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1. Introduction

Quantum �eld theory on noncommutative spaces has been a subject of much activity in

recent years (see [1, 2] for comprehensive reviews). This attention was originally triggered

by its intimate relationship with string theory, but the study of noncommutative �eld

theories has interest in its own. From a mathematical physics point of view they provide

us with a class of nonlocal quantum �eld theories which nonetheless seem to be well de�ned.

Also, since noncommutative �eld theories are essentially theories of dipoles [3] they can be

also useful in the analysis of systems with dipolar excitations in condensed matter physics.

In this context, noncommutative Chern-Simons (NCCS) theory in (2 + 1)-dimensions

is specially appealing because of its applications to quantum Hall systems [4, 5]. Here the

noncommutativity is introduced only in the spatial direction and the resulting deformation

of the ordinary gauge invariance into \star-gauge invariance" is essential for the description

of the system which has the area preserving di�eomorphism invariance [4]. Remarkably, a
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�nite-N matrix model of NCCS theory is found to have physical states which have one-to-

one correspondence with Laughlin-type wave functions [6]. It has also been pointed out that

instabilities of the NCCS theory can describe the transition to the Wigner crystal, where

spontaneous breakdown of translational invariance is caused by the noncommutativity [7].

In studying noncommutative �eld theories it is often useful to consider its matrix-

model description. This is reminiscent of its string/M-theoretic connections [8, 9]. Here

the space-time degrees of freedom and the internal (\color") degrees of freedom are treated

on equal footing, and \star-gauge invariance" is simply described by the global U(1)

symmetry which acts on the matrix indices. The matrix model description is also useful

for regularizing noncommutative �eld theories [9, 10, 11, 12, 13], since �nite-N twisted

reduced models [14] are interpreted as a lattice formulation of noncommutative �eld theories

[11, 12, 13]. Such a lattice formulation provides the most reliable method to study the

quantum dynamics of noncommutative �eld theories in a fully nonperturbative manner.

Recently, the lattice regulatization has been applied to two-dimensional noncommutative

Yang-Mills theory [15, 16], where (nonperturbative) renormalizability was demonstrated

for the �rst time in a noncommutative �eld theory. There the same theory was shown

to have an intriguing infrared property which may be described as the Aharonov-Bohm

e�ect with the magnetic �eld identi�ed with the inverse noncommutativity parameter. The

lattice formulation has also been used to explore the phase diagram of noncommutative

scalar �eld theories [16, 17], which is expected to be richer than in the commutative case,

as indicated by a self-consistent Hartree approximation [18]. In particular, as conjectured

by Ref. [18], the ordered phase is found to split into a uniformly ordered phase and a phase

dominated by the stripe pattern. In the latter phase, nonzero momentum modes acquire

vacuum expectation values, and therefore translational invariance is spontaneously broken.

The aim of this paper is two-fold. First we formulate perturbation theory for the lattice

noncommutative gauge theory. Although the most important virtue of the lattice regu-

larization lies in its capability of nonperturbative studies, it has also been used to clarify

subtle issues in perturbative aspects of gauge theories. We consider this particularly im-

portant because the lattice construction of noncommutative chiral gauge theories suggests

a new mechanism of gauge anomaly cancellation, which is not yet known in the continuum

[19]. As an application of the lattice perturbation theory, we pick up a noncommutative

version of three-dimensional QED, where the lattice calculation indeed plays a crucial role

in revealing peculiar properties of the parity anomaly, given in terms of noncommutative

Chern-Simons action. The coeÆcient of the anomaly is labelled by an integer depending on

the lattice action, which is a counterpart of the phenomenon observed by Coste and L�uscher

[20] in the commutative theory. The commutative limit is smooth when the fermions are in

the fundamental representation, but it is not for fermions in the adjoint representation due

to a characteristic property of noncommutative �eld theories known as the UV/IR mixing

[21]. As a special case our result includes Chu's result [22] obtained in the continuum by

using the Pauli-Villars regularization.

Another aim of this work is to construct a lattice regularization of NCCS theory, which

has important applications to quantum Hall systems as mentioned above. In general, de�n-

ing a Chern-Simons term on the lattice is not straightforward due to its topological nature.
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A recent proposal [23] is to utilize Ginsparg-Wilson fermions in odd dimensions and to

de�ne the Chern-Simons term using the parity violating part of the e�ective action in-

duced by the fermion. We show that this proposal works also in the noncommutative

case. As we mentioned above, the parity anomaly in the three-dimensional noncommu-

tative QED is given by the NCCS term in the continuum limit of the lattice theory we

started with. The same result can be obtained from Ginsparg-Wilson fermions, where

the masslessness is guaranteed at �nite lattice spacing. This suggests a natural de�nition

of the lattice-regularized Chern-Simons theory on a noncommutative torus, which could

enable nonperturbative studies of quantum Hall systems. In this regard, we recall that a

�nite-N matrix model has been proposed as a regularized description of NCCS theory on

a cylinder [24]. Although our theory can also be mapped to a �nite-N matrix model, the

two proposals appear to be quite di�erent.

The rest of the paper is organized as follows. In Section 2, we review the lattice for-

mulation of noncommutative gauge theories and formulate a perturbation theory based on

Feynman rules. In Section 3, we present calculations of the parity anomaly in noncommu-

tative QED. In Section 4 we discuss the parity anomaly using Ginsparg-Wilson fermions,

which leads to a proposal for a lattice-regularized noncommutative Chern-Simon theory.

Section 5 is devoted to summary and discussions. Finally, in Appendix A a calculation of

the parity-violating terms in the e�ective action by the direct evaluation of the fermionic

determinant is presented, while Appendix B contains some details of the computation of

the Feynman integrals involved in the diagrammatic calculation of Section 3.

2. Lattice perturbation theory in noncommutative geometry

In this section we begin by reviewing the lattice formulation of noncommutative gauge

theories developed in Ref. [11, 12, 13] (see [25, 26, 27] for reviews). In the literature it

is common to start from a �nite-N matrix model, which is then shown to be equivalent

to the lattice formulation of a noncommutative �eld theory. Indeed, the matrix model

representation has proven useful for numerical analyses [15, 16, 17, 19]. Here we will work

directly with the lattice formulation and derive the Feynman rules, which are used in the

perturbative evaluation of the e�ective action induced by fermions. Although we will focus

on noncommutative QED in d = 2m + 1 dimensions, the lattice perturbation theory can

be formulated for any other noncommutative �eld theories in the same way.

2.1 Noncommutative QED on the lattice

In noncommutative geometry, space-time coordinates are treated as Hermitian operators

obeying the commutation relation [x̂�; x̂� ] = i ��� , where ��� is a real anti-symmetric

matrix. In (2m+ 1) dimensions, due to a property of antisymmetric matrices, coordinates

can always be chosen in such a way that one of them commutes with all the others, resulting

in

[x̂i; x̂j] = i �ij ; [x̂i; x̂d] = 0 ; (i; j = 1; : : : ; 2m) ; (2.1)
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where, for simplicity, the 2m� 2m noncommutative matrix �ij is taken to be of the form

�ij � � "ij ; " =

0
BBBBBB@

0 �1
1 0

. ..

