
1

2

�

; (3.26)

i.e. the two-pointfunction doesnotcontain parity-breaking term sand satis�esthe W ard

identity.However,becauseofthepresenceofthelastterm ,itbreaksEuclidean sym m etry.

Thus the \�-regularization" ofm assless Q ED provides a regularization schem e in which

both parity and gauge sym m etries are m aintained at the cost ofbreaking Euclidean (or

Lorentzian) invariance. In the lim it in which the cuto� is sent to in�nity,� ! 1 ,the

coe�cient ofthe �rst term in the right-hand side of(3.26) tends to g 2=(16jpj) whereas

the second Euclid-breaking term diverges linearly with �. Euclidean invariance can be

restored by introducing a Pauli-Villarsferm ion with m assM reg which subtractsthediver-

gentpartofthetwo-pointfunction (3.26).However,thisprocedureresultsin thebreaking

ofparity invariance and as a consequence a Chern-Sim ons term is again induced in the

lim itM reg ! 1 .Thisissom ewhatrem iniscentto the analysisofnonplanaranom aliesin

noncom m utative gauge theoriespresented in [43].

4.N oncom m utative C hern-Sim ons theory on the lattice

In thissection ourresultsin the previoussectionsare used to de�ne a lattice-regularized

noncom m utativeChern-Sim onstheory following theproposalm adein Ref.[24]in thecom -

m utative case.Thebasic idea isto use the parity breaking partofthe e�ective action in-

duced by theG insparg-W ilson ferm ion.Sincem asslessnessoftheG insparg-W ilson ferm ion

isguaranteed on thelattice,oneobtainsthecorrectnoncom m utativeChern-Sim onsaction

in thecontinuum lim itwithout�ne-tuning.

TheDiracoperatorD fortheG insparg-W ilson ferm ion ischaracterized bytheG insparg-

W ilson relation [45]which,in theform applicabletoboth even and odd dim ensions,isgiven

by [24]

D + D
y = aD

y
D : (4.1)

Thegeneralsolution to Eq.(4.1)can bewritten as

D =
1

a
(1� V ); (4.2)

where V isa unitary operator,which should turn into the identity operatorin the naive

continuum lim it.In even dim ensions,assum ing furtherthe \5-Herm iticity"

D
y = 5D 5 ; (4.3)

one arrivesatthe originalG insparg-W ilson relation [45]

D 5 + 5D = aD 5D : (4.4)

This relation guarantees that the ferm ion action including the operator D is invariant

undera generalized chiralsym m etry [46],which reducesto the ordinary chiralsym m etry

in the continuum lim it. The role ofthe \5-Herm iticity" is played in odd dim ensionsby

the property

D (U )y = R D (U P )R ; (4.5)
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whereU P istheparity transform ed gauge con�guration,

U
P
� (x)= U�(� x)y ; (4.6)

and R is the space-tim e reection operator,R :x 7! � x. Com bining (4.1) and (4.5)

onecan show theinvarianceofthecorrespondingferm ion action undera generalized parity

transform ation [24].Them easure,however,isnotinvariantunderthesam etransform ation.

Asa consequence,the ferm ion determ inantisnotinvariantbuttransform sas

detD (U P )= (detV )�detD (U ): (4.7)

So far we have discussed generalproperties ofthe G insparg-W ilson operator,which

satis�es (4.1). In fact the unitary operator V hasto be chosen appropriately in orderto

guarantee thattheoperatorD hassensiblepropertiesasa Dirac operatorsuch aslocality

(with exponentially decaying tails)and the absence ofspeciesdoublers.Such an operator

hasbeen derived from theoverlap form alism [47],and itisgiven explicitly by [48]

V = A w=

q

A
y
wA w (4.8)

A w = 1� aDw (r= � 1); (4.9)

where D w (r = � 1) is the Dirac-W ilson operator,which has the form (2.17) with ordi-

nary covariant derivatives. The noncom m utative version ofthe G insparg-W ilson ferm ion

can be obtained by sim ply using the covariant derivatives (2.19) or (2.21) depending on

the representation,instead ofthe usualones without star-products. In even dim ensions

G insparg-W ilson ferm ions played a crucialrole in introducing chirality on a discretized

noncom m utative torus[20].Recently an analogousconstruction hasbeen worked outon a

fuzzy sphere[49].

Forthechoice (4.8),detV in (4.7)isnothing butthephaseofdetA w,which isessen-

tially the ferm ion determ inant ofthe W ilson-Dirac operator with r = � 1 and M = 1=a.

Thusonecan translatetheresultobtained fortheW ilson ferm ion in thein�nitem asslim it

into the parity anom aly for the G insparg-W ilson ferm ion. In the com m utative case this

ishow the correctparity anom aly hasbeen reproduced by [50]in the overlap form alism 4.

In the noncom m utative case,on the other hand,our resultsin the previoussection with

r= � 1 in thelim itM ! 1 im pliesthattheparity anom aly obtained forG insparg-W ilson

ferm ionscoincides with the resultforW ilson ferm ionswith r = � 1 in the m asslesslim it

M ! 0.

Asin thecom m utative case [24],theparity anom aly fortheG insparg-W ilson ferm ion

suggests a naturalde�nition ofthe noncom m utative Chern-Sim ons term on the lattice.

Nam ely we de�neitasSCS in

eiSC S
def
=

detA w

jdetA w j
; (4.10)

where A w is de�ned by (4.9) with the covariant derivative (2.19) for the fundam ental

representation. Here we rem ind the readerthatA W isrelated to the in�nite-m ass Dirac

4
See also [51]foran earlier work on the overlap form alism in odd dim ensions,where a parity invariant

phase choice hasbeen m ade.
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determ inantaswediscussed in thepreviousparagraph.According to ourcalculations,the

quantity SCS indeed becom esthenoncom m utative Chern-Sim onsaction in thecontinuum

lim it.In thecontinuum ,on theotherhand,noncom m utativeChern-Sim onsterm isknown

to transform as[52]5

SCS 7! SCS + 2�� ; (4.11)

under a gauge transform ation,where � is the winding num ber characterizing this gauge

transform ation. The gauge invariance requires the coe�cient of the noncom m utative

Chern-Sim ons action to be quantized. That Eq.(4.10) de�nes SCS only up to m odulo

2� is therefore not a problem for m ost practicalpurposes. Note in this regard that the

right-hand sideofeq.(4.10)isindeed m anifestly gauge invariant.

5.C oncluding rem arks

In the presentpaperwe have studied the em ergence ofparity anom aly on the lattice for

three-dim ensionalnoncom m utative Q ED,both with ferm ionsin the fundam entaland the

adjointrepresentation. Induced Chern-Sim onsactions in noncom m utative gauge theories

havebeen studiedin thecontinuum in [23,54]usingthePauli-Villarsregularization (seealso

[55]foran incom pletelistofreferences).However,them ain advantageofthelatticeanalysis

presented hereliesin m akingexplicitthedependenceofthecoe�cientoftheinducedChern-

Sim ons term on the regularization schem e used. Thus,the results obtained in Ref.[23]

correspondsto the casesn = 0;� 1 in ouranalysisusing the lattice regularization. Notice

that the quantization ofthe schem e-dependent term in the e�ective action is consistent

with the star-gauge invariance ofthe ferm ion determ inantunder\large" transform ations

[52],asrequired by thefactthatthelattice regularization respectsstar-gauge invariance.

W ehavealsoproposed alattice-regularized Chern-Sim onsaction on anoncom m utative

torususing G insparg-W ilson ferm ions.Asthelattice form ulation ofnoncom m utative�eld

theorieshasbeen usefulto extracttheirinteresting nonperturbativedynam ics[15,16,18],

we hope thatthe lattice form ulation ofnoncom m utative Chern-Sim onsaction isusefulto

deepen ourunderstanding ofquantum Hallsystem s.

Finally we would like to em phasize that the lattice noncom m utative �eld theories

studied in the presentpapercan bem apped on to a �niteN m atrix m odel.Theanom aly

calculation in m atrix m odels has recently attracted attention in the context oflarge-N

gauge theory [56,57]and noncom m utative geom etry [58,49]. W e expectthatthe calcu-

lation m ethod developed in thispaperisusefulto study variousanom aliesin noncom m u-

tative geom etry. In particularwe would like to revisitthe gauge anom aly cancellation in

chiralgauge theories on a noncom m utative torus [20]. W e hope that such developm ents

willeventually lead usto a deeperunderstanding ofthe stringy nature ofthe space-tim e

structure.