0 �1
1 0

1
CCCCCCA : (2.2)

We regard the commuting coordinate x̂d as the Euclidean time after the Wick rotation.

Field theories on a noncommutative geometry can be obtained by replacing an ordinary �eld

�(x) by an operator �(x̂). An equivalent way to describe noncommutative �eld theories,

which we are going to use in what follows, is to keep the ordinary �eld �(x) but to replace

the ordinary product of �elds, say �1(x) and �2(x), by the star-product

�1(x) ? �2(x) = �1(x) exp
� i
2
���
 �
@�
�!
@�

�
�2(x) : (2.3)

In order to consider the lattice regularization of such theories, we introduce a (2m+1)-

dimensional toroidal lattice �L;T de�ned by

�L;T =

�
(x1; : : : ; xd) 2 aZd

��� � aL� � 1

2
� x� � aL� � 1

2

�
; (2.4)

where a is the lattice spacing and L1 = L2 = � � � = L2m = L, Ld = T . We have assumed

L; T 2 N to be odd [13]. The dimensionful extent of the lattice is ` = aL in the 2m

spatial directions and � = a T along the Euclidean time. The �elds on the lattice are

assumed to obey the periodic boundary condition in all directions1.

In order to construct a lattice counterpart of the star-product (2.3), we de�ne the

Fourier transform
~�(p) = a4

X
x2�L;T

�(x) e�i p�x ; (2.5)

where the lattice momentum p is discretized as

p� =
2�n�
aL�

; n� 2Z; (2.6)

and the Fourier modes ~�(p) are periodic under n� 7! n�+L�. Then the lattice star-product

can be de�ned through its Fourier transform as

�̂1 ? �2(p) =
1

adLd�1T

X
q

exp

�
� i
2
�ij(p� q)iqj

�
~�1(p� q) ~�2(q) ; (2.7)

where the noncommutativity parameter is taken to be

� =
1

�
L a2 : (2.8)

1To formulate a �nite-temperature �eld theory, the boundary condition in the time direction has to be

taken anti-periodic for fermions.
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Here and henceforth we assume that the summation over a momentum is restricted to the

Brillouin zone; namely (2.6) with �(L� � 1)=2 � n� � (L� � 1)=2 .

The above lattice formulation naturally results from matrix model description of non-

commutative �eld theories, and most importantly it preserves all the algebraic properties

of the star-product. Moreover the de�nition (2.7) is consistent with the periodicity of

the lattice momentum (2.6) due to (2.8). One can also rewrite this de�nition (2.7) in an

integral form as

�1(~x; t) ? �2(~x; t) =
1

L2m

X
~y

X
~z

�1(~y; t)�2(~z; t) e
�2 i (��1)ij (xi�yi)(xj�zj) ; (2.9)

where the summation over ~y and ~z is taken only over the spatial lattice. This expression

is consistent with the periodicity of the �elds again due to (2.8). As is clear from these

observations, the lattice regularization of noncommutative �eld theories inevitably requires

the noncommuting directions to be compacti�ed in a particular way (2.8) consistent with

the noncommutativity. This reects the UV/IR mixing [21] at a fully nonperturbative level

[12, 13].

Ultimately we have to take the continuum limit a! 0, and the lattice size should be

sent to in�nity L; T !1. These two limits should be taken more carefully in noncommu-

tive �eld theories than in commutative ones because we have an extra scale parameter �

related to a and L by (2.8). In any case we have a hierarchy of the scales

a�
p
� � ` (2.10)

in the regularized theory. In order to obtain �nite �, the physical extent of the spatial

direction ` = aL should inevitably go to in�nity. The extreme case � ! 0 is generally

di�erent from the commutative theory (where � = 0 for �nite a), as we see later in concrete

examples. The limit T !1 in the time direction can be taken as in commutative theories,

and one can have arbitrary � independently of � and `.

The U(1) gauge �elds can be put on the lattice by

U�(x) = P exp?

�
ig

Z x+a�̂

x

A�(s) ds

�

=
1X
n=0

(ig)n
Z x+a�̂

x

d�1

Z x+a�̂

�1

d�2 � � �
Z x+a�̂

�n�1

d�n

A�(�1) ?A�(�2) ? � � � ?A�(�n) ; (2.11)

where A�(x) is the (real) gauge �eld in the continuum. The path-ordering is necessary

even in the U(1) case, because of the noncommutativity arising from the star-product.

Note also that U�(x) is not unitary, but it is \star-unitary",

U�(x) ? U�(x)
� = U�(x)

� ? U�(x) = 1 : (2.12)

The continuum gauge �eld A�(x) transforms under the \star-gauge transformation" as

A�(x) 7! g(x) ?A�(x) ? g(x)
y� i

g
g(x) ?

@

@x�
g(x)y ; (2.13)
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where g(x) is also star-unitary. Under this transformation, the link �eld U�(x) de�ned by

(2.11) transforms as

U�(x) 7! g(x) ? U�(x) ? g(x+ a�̂)� : (2.14)

The lattice action for the gauge �eld is given by

SG = ��
X

x2�T;N

X
�6=�

U�(x) ? U�(x+ a�̂) ? U�(x+ a�̂)� ? U�(x)
� ; (2.15)

which is invariant under star-gauge transformation (2.14).

The fermion action is de�ned by

SF = a3
X
x

� (x) ? (Dw �M) (x) ; (2.16)

where Dw is the Dirac-Wilson operator

Dw =
1

2

dX
�=1

h
�(r�� +r�) + rar��r�

i
: (2.17)

The expression of the forward and backward covariant derivatives depends on the trans-

formation properties of the fermion �eld. In the case where  (x) transforms in the funda-

mental representation

 (s) 7! g(x) ?  (x); � (x) 7! � (x) ? g(x)� ; (2.18)

they are given respectively by

r� =
1

a
[U�(x) ?  (x+ a�̂)�  (x)]

r�� =
1

a
[ (x)� U�(x� a�̂)� ?  (x� a�̂)] : (2.19)

On the other hand, when fermions transform in the adjoint representation

 (x) 7! g(x) ?  (x) ? g(x)�; � (x) 7! g(x) ? � (x) ? g(x)� ; (2.20)

the forward and backward covariant derivatives are respectively de�ned by

r� =
1

a
[U�(x) ?  (x+ a�̂) ? U�(x)

� �  (x)]

r�� =
1

a
[ (x)� U�(x� a�̂)� ?  (x� a�̂) ? U�(x� a�̂)] : (2.21)

In either case, the fermion action (2.16) is star-gauge invariant.

The second term in the Dirac-Wilson operator (2.17) is the Wilson term, which is

introduced to give species doublers a mass of order O(1=a). In the original proposal, the

coeÆcient r was taken to be unity, but it can take other values, even negative ones, as far

as its magnitude is of order one.