5
Thisgauge violation wasalso concluded in Ref.[53],although itwasoverlooked in its�rstversion.
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A .Functionaldeterm inants

In thefollowing wewillprovidean alternative calculation ofthee�ective action �[A]e� on

thelattice by directevaluation oftheferm ionicdeterm inant(2.32).From thede�nition of

theDirac-W ilson operator(2.17)and theexpansion ofthelink �eld U �(x)in term softhe

lattice gauge �eld A �(x)(2.22),one can write

D w =

1X

k= 0

g
k
D w ;k: (A.1)

Using thisexpansion,thee�ective action can beexpressed as

�[A]e� = � log

�
det(D w � M )

det(D w ;0 � M )

�

= � logdet

"

1+ (D w ;0 � M )�1
1X

k= 1

g
k
D w ;k

#

= � Trlog

"

1+

1X

k= 1

g
k(D w ;0 � M )�1 D w ;k

#

; (A.2)

which leadsto the following seriesfor�[A]e�:

�[A]e� = g
2�2[A]+ g

3�3[A]+ ::: (A.3)

with

�2[A]= Tr

�
1

2

�
(D w ;0 � M )�1 D w ;1

�2
� (Dw ;0 � M )�1 D w ;2

�

(A.4)

�3[A]= Tr

n

�
1

3

�
(D w ;0 � M )�1 D w ;1

�3
+
�
(D w ;0 � M )�1 D w ;1(D w ;0 � M )�1 D w ;2

�

� (Dw ;0 � M )�1 D w ;3

o

: (A.5)

By com paring with Eqs. (2.34) and (2.35) we can identify each term in the previous

equationswith thecontribution ofa particularFeynm an diagram .

A quick com putation shows that for ferm ions in the fundam entalrepresentation the

operatorD w ;k appearing in Eq.(A.1)isgiven by

D
(fund)

w ;k
 (x)=

(ia)k

2ak!

dX

�= 1

h

(r+ �)A �(x)
?k
? (x + a�̂)

+ (� 1)k(r� �)A �(x � a�̂)?k ? (x � a�̂)

i

; (A.6)
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whereaswhen the ferm ionsarein the adjointrepresentation the resultis

D
(adj)

w ;k
 (x)=

(ia)k

2ak!

dX

�= 1

kX

m = 0

(� 1)m

 

k

m

!
h

(r+ �)A �(x)
?(k�m )

? (x + a�̂)?A �(x)
?m

+ (r� �)A �(x � a�̂)?m ? (x � a�̂)?A�(x � a�̂)?(k�m )
i

: (A.7)

In both expressionswe have used thenotation �(x)?n �

n
z }| {
�(x)?:::?�(x).

In ordertoevaluateeach term in Eq.(A.4)-(A.5)itisconvenienttoworkin m om entum

space.In thefollowing wewilldetailthecalculation forfundam entalferm ions,leaving the

adjointcase forthe reader.Using Eq.(2.5)togetherwith

~A �(p)= a
3

X

x2� L ;T

A �(x)e
�ip�(x+ 1

2
a�̂) (A.8)

one can easily �nd the action ofthe operators in Eqs. (A.4)-(A.5) on ~ (p). For the free

propagatorwehave

(D w ;0 � M )�1 ~ (p)= � Q (p)�1 ~ (p); (A.9)

whereastheresultforD w ;1 can bewritten as

gD 1
~ (p)=

ig

a3L2T

X

q2B

3X

�= 1

n

� cos

h
a

2
(p+ q)�

i

+ irsin

h
a

2
(p+ q)�

io

e
i

2
�(~p�~q)

� ~A �(p� q)~ (q)

=
1

a3L2T

X

q2B

3X

�= 1

V
(1)
� (p+ q)W

(1)

fund
(p;q)~A �(p� q)~ (q): (A.10)

Here V
(1)
� (p)and W

(1)

fund
(p;q)are de�ned in Eqs. (2.26)and (2.27)respectively. ForD w ;2

we arrive at

g
2
D w ;2

~ (p)= �
ag2

2(a3L2T)2

X

q;q02B

3X

�= 1

n

rcos

h
a

2
(p+ q)�

i

+ i� sin

h
a

2
(p+ q)�

io

� e
i

2
�[~p�~q+ ~q 0�(~p�~q�~q 0)]~A �(q

0)~A �(p� q� q
0)~ (q)

=
1

2(a3L2T)2

X

q;q02B

3X

�;�= 1

V
(2)
�� (p+ q)W

(2)

fund
(p;q;q0;p� q� q

0)

� ~A �(q
0)~A �(p� q� q

0)~ (q): (A.11)

Asin the previouscase we have introduced the vertex function and the noncom m utative

phase de�ned in Eqs.(2.29)and (2.30)respectively.Finally,forD w ;3 the resultis

g
3
D w ;3

~ (p)=
ag3

3!(a3L2T)3

X

q;q0;q002B

3X

�= 1

n

rsin

h
a

2
(p+ q)�

i

� i� cos

h
a

2
(p+ q)�

io

� e
i

2
�[~q�~q 0+ ~q�~q 00+ ~q0�~q 00+ ~p�(~q�~q 0�~q 00)]

� ~A �(q
0)~A �(q

00)~A �(p� q� q
0� q

00)~ (q): (A.12)
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Thisterm isassociated with thethree-photon vertex in thediagram aticexpansion that,as

argued in Section 2.2,isirrelevantin thecontinuum lim it.

W ehaveseen that,when written in m om entum space,alloperatorsappearing in Eqs.

(A.4)-(A.5)are expressed as�nitem atrices,O ~ (p)=
P

q2B
O (p;q)~ (q),whosetracescan

beeasily calculated.Letusbegin with �2[A].The�rsttrace to becom puted is

g
2Tr

�
1

2

�
(D w ;0 � M )�1 D w ;1

�2
�

=
1

2(a3L2T)2

3X

�;�= 1

X

p;q2B

~A �(p)~A �(� p)

� tr

h

V
(1)
� (2q+ p)Q (q+ p)

�1
V
(1)
� (2q+ p)Q (q)

�1
i

;(A.13)

where\tr" indicatesthetraceoverDirac indices.In thesam eway,forthesecond tracein

(A.4)the resultis

� g
2Tr

�
(D w ;0 � M )�1 D w ;2

�
=

1

2(a3L2T)2

3X

�;�= 1

X

p;q2B

~A �(p)~A �(� p)

� tr

h

V
(2)
�� (2q)Q (q)

�1
i

: (A.14)

Adding these two term s to get �2[A]and extracting the kernel� ��(p) de�ned in (2.33),

we recoverEq.(2.36).

Thecubicterm �3[A]in thee�ective action can becom puted along sim ilarlines.The

�rstterm in (A.5)gives

�
1

3
Tr

n�
(D w ;0 � M )�1 D w ;1

�3
o

=
1

3(a3L2T)3

3X

�;�;�= 1

X

p;q;q02B

~A �(q)~A �(q
0)~A �(� q� q

0)

� e
i

2
�(~q�~q 0)tr

h

V
(1)
� (2p+ q)Q (p+ q)

�1
V
(1)
� (2p+ 2q+ q

0)Q
�
p+ q+ q

0
��1

� V
(1)
� (2p+ q+ q

0)Q (p)
�1
i

; (A.15)

whereasthesecond trace renders

Tr
�
(D w ;0 � M )�1 D w ;1(D w ;0 � M )�1 D w ;2

�

=
1

2(a3L2T)3

3X

�;�;�= 1

X

p;q;q02B

~A �(q)~A �(q
0)~A �(� q� q

0)

� e
i

2
�(~q�~q 0)tr

h

V
(1)
� (2p+ q)Q (p+ q)

�1
V
(2)
�� (2p+ q)Q (p+ q)

�1
i

: (A.16)

The third term Tr
�
[D w ;0 � M ]�1 D w ;3

	
corresponds to the contribution ofthe tadpole

diagram which is irrelevant in the continuum lim it. Adding together (A.15) and (A.16),

and identifying the kernel� ���,we recovertheresultofEq.(2.37).