{ 6 {



2.2 Feynman rules

Let us proceed to formulate the perturbation theory for the noncommutative QED on the

lattice. As in the commutative case we start with expanding the link variable U�(x) in

terms of the lattice gauge �eld A�(x) as

U�(x) = exp? fiagA�(x)g

= 1 + igaA�(x)� g2a2

2
A�(x) ? A�(x) + : : : : (2.22)

Note that U�(x) is star-unitary if and only if A�(x) is real. The Feynman rules are read

o� from the action (2.16) expressed in terms of the Fourier transformed �elds ~A�(p), ~ (p)

and ~� (p). The fermion propagator is given by

�p =

�
M +

1

2
rap̂2 � i � ~p

��1
� Q(p)�1 ; (2.23)

where we have introduced the notation

p̂� =
2

a
sin

�
1

2
ap�

�
; ~p� =

1

a
sin(ap�) : (2.24)

That the fermion propagator (2.23) is identical to the one for the commutative lattice QED

is because the �-dependent phase arising from the star-product (2.7) disappears trivially

in the quadratic term in the action (Set p = 0 in (2.7) and consider the anti-symmetry

of �ij). The e�ect of the noncommutativity will show up only in the interaction vertices

in the form of a phase depending on the momenta owing into them. For the one-photon

vertex we �nd

�k; �

p

q

= W(1)(p; q) V (1)
� (p+ q) ; (2.25)

where we have de�ned

V (1)
� (p) = ig

n
� cos

�a
2
p�

�
+ ir sin

�a
2
p�

�o
: (2.26)

The factor W(1)(p; q) represents a sum of �-dependent phases, which depends on whether

the fermions couple in the fundamental or the adjoint representation

W(1)
fund(p; q) = e

i
2
�(~p�~q)

W(1)
adj(p; q) = e

i
2
�(~p�~q) � e�

i
2
�(~p�~q): (2.27)

Here we have denoted ~a�~b � �"jkajbk, where "jk is the matrix de�ned in (2.2).
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For the vertex with two photons we �nd,

�
k; �

l; �

p

q

= W(2)(p; q; k; l) V (2)
�� (p+ q) ; (2.28)

where we de�ned

V (2)
�� (p) = �ag2Æ��

n
r cos

�a
2
p�

�
+ i� sin

�a
2
p�

�o
: (2.29)

The factor W(2)(p; q; k; l) is now given by

W(2)
fund(p; q; k; l) = e

i
2
�(~p�~q+~k�~l)

W(2)
adj(p; q; k; l) = e

i
2
�(~p�~q+~k�~l) + e

i
2
�(�~p�~q+~k�~l) � e

i
2
�(~p�~l+~k�~q) � e

i
2
�(~p�~k+~l�~q) :(2.30)

Above we assumed that the photon momenta are entering into the vertex.

In addition, for each vertex there is a Kronecker delta momentum conservation

ad Ld�1 T Æp+k+���;q (2.31)

together with a summation over an internal momentum for each loop 1
adLd�1T

P
p. Finally,

each fermion loop will carry a minus sign. Vertices with more than two photon lines can

be obtained in a similar way.

Together with the fermion propagator (2.23), the Feynman rules of noncommutative

lattice QED also requires the photon and ghost propagators as well as the photon-ghost

and photon self-interaction vertices. In the case of the propagators, because the bilinear

terms in the action are independent of the noncommutativity parameter, they are identical

to the one for ordinary QED [28]. For the interaction vertices, as it is also the case in

the continuum [29], they can be read o� from the ones for nonabelian commutative gauge

theories given in [28] by simply replacing the structure constants of the gauge group by the

appropriate noncommutative phases. In the calculation of the e�ective action, however,

we will need only the fermion-photon vertices.

2.3 Perturbative evaluation of the e�ective action

The e�ective action for the gauge �eld is de�ned in terms of the fermion determinant as

�[U ]e� = � log

�
det (Dw �M)

det (Dw;0 �M)

�
; (2.32)

where Dw;0 is the Dirac-Wilson operator (2.17) evaluated for the trivial gauge con�guration

U
(0)
� (x) = 1. Expanding U�(x) with respect toA�(x) as in (2.22), the e�ective action �[A]e�

can be written in momentum space as

�[A]e� =
1

2

1

adLd�1T

X
p

���(p)A�(p)A�(�p)

+
1

3

1

(adLd�1T )2

X
p;q

����(p; q)A�(p)A�(q)A�(�p� q) + : : : : (2.33)
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The kernels ���(p), ����(p; q) can be computed using the diagrammatic expansion2.

����(p) =� +� (2.34)

�����(p; q) =� +
1

2

�
� + cyclic perm.

�
+

1

2� (2.35)

In fact, diagrams containing vertices with three or more photons are irrelevant in the

continuum limit since they are weighted with higher powers of the lattice spacing a [28, 30].

Therefore we can omit the last diagram in (2.35). Applying the Feynman rules, we thus

obtain the following expression.

���(p) =
1

adLd�1T

X
q

tr
h
V (1)
� (2q + p)Q (q + p)�1 V (1)

� (2q + p)Q (q)�1
i

�W(1) (q; q + p) W(1) (q + p; q)

+
1

adLd�1T

X
q

tr
h
V (2)
�� (2q)Q(q)�1

i
W(2)(q; q; p;�p) ; (2.36)

����(p1; p2) =
1

adLd�1T

X
q

tr
h
V (1)
� (2q + p1)Q (q + p1)

�1

� V (1)
� (2q + 2p1 + p2)Q (q + p1 + p2)

�1 V (1)
� (2q + p1 + p2)Q (q)�1

i
�W(1) (q; q + p1)W(1) (q + p1; q + p1 + p2)

�W(1) (q + p1 + p2; q)

+
1

2adLd�1T

X
q

n
tr
h
V (1)
� (2q + p1)Q (q + p1)

�1 V (2)
�� (2q + p1)Q (q)�1

i
�W(1) (q; q + p1)W(2) (q + p1; q; p2;�p1 � p2)
+ cyclic permutations

o
; (2.37)

where by \cyclic permutations" we indicate the contributions of the other two diagrams

obtained from the second one in Eq. (2.35) by performing cyclic permutations on the labels

of the external legs. The expressions for the commutative case can be obtained simply by

omitting the factors W(1), W(2) in the above equations.

3. The parity anomaly in 3D noncommutative QED

From now on we will consider the three-dimensional case (i.e. d � 2m+ 1 = 3) and study

the parity anomaly in noncommutative QED on the lattice. Parity anomaly has been

studied intensively in commutative gauge theories, both in the continuum [31, 32] and on

the lattice [20]. It has a wide application in condensed matter physics [33] including the

2The combinatorial factors in front of the diagrams take into account the overall factors of 1
2

and 1
3

multiplying the corresponding terms in the e�ective action.
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quantum Hall e�ect [34]. We will �rst briey review the known results in the commutative

case.

3.1 A brief review of the commutative case

In three-dimensional massless QED there is a conict between parity symmetry and gauge

invariance at the quantum level. As pointed out in [35] and elaborated in [31], a parity

invariant regularization of the fermion determinant leads to non-invariance of the one-loop

e�ective action under large gauge transformations due to the spectral ow of the eigenvalues

of the Dirac operator, a phenomenon similar to the one behind Witten's global anomaly

[36]. On the other hand, a gauge invariant regularization of the theory, like Pauli-Villars,

induces a Chern-Simons action at one loop that breaks parity invariance, with precisely

the coeÆcient required to compensate the variation of the massless fermion determinant

under large gauge transformations.

Despite any similarities, parity anomaly in three-dimensional QED is di�erent from

ordinary anomalies in that the coeÆcient of the anomaly depends on the regularization

scheme. This peculiar aspect of parity anomaly has been clari�ed by Coste and L�uscher

[20] by using the lattice regularization, which provides the most rigid way to calculate the

anomaly while preserving gauge invariance. Here we summarize the main results of Ref.

[20]. First, when M ! 0, one obtains in the continuum limit

lim
M!0

���(p) =
1

2�

�
n+

1

2

�
����p� +

1

16jpj(p
2Æ�� � p�p�) : (3.1)

The term proportional to the Levi-Civita tensor is parity odd, and hence signals the parity

anomaly. (Note that the continuum action for a massless Dirac fermion in three dimensions

is invariant under parity transformation.) The coeÆcient of the parity anomaly includes a

parameter n, which can take any integer value depending on the lattice action chosen, i.e.

on the details of the ultraviolet regularization. The essential point, however, is that this

regularization ambiguity does not a�ect the existence of the parity anomaly itself, since this

is always nonzero for any n 2Z. For the standard Wilson fermion, one obtains n = 0;�1,
depending on whether the sign of the Wilson term is positive or negative. In this case

the parity anomaly arises because the Wilson term breaks parity on the lattice, and this

breaking persists in the continuum limit. On the other hand, if one uses the Ginsparg-

Wilson fermion, whose action is invariant under the generalized parity transformation, the

parity anomaly (3.1) arises from the measure [23], thus realizing Fujikawa's philosophy for

anomalies at a fully regularized level.

In the in�nite mass limit, on the other hand, the result for the vacuum polarization is

given by

lim
M!+1

���(p) =
1

2�
n����p�

lim
M!�1

���(p) =
1

2�
(n+ 1)����p� ; (3.2)

where the integer n is the same parameter as the one introduced in (3.1) for the same

lattice action. Thus in general the fermion does not decouple completely in the in�nite
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mass limit but it leaves behind a certain local term as a remnant. In fact the freedom

of the integer parameter n in both (3.1) and (3.2) is closely related to the fact that the

remnant (3.2) depends on the sign � of the limit M !�1. By choosing di�erent lattice

action, one essentially introduces di�erent numbers of heavy fermions which have masses

of order O(1=a). The sign of the masses can be assigned as one wishes, and this results in

the arbitrariness represented by n.

3.2 The noncommutative case

Before we present our results on the noncommutative case, let us remark on what we

mean by \parity" when we discuss parity anomaly in noncommutative QED. Conventional

parity refers to a reection in one spatial direction. In the Euclidean formulation in three

dimensions, one can combine the conventional parity transformation with the 180 degrees

rotation in the remaining two directions, to arrive at the transformation

 (x) 7!  (�x)
� (x) 7! � � (�x)

A�(x) 7! �A�(�x) ; (3.3)

which leaves the massless Dirac action in the continuum invariant. In the noncommutative

case, the introduction of the noncommutativity matrix ��� breaks parity in the conventional

sense, but it preserves the invariance under (3.3). It is this invariance of the massless Dirac

action that we refer to when we say `parity anomaly' in noncommutative QED.

Our next task is to compute the e�ective action (2.32) as discussed in Section 2.3 and

to see how the results of Coste and L�uscher [20] are modi�ed by noncommutative geometry.

We analyze separately the cases of fermions in the fundamental and adjoint representation.

We will use a representation of the three-dimensional Dirac matrices satisfying

�� = Æ�� + i����� ; (3.4)

where the matrices are taken to be Hermitian y� = �. Hereafter we will �x the sign of M

by demanding M � 0.

3.2.1 Fundamental fermions

We begin with the coeÆcient ���(p) of the bilinear term in the e�ective action (2.33)

for the gauge �eld. For fundamental fermions the noncommutative phases in Eq. (2.36)

cancel out. The resulting expression is exactly the same as in the commutative case and in

particular the result does not depend on how we take the limits L!1, T !1 and a! 0,

as far as the physical extent of the space-time (` = aL and � = aT ) goes to in�nity. For

instance we may take the large volume limit L ! 1 and T ! 1 at �xed lattice spacing

a and then take the continuum limit a ! 0. Then the rest of the calculation proceeds

exactly as in Ref. [20]. Let us introduce the symbol

Tk(p)f(p) =
kX

n=0

1

n!

@n

@tn
f(tp)

�����
t=0

; (3.5)

{ 11 {



which represents a Taylor subtraction at zero momentum. Thus, in the in�nite volume

limit, ���(p)fund can be rewritten as

���(p)fund = g2
Z
B

d3q

(2�)3
[1� T0(p)] tr

�
Q
�
q � p

2

��1
@�Q(q)Q

�
q +

p

2

��1
@�Q(q)

�
; (3.6)

where the large volume limit L ! 1 and T ! 1 has been taken and consequently

the momentum sum has been replaced by the integral in the Brillouin zone B = fq� 2
R3 j � (�=a) � q� � (�=a)g. The subtraction of the zero external momentum contribution

comes from the tadpole diagram in the �rst line of Eq. (2.34). By using the identity

[1� T0(p)]f(p) = [1� T1(p)]f(p) + p�@�f(0) we can write, after some algebra,

���(p)fund = g2a0����p� (3.7)

+ g2
Z
B

d3q

(2�)3
[1� T1(p)] tr

�
Q
�
q � p

2

��1
@�Q(q)Q

�
q +

p

2

��1
@�Q(q)

�
;

and

a0 =
1

48�3

Z
B

d3q ����tr
�
Q(q)�1@�Q(q)Q(q)

�1@�Q(q)Q(q)
�1@�Q(q)

�
: (3.8)

As shown in [20], a0 = 1
2�n is a topological number, where the integer n depends on the

parameter r, but not on the lattice spacing.

Because of the subtraction at zero momentum, the integral in the second term on

the right hand side of (3.7) has negative degree so, according to Reisz theorem [37], its

continuum limit is given by the integral over momentum space of the limit of the integrand

when a! 0. On symmetry grounds, the two-point function in the continuum has the form

���(p) = A(p)����p� +B(p)(p2Æ�� � p�p�) + C(p)
�(p)��(p)�
�(p)2

; (3.9)

where �(p)� � ���p� . From the previous expressions, we �nd for the case of fermions in

the fundamental representation

A(p)fund = g2a0 +
g2

4�

Z 1

0
dx
n
1�M �

M2 + x(1� x)p2�� 1
2

o
;

B(p)fund =
g2

2�

Z 1

0
dx x(1� x) �M2 + x(1� x)p2�� 1

2 ;

C(p)fund = 0 : (3.10)

In the limits M ! 0, M !1, we obtain results identical to the commutative case (3.1),

(3.2).