In thecaseofadjointferm ions,thecalculation isanalogousto theonedescribeabove,

them ain di�erencebeing thenoncom m utativephases.Again theresultsofSection 2.3 are

recovered.
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B .Evaluation ofthe Feynm an integrals

In thisAppendix we willprovide the readerwith detailsofthe calculation ofsom e ofthe

Feynm an integralsin Sections3.2.1 and 3.2.2.Asexplained above,weconsideraherm itian

representation ofthe 2� 2 gam m a m atricessatisfying �� = ��� + i�����.Thisim plies

the following trace identities:

tr(���)= 2i���� ;

tr(����)= 2(������ + ������ � ������);

tr(�����)= 2i(������� + ������� + ������� � �������);

tr(������)= 2(��������� + ��������� � ��������� � ���������

+ ��������� � ��������� + ��������� + ���������

� ��������� � ��������): (B.1)

B .1 Fundam entalferm ions

Asshown in [21],theintegrand ofthesecond term in Eq.(3.7)hasnegative degreeso the

continuum lim itexistsand givesriseto the integral

I�� = � g
2

Z
d3q

(2�)3
[1� T1(p)]

trf� [M + i(q=+ p=)]� [M + iq=]g

[M 2 + (q+ p)2](M 2 + q2)
: (B.2)

By using the trace identities (B.1) and writing the denom inator as an integral over a

Feynm an param eter

1

[M 2 + (q+ p)2](M 2 + q2)
=

Z 1

0

dx
�
(q+ xp)2 + M

2 + x(1� x)p2
��2

; (B.3)

one arrivesat

I�� = � 2g2
Z

1

0

dx

Z
d3q

(2�)3
[1� T1(p)]

n

M ����p� � 2q�� + 2x(1� x)p�p�

+
�
M

2 + q
2 � x(1� x)p2

�
���

o �
q
2 + M

2 + x(1� x)p2
��2

: (B.4)

The�nalresult(3.10)isreadily obtained by com putingthem om entum integral.Notethat,

because ofthe zero-m om entum subtraction,the integralin (B.4)isfree ofdivergences.

W enow evaluatethefunction A (p1;p2)fund in (3.12).Therelevantintegralto calculate

isthecontinuum lim itofEq.(3.14)which can becastinto

I��� = � ig
3

Z
d3q

(2�)3
[1� T0(p1;p2)]

�
tr

n

� [M + i(q=+ p=1)]� [M + i(q=+ p=1 + p=2)]�(M + iq=)

o

[M 2 + (q+ p1)
2][M 2 + (q+ p1 + p2)

2](M 2 + q2)
: (B.5)

In orderto com pute A (p1;p2)fund we need to retain only those term sproportionalto the

Levi-Civita tensor����.By expanding the trace in the num eratorand using Eqs.(B.1)it
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isstraightforward to check thatonly two term s,proportionalto M 3 and M ,contributeto

A (p1;p2)fund,nam ely

A (p1;p2)fund = 4M g
3

Z
d3q

(2�)3

Z 1

0

dx1

Z 1�x 2

0

dx2[1� T0(p1;p2)]

�
M 2 + q2 + (p1 + p2)� q

n

[q+ (x1 + x2)p1 + x2p2]
2
+ �

o3; (B.6)

wherewehavereduced thedenom inatorof(B.5)by introducing Feynm an param etersand

� isde�ned in Eq.(3.16).Theintegralcan beeasily evaluated using standard techniques

to �nd the resultgiven in Eq.(3.15).

B .2 A djoint ferm ions

In thecasewhen theferm ionsarein theadjointrepresentation,theevaluation oftheFeyn-

m an integrals ism ore involved due to the presence ofnoncom m utative phasesdependent

on theloop m om entum .Letusfocus�rston thetwo-pointfunction.Asexplained above,

contrary to the planar part where the tadpole diagram introduces the zero m om entum

subtraction that m akes the whole am plitude �nite,in the nonplanar sector the tadpole

diagram cancelsexactly. Thiscan be seen by noticing that,up to a totalderivative term

thatcancelsin thecontinuum lim it,thenonplanarcontribution ofthetadpolediagram in

the continuum lim itisgiven by

� ��(p;�)adj

�
�
�
tadpole

= � 4g2
Z

d3q

(2�)3

(M 2 + q2)��� � 2q�q�

(q2 + M 2)2
cos[�(~p� ~q)]