Let us proceed to compute the coeÆcient ����(p) of the trilinear term in the e�ective

action (2.33) for the gauge �eld. Two types of diagrams contribute to this term. In

both cases it is easy to check that the corresponding noncommutative phases are identical

and factor out of the sum over the loop momentum. The sum multiplying the global
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noncommutative phase is independent of �, and it can be evaluated in the same limit as

before. Thus we arrive at the expression

����(p1; p2)fund = e
i
2
�(~p1�~p2)

Z
B

d3q

(2�)3
tr
h
V (1)
� (2q + p1)Q (q + p1)

�1 (3.11)

� V (1)
� (2q + 2p1 + p2)Q (q + p1 + p2)

�1 V (1)
� (2q + p1 + p2)Q (q)�1

i
+

1

2
e
i
2
�(~p1�~p2)

�Z
B

d3q

(2�)3
tr

�
V (1)
� (2q)Q

�
q � p1

2

��1
V (2)
�� (2q)Q

�
q +

p1
2

��1�
+ [cyclic permutations: (�; p1)! (�; p2)! (�;�p1 � p2)]

o
; (3.12)

where we have taken the large volume limit L!1 and T !1, but the continuum limit

is yet to be taken. In general, the three-point function can be written as

����(p1; p2)fund = e
i
2
�(~p1�~p2)A(p1; p2)fund���� + : : : ; (3.13)

where \: : :" stands for terms proportional to rank-three tensors constructed in terms of the

incoming momenta. By looking at the low momentum expansion we �nd that

A(p1; p2)fund = �g3a0 +O(p2); (3.14)

where a0 is given again by Eq. (3.8). The remaining momentum-dependent contribution

can be obtained by evaluatingZ
B

d3q

(2�)3
[1� T0(p1; p2)] tr

h
V (1)
� (2q + p1)Q (q + p1)

�1 V (1)
� (2q + 2p1 + p2)

� Q (q + p1 + p2)
�1 V (1)

� (2q + p1 + p2)Q (q)�1
i

(3.15)

and keeping the terms proportional to ���� . Here we have denoted T0(p; q)f(p; q) = f(0; 0).

Note also that the second group of terms in (3.11) does not contribute to A(p1; p2)fund,
since they are symmetric in two of the indices.

In order to retrieve the continuum limit of (3.15) we need to check that the relevant

terms of the integral on the right-hand side converges to the continuum Feynman integral.

By writing the integrand as V (q; p1; p2;M; a)=C(q; p1; p2;M; a) we �nd that degV � 8,

whereas degC = 12, so the degree of divergence of the integrand is 3+degV �degC � �1,
and the contribution of the integral in the continuum limit is given by the integral over the

loop momentum of the a! 0 limit of the integrand. A careful evaluation of the resulting

integral using Feynman parameters shows that (see Appendix B for the details)

lim
a!0
A(p1; p2)fund = �g3a0 � g3

2�

Z 1

0
dx1

Z 1�x1

0
dx2

h
1�M(M2 + �)�

1
2

i
� g3

4�
M p21

Z 1

0
dx1

Z 1�x1

0
dx2

(x1 + x2)(1� x1 � x2)
(M2 +�)

3
2

� g3

4�
M p22

Z 1

0
dx1

Z 1�x1

0
dx2

x2(1� x2)
(M2 + �)

3
2

(3.16)

� g3

8�
M p1 � p2

Z 1

0
dx1

Z 1�x1

0
dx2

x1 + 2x2(1� x1 � x2)
(M2 +�)

3
2

;
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where for shorthand we have written

� � (x1 + x2)(1� x1 � x2)p21 + x2(1� x2)p22 + 2x2(1� x1 � x2)p1 � p2 : (3.17)

From these results we see that the cubic term in the noncommutative Chern-Simons action

emerges in the limits M ! 0 and M ! 1 with coeÆcients consistent with the quadratic

term calculated above. This is expected from the star-gauge invariance, which is manifestly

preserved in the lattice regularization.

It is straightforward to calculate now the e�ective action �[A]
(fund)
e� in position space

for massless fermions. By using Eqs. (3.10) and (3.16) in the limit M ! 0 we �nd for the

parity violating part

�[A]
(fund)
e� =

g2

4�

�
n+

1

2

�Z
d3p

(2�)3
���� ~A�(p) ~A�(p)p� (3.18)

� g3

6�

�
n+

1

2

�Z
d3p1
(2�)3

Z
d3p1
(2�)3

���� ~A�(p1) ~A�(p2) ~A�(�p1 � p2)e i
2
�(~p1�~p2):

Performing the inverse Fourier transform on ~A�(p) and de�ning A�(x) = igA�(x) we �nally

arrive at

�[A](fund)e� =
i

4�

�
n+

1

2

�Z
d3x ����

�
A�@�A� +

2

3
A� ?A� ?A�

�
(3.19)

In particular, since the NCCS term is not invariant under the parity transformation (3.3),

we have a parity anomaly as in the commutative case.

It is important to notice that in the � ! 0 limit we retrieve the results obtained in

Ref. [20] for ordinary (commutative) QED. The fact that the commutative limit turned

out to be smooth in the present case is due to the cancellation of the noncommutative

phases involving loop momenta, which would otherwise cause the UV/IR mixing. Such a

cancellation can be understood in a transparent way [21] if one uses the so-called double-line

notation known from large-N gauge theory. Feynman rules should be re-derived accordingly

and in particular each of the interaction vertices will have a single noncommutative phase

factor instead of a sum of phases. Usefulness of the double-line notation in noncommutative

�eld theories can be understood if one recalls that the algebraic property of the star-product

is the same as that of matrix product. In the double-line notation, \planar diagrams" can

be de�ned as diagrams which can be drawn on a plane without any crossings of lines.

In fact for any planar diagrams the noncommutative phase factors out of the momentum

integration, leaving a global phase depending only on external momenta [38, 39, 40]. For

fermions in the fundamental representation, the interaction with the gauge �eld occurs

only on one side of the fermion propagator (represented as a double-line), and therefore all

the diagrams that appear in the calculation of the e�ective action are actually planar.

3.2.2 Adjoint fermions

Contrary to the case studied above, the e�ective action for noncommutative gauge theories

with fermions in the adjoint representation does not have a smooth commutative limit.
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Note that the original theory in the ��� ! 0 limit is just a free massless fermion and a

free photon, which is parity invariant. However, if we take the continuum limit for �nite

� we will see that the adjoint fermions induce the NCCS action, which reduces to an

ordinary (commutative) U(1) Chern-Simons term in the ��� ! 0 limit. Using a Pauli-

Villars fermion of mass Mreg as a regulator in the continuum [22] this is the result of

the fact that the two limits ��� ! 0 and Mreg ! 1 do not commute with each other, a

phenomenon characteristic of noncommutative quantum �eld theories both at zero [21] and

�nite temperature [41]. This comes about because of the existence of nonplanar diagrams

in which the UV divergences are regulated at the scale �j~pj.
Plugging in the factorsW(1),W(2) for the adjoint fermions (2.27), (2.30), the expression

(2.36) for the two-point function becomes

���(p)adj = 2���(p)fund

� 2

a3L2T

X
q

tr
h
V (1)
� (2q + p)Q (q + p)�1 V (1)

� (2q + p)Q (q)�1
i
cos [�(~p � ~q)]

� 2

a3L2T

X
q

tr
h
V (2)
�� (2q)Q(q)�1

i
cos [�(~p� ~q)] ; (3.20)

where ���(p)fund is the two-point function for fermions in the fundamental representation

calculated above. In the language of the double-line notation (See the end of Sec. 3.2.1),

the �rst term represents the contribution from the planar diagram and the other two

terms corresponds to the nonplanar contributions. Interestingly the third term, which is

the non-planar contribution from the tadpole diagram, exactly vanishes in the continuum

limit. Therefore the e�ect of the tadpole diagram is just to subtract the zero-momentum

contribution from the planar terms, which has the e�ect of making the amplitude �nite in

the continuum limit, as seen above. Note that the second term of (3.20) is �nite by itself,

since the noncommutative phase introduces an e�ective cuto� to the loop momentum at

the scale �j~pj.
To obtain the continuum limit of the second term we have to take into account that

this limit has to be taken at the same time with the large volume limit in such a way that

� / a2L is kept �xed. A long but straightforward calculation shows that the resulting

integrals can be written in terms of modi�ed Bessel functions of the second kind. The

resulting two-point function has the form given in Eq. (3.9) now with (see Appendix B for

details)

A(p)adj = 2A(p)fund+
g2

2�

r
2

�
j�(~p)j 12

Z 1

0
dx
n
M [M2 + x(1� x)p2]� 1

4

� K 1
2

�
�j~pj[M2 + x(1� x)p2] 12

�o
;

B(p)adj = 2B(p)fund� g2

�

r
2

�
j�(~p)j 12

Z 1

0
dx
n
x(1� x)[M2 + x(1� x)p2]� 1

4

� K 1
2

�
�j~pj[M2 + x(1� x)p2] 12

�o
;

C(p)adj =
g2

�

r
2

�
j�(p)j 12

Z 1

0
dx
n�
M2 + x(1� x)p2� 34
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� K 3
2

�
�j~pj[M2 + x(1� x)p2] 12

�o
: (3.21)

Using the asymptotic expansion for large arguments of the Bessel functions, K�(z) �
ez=
p
2�z it is easy to see that the nonplanar terms in the amplitude are exponentially

suppressed in the limit of large M (cf. [22]). In the M ! 0 limit, on the other hand, one

�nds that the nonplanar contributions to the parity violating term vanishes. Thus in both

limits we �nd that the parity violating term in the e�ective action comes solely from the

planar part, and its magnitude is twice the one for fundamental fermions. Later we will

o�er a physical explanation of this phenomenon.

Let us now turn to the evaluation of the three-point function. After a short manipu-

lation of the noncommutative phases, the three-point function can be written as

����(p1; p2)adj =
h�
e
i
2
�(~p1�~p2) � e�

i
2
�(~p1�~p2)

�
A(p1; p2)fund +A(p1; p2; �)NP

i
����

+ : : : ; (3.22)

where A(p1; p2)fund is the same function appearing in Eq. (3.13) and A(p1; p2; �)NP is the

nonplanar contribution. As above the ellipsis denotes further terms whose tensor structure

depends on the external momenta. The nonplanar function A(p1; p2)NP is calculated by

evaluating the sum

1

a3L2T

X
q

tr
h
V (1)
� (2q + p1)Q (q + p1)

�1 V (1)
� (2q + 2p1 + p2) (3.23)

� Q (q + p1 + p2)
�1 V (1)

� (2q + p1 + p2)Q (q)�1
i
W(p1; p2; q)NP

and keeping the terms proportional to ���� . Here the \nonplanar" part of the noncommu-

tative phase W(p1; p2; q)NP is given by

W(p1; p2; q)NP = e
i
2
�(~p1�~p2)

h
ei�(~q�~p2) � e�i�(~q�~p1) � ei�~q�(~p1�~p2)

i
� e�

i
2
�(~p1�~p2)

h
e�i�(~q�~p2) � ei�(~q�~p1) � e�i�~q�(~p1�~p2)

i
: (3.24)

A(p1; p2)NP can be computed in the continuum limit a ! 0 at in�nite volume with a2L

�xed and expressed in terms of the modi�ed Bessel functions of the second kind. In this

limit, A(p1; p2; �)NP is expressed in terms of sum of integrals of the form

g3M

Z
d3q

(2�)3
M2 + q2 + (p1 + p2) � q

[M2 + (q + p1)2][M2 + (q + p1 + p2)2](M2 + q2)
ei�(~w�~q); (3.25)

where ~w = � ~p1 + � ~p2 (�; � = 0;�1) is a linear combination of the incoming momenta,

that can be read o� from Eq. (3.24). These integrals can be computed again in terms

of modi�ed Bessel functions of the second kind. As it was the case also for the two-point

functions, all the terms contributing to A(p1; p2; �)NP vanish both in the limit M ! 0, due

to the global factor of M in front of the integral, and as M ! 1, this time due to the

exponential damping of the modi�ed Bessel function for large values of the argument. The

�nal conclusion is that in the continuum limit

lim
M!0

A(p1; p2; �)NP = lim
M!1

A(p1; p2; �)NP = 0: (3.26)
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As a consequence, in these two limits, the coeÆcient of the Chern-Simons action is only

determined by the �rst term on the right-hand side of (3.22) and its value is consistent

with the one calculated above from the two-point function. This, again, follows from the

fact that the lattice regularization preserves star-gauge invariance.

We can now study the parity-odd part of the induced e�ective action in the limit M !
0. From the two- and three-point amplitudes calculated above we �nd that �[A](adj)e� =

2�[A](fund)e� where �[A](fund)e� is given in Eq. (3.19). Note that we have considered that the

adjoint fermions are of Dirac type. The minimal form of the anomaly, however, is obtained

by imposing the Majorana condition. In this case there is an extra factor of 1
2 in front of

the fermionic determinant and the e�ective action for Majorana fermions in the adjoint

representation agrees with Eq. (3.19) [22].

To conclude, let us try to understand in physical terms the vanishing of the nonplanar

contribution to the parity-violating part of the e�ective action in the limit of zero fermion

mass. As mentioned in Section 3.1 the parity anomaly in commutative gauge theories

results from the imposibility of �nding a parity-invariant UV cuto� which at the same

time preserves Lorentz and gauge symmetries. This is clear from the analysis of [31] where

the introduction of a parity-invariant UV cuto� � in the integrals results in the presence

of a term g2���� in the two-point function which breaks the Ward identity.

Because of the presence of the noncommutative phases depending on the loop mo-

mentum, we can see the nonplanar contribution to the two-point function of massless

noncommutative QED as a regularization of the corresponding amplitude in ordinary (com-

mutative) massless QED. In this case the noncommutative momentum �j~pj � ��1 plays

the role of an UV cuto�. Moreover, this cuto� preserve the parity invariance of the theory.