+ 4g2�(p)�

Z
d3q

(2�)3

q�

q2 + M 2
sin[�(~p� ~q)]: (B.7)

The relevant integrals can be easily solved in term s ofm odi�ed Besselfunctions ofthe

second kind (! 2 R):

Z
d3q

(2�)3

2q�q� � q2���

(q2 + !2)2
ei�(~p�~q) =

1

8�

r
2

�
j!j

3

2(�j~pj)
1

2

n

K 1

2

(�j~pjj!j)���

� 2K 3

2

(�j~pjj!j)
�(p)��(p)�

�(p)2

o

; (B.8)

Z
d3q

(2�)3

ei�(~p�~q)

(q2 + !2)2
=

1

8�

r
2

�
j!j�

1

2(�j~pj)
1

2K 1

2

(�j~pjj!j); (B.9)

Z
d3q

(2�)3

q�

q2 + !2
ei�(~p�~q) =

i

4�

�(p)�

�(p)2

r
2

�
(�j~pj)

1

2j!j
3

2K 3

2

(�j~pjj!j): (B.10)

Substituting these expressions into (B.7) one �nds a cancellation between the di�erent

term s.

Asforthe nonplanarpartofthe two-pointfunction com ing from the �rstdiagram in

Eq.(2.34),therelevantintegralto evaluate is

I
�
�� = � g

2

Z
d3q

(2�)3

trf� [M + i(q=+ p=)]� [M + iq=]g

[M 2 + (q+ p)2](M 2 + q2)
ei�(~p�~q): (B.11)

{ 25 {



Here one can follow the sam e stepsasin thecase offundam entalferm ions,leading to

I
�
�� = � 2g2

Z 1

0

dx

Z
d3q

(2�)3
(B.12)

�
M ����p� � 2q�� + 2x(1� x)p�p� +

�
M 2 + q2 � x(1� x)p2

�
���

[q2 + M 2 + x(1� x)p2]
2

ei�(~p�~q):

O nce m ore,by using (B.8)-(B.10)one readily �ndstheexpressions(3.20).

To conclude,we outline the calculation ofthe function A (p1;p2;�)N P in Eq. (3.21).

Asin thecaseofthetwo pointfunction,theonly di�erencewith respectto theplanarpart

analyzed in the previoussubsection [cf.Eq.(B.6)]isthe presence ofthe noncom m utative

phase.Thisyields

A (p1;p2;�)N P = 4M g
3

Z
d3q

(2�)3

Z
1

0

dx1

Z
1�x 2

0

dx2

�
M 2 + q2 + (p1 + p2)� q

n

[q+ (x1 + x2)p1 + x2p2]
2
+ �

o3W (p1;p2;q)N P; (B.13)

wherethephasesaregiven in Eq.(3.23).Becauseofthestructureofthenoncom m utative

phases,A (p1;p2;�)N P isindeed a sum ofterm softhe form (3.24). Aftershifting the loop

m om entum ,the integralcan beevaluated with thehelp ofEq.(B.9)togetherwith

Z
d3q

(2�)3

q�e
i�(~p�~q)

(q2 + !2)3
=

i

32�

�(p)�

�(p)2

r
2

�
j!j�

1

2(�j~pj)
5

2K 1

2

(�j~pjj!j);

Z
d3q

(2�)3

ei�(~p�~q)

(q2 + !2)3
=

1

32�

r
2

�
(�j~pj)

3

2j!j�
3

2K 3

2

(�j~pjj!j): (B.14)

In our case the constant ! is replaced by �. Thus,for large values ofthe ferm ion m ass

and at�xed incom ing m om enta theargum entoftheBesselfunctionsisvery largeand the

correspondingintegralsvanish exponentially.In thesam eway,ifM ! 0 at�nitem om enta

� isnonzero and thecorresponding integralsrem ain �nite.Thus,becauseofthepresence

ofan overallpowerofM in frontof(B.13),allthe integrals contributing to the function

A (p1;p2;�)N P willvanish in thatlim it.
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