Therefore one expects that the parity-breaking terms in the amplitudes will vanish. Indeed,

using the nonplanar part in (3.21) we �nd the two-point function of massless QED in this

regularization to be

���(p)
�
QED =

g2

2�jpj 12

r
2

�
��

1
2 (p2Æ�� � p�p�)

Z 1

0
dx[x(1� x)] 34K 1

2

�
��1[x(1� x)p2] 12

�

� g2

2�

r
2

�
jpj 32�� 1

2
�(p)��(p)�
�(p)2

Z 1

0
dx [x(1� x)] 34K 3

2

�
��1[x(1� x)p2] 12

�
; (3.27)

i.e. the two-point function does not contain parity-breaking terms and satis�es the Ward

identity. However, because of the presence of the last term, it breaks Euclidean symmetry.

Thus the \�-regularization" of massless QED provides a regularization scheme in which

both parity and gauge symmetries are maintained at the cost of breaking Euclidean (or

Lorentzian) invariance. In the limit in which the cuto� is sent to in�nity, � ! 1, the

coeÆcient of the �rst term in the right-hand side of (3.27) tends to g2=(16jpj) whereas
the second Euclid-breaking term diverges linearly with �. Euclidean invariance can be

restored by introducing a Pauli-Villars fermion with mass Mreg which subtracts the diver-

gent part of the two-point function (3.27). However, this procedure results in the breaking

of parity invariance and as a consequence a Chern-Simons term is again induced in the

limit Mreg !1. This is somewhat reminiscent to the analysis of nonplanar anomalies in

noncommutative gauge theories presented in [42].
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4. Noncommutative Chern-Simons theory on the lattice

In this section our results in the previous sections are used to de�ne a lattice-regularized

noncommutative Chern-Simons theory following the proposal made in Ref. [23] in the com-

mutative case. The basic idea is to use the parity breaking part of the e�ective action in-

duced by the Ginsparg-Wilson fermion. Since masslessness of the Ginsparg-Wilson fermion

is guaranteed on the lattice, one obtains the correct noncommutative Chern-Simons action

in the continuum limit without �ne-tuning.

The Dirac operatorD for the Ginsparg-Wilson fermion is characterized by the Ginsparg-

Wilson relation [43] which, in the form applicable to both even and odd dimensions, is given

by [23]

D +Dy = aDyD : (4.1)

The general solution to Eq. (4.1) can be written as

D =
1

a
(1� V ) ; (4.2)

where V is a unitary operator, which should turn into the identity operator in the naive

continuum limit. In even dimensions, assuming further the \5-Hermiticity"

Dy = 5D5 ; (4.3)

one arrives at the original Ginsparg-Wilson relation [43]

D5 + 5D = aD5D : (4.4)

This relation guarantees that the fermion action including the operator D is invariant

under a generalized chiral symmetry [44], which reduces to the ordinary chiral symmetry

in the continuum limit. The role of the \5-Hermiticity" is played in odd dimensions by

the property

D(U)y = RD(UP )R ; (4.5)

where UP is the parity transformed gauge con�guration,

UP
� (x) = U�(�x)y ; (4.6)

and R is the space-time reection operator, R : x 7! �x. Combining (4.1) and (4.5)

one can show the invariance of the corresponding fermion action under a generalized parity

transformation [23]. The measure, however, is not invariant under the same transformation.

As a consequence, the fermion determinant is not invariant but transforms as

detD(UP ) = (detV )� detD(U) : (4.7)

So far we have discussed general properties of the Ginsparg-Wilson operator, which

satis�es (4.1). In fact the unitary operator V has to be chosen appropriately in order to

guarantee that the operator D has sensible properties as a Dirac operator such as locality

{ 18 {



(with exponentially decaying tails) and the absence of species doublers. Such an operator

has been derived from the overlap formalism [45], and it is given explicitly by [46]

V = Aw=

q
AywAw (4.8)

Aw = 1� aDw(r = �1) ; (4.9)

where Dw(r = �1) is the Dirac-Wilson operator, which has the form (2.17) with ordi-

nary covariant derivatives. The noncommutative version of the Ginsparg-Wilson fermion

can be obtained by simply using the covariant derivatives (2.19) or (2.21) depending on

the representation, instead of the usual ones without star-products. In even dimensions

Ginsparg-Wilson fermions played a crucial role in introducing chirality on a discretized

noncommutative torus [19]. Recently an analogous construction has been worked out on a

fuzzy sphere [47].

For the choice (4.8), detV in (4.7) is nothing but the phase of detAw, which is essen-

tially the fermion determinant of the Wilson-Dirac operator with r = �1 and M = 1=a.

Thus one can translate the result obtained for the Wilson fermion in the in�nite mass limit

into the parity anomaly for the Ginsparg-Wilson fermion. In the commutative case this

is how the correct parity anomaly has been reproduced by [48] in the overlap formalism3.

In the noncommutative case, on the other hand, our results in the previous section with

r = �1 in the limit M !1 implies that the parity anomaly obtained for Ginsparg-Wilson

fermions coincides with the result for Wilson fermions with r = �1 in the massless limit

M ! 0.

As in the commutative case [23], the parity anomaly for the Ginsparg-Wilson fermion

suggests a natural de�nition of the noncommutative Chern-Simons term on the lattice.

Namely we de�ne it as SCS in

eiSCS
def
=

detAw

j detAwj ; (4.10)

where Aw is de�ned by (4.9) with the covariant derivative (2.19) for the fundamental

representation. According to our calculations, the quantity SCS indeed becomes the non-

commutative Chern-Simons action in the continuum limit. In the continuum, on the other

hand, noncommutative Chern-Simons term is known to transform as [50]

SCS 7! SCS + 2�� ; (4.11)

under a gauge transformation, where � is the winding number characterizing this gauge

transformation. The gauge invariance requires the coeÆcient of the noncommutative

Chern-Simons action to be quantized. That Eq. (4.10) de�nes SCS only up to modulo

2� is therefore not a problem for most practical purposes. Note in this regard that the

right-hand side of eq. (4.10) is indeed manifestly gauge invariant.

3See also [49] for an earlier work on the overlap formalism in odd dimensions, where a parity invariant

phase choice has been made.
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5. Concluding remarks

In the present paper we have studied the emergence of parity anomaly on the lattice for

three-dimensional noncommutative QED, both with fermions in the fundamental and the

adjoint representation. Induced Chern-Simons actions in noncommutative gauge theories

have been studied in the continuum in [22, 51] using the Pauli-Villars regularization (see also

[52] for an incomplete list of references). However, the main advantage of the lattice analysis

presented here lies in making explicit the dependence of the coeÆcient of the induced Chern-

Simons term on the regularization scheme used. Thus, the results obtained in Ref. [22]

corresponds to the cases n = 0;�1 in our analysis using the lattice regularization. Notice

that the quantization of the scheme-dependent term in the e�ective action is consistent

with the star-gauge invariance of the fermion determinant under \large" transformations

[50], as required by the fact that the lattice regularization respects star-gauge invariance.

We have also proposed a lattice-regularized Chern-Simons action on a noncommutative

torus using Ginsparg-Wilson fermions. As the lattice formulation of noncommutative �eld

theories has been useful to extract their interesting nonperturbative dynamics [15, 16, 17],

we hope that the lattice formulation of noncommutative Chern-Simons action is useful to

deepen our understanding of quantum Hall systems.

Finally we would like to emphasize that the lattice noncommutative �eld theories

studied in the present paper can be mapped on to a �nite N matrix model. The anomaly

calculation in matrix models has recently attracted attention in the context of large-N

gauge theory [53, 54] and noncommutative geometry [55, 47]. We expect that the calcu-

lation method developed in this paper is useful to study various anomalies in noncommu-

tative geometry. In particular we would like to revisit the gauge anomaly cancellation in

chiral gauge theories on a noncommutative torus [19]. We hope that such developments

will eventually lead us to a deeper understanding of the stringy nature of the space-time

structure.
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A. Functional determinants

In the following we will provide an alternative calculation of the e�ective action �[A]e� on

the lattice by direct evaluation of the fermionic determinant (2.32). From the de�nition of

the Dirac-Wilson operator (2.17) and the expansion of the link �eld U�(x) in terms of the
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lattice gauge �eld A�(x) (2.22), one can write

Dw =
1X
k=0

gkDw;k : (A.1)

Using this expansion, the e�ective action can be expressed as

�[A]e� = � log

�
det (Dw �M)

det (Dw;0 �M)

�
= � log det

"
1 + (Dw;0 �M)�1

1X
k=1

gkDw;k

#

= �Tr log
"
1 +

1X
k=1

gk(Dw;0 �M)�1Dw;k

#
; (A.2)

which leads to the following series for �[A]e� :

�[A]e� = g2�2[A] + g3�3[A] + : : : (A.3)

with

�2[A] = Tr

�
1

2

�
(Dw;0 �M)�1Dw;1

�2 � (Dw;0 �M)�1Dw;2

�
(A.4)

�3[A] = Tr
n
� 1

3

�
(Dw;0 �M)�1Dw;1

�3
+
�
(Dw;0 �M)�1Dw;1(Dw;0 �M)�1Dw;2

�
� (Dw;0 �M)�1Dw;3

o
: (A.5)

By comparing with Eqs. (2.34) and (2.35) we can identify each term in the previous

equations with the contribution of a particular Feynman diagram.

A quick computation shows that for fermions in the fundamental representation the

operator Dw;k appearing in Eq. (A.1) is given by

D
(fund)
w;k  (x) =

(ia)k

2ak!

dX
�=1

h
(r + �)A�(x)

?k ?  (x+ a�̂)

+ (�1)k(r � �)A�(x� a�̂) ?k ?  (x� a�̂)
i
; (A.6)

whereas when the fermions are in the adjoint representation the result is

D
(adj)
w;k  (x) =

(ia)k

2ak!

dX
�=1

kX
m=0

(�1)m
 
k

m

!h
(r+ �)A�(x)

?(k�m) ?  (x+ a�̂) ? A�(x)
?m

+ (r� �)A�(x� a�̂) ?m ?  (x� a�̂) ? A�(x� a�̂) ?(k�m)
i
: (A.7)

In both expressions we have used the notation �(x) ?n �
nz }| {

�(x) ? : : : ? �(x).

In order to evaluate each term in Eq. (A.4)-(A.5) it is convenient to work in momentum

space. In the following we will detail the calculation for fundamental fermions, leaving the

adjoint case for the reader. Using Eq. (2.5) together with

~A�(p) = a3
X

x2�L;T

A�(x)e
�ip�(x+ 1

2
a�̂) (A.8)
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one can easily �nd the action of the operators in Eqs. (A.4)-(A.5) on ~ (p). For the free

propagator we have

(Dw;0 �M)�1 ~ (p) = �Q(p)�1 ~ (p); (A.9)

whereas the result for Dw;1 can be written as

gD1
~ (p) =

ig

a3L2T

X
q2B

3X
�=1

n
� cos

ha
2
(p+ q)�

i
+ ir sin

ha
2
(p+ q)�

io
e
i
2
�(~p�~q)

� ~A�(p� q) ~ (q)

=
1

a3L2T

X
q2B

3X
�=1

V (1)
� (p+ q)W(1)

fund(p; q)
~A�(p� q) ~ (q): (A.10)

Here V
(1)
� (p) and W(1)

fund(p; q) are de�ned in Eqs. (2.26) and (2.27) respectively. For Dw;2

we arrive at

g2Dw;2
~ (p) = � ag2

2(a3L2T )2

X
q;q02B

3X
�=1

n
r cos

ha
2
(p+ q)�

i
+ i� sin

ha
2
(p+ q)�

io
� e

i
2
�[~p�~q+~q 0�(~p�~q�~q 0)] ~A�(q

0) ~A�(p� q � q0) ~ (q)

=
1

2(a3L2T )2

X
q;q02B

3X
�;�=1

V (2)
�� (p+ q)W(2)

fund(p; q; q
0; p� q � q0)

� ~A�(q
0) ~A�(p� q � q0) ~ (q): (A.11)

As in the previous case we have introduced the vertex function and the noncommutative

phase de�ned in Eqs. (2.29) and (2.30) respectively. Finally, for Dw;3 the result is

g3Dw;3
~ (p) =

ag3

3!(a3L2T )3

X
q;q0;q002B

3X
�=1

n
r sin

ha
2
(p+ q)�

i
� i� cos

ha
2
(p+ q)�

io
� e

i
2
�[~q�~q 0+~q�~q 00+~q 0�~q 00+~p�(~q�~q 0�~q 00)]

� ~A�(q
0) ~A�(q

00) ~A�(p� q � q0 � q00) ~ (q): (A.12)

This term is associated with the three-photon vertex in the diagramatic expansion that, as

argued in Section 2.2, is irrelevant in the continuum limit.

We have seen that, when written in momentum space, all operators appearing in Eqs.

(A.4)-(A.5) are expressed as �nite matrices, O ~ (p) =
P

q2BO(p; q) ~ (q), whose traces can
be easily calculated. Let us begin with �2[A]. The �rst trace to be computed is

g2Tr

�
1

2

�
(Dw;0 �M)�1Dw;1

�2�
=

1

2(a3L2T )2

3X
�;�=1

X
p;q2B

~A�(p) ~A�(�p)

� tr
h
V (1)
� (2q + p)Q (q + p)�1 V (1)

� (2q + p)Q (q)�1
i
; (A.13)

{ 22 {



where \tr" indicates the trace over Dirac indices. In the same way, for the second trace in

(A.4) the result is

�g2Tr �(Dw;0 �M)�1Dw;2

�
=

1

2(a3L2T )2

3X
�;�=1

X
p;q2B

~A�(p) ~A�(�p)

� tr
h
V (2)
�� (2q)Q(q)�1

i
: (A.14)

Adding these two terms to get �2[A] and extracting the kernel ���(p) de�ned in (2.33),

we recover Eq. (2.36).

The cubic term in the e�ective action can be computed along similar lines, �3[A]. The

�rst term in (A.5) gives

�1
3
Tr
n�

(Dw;0 �M)�1Dw;1

�3o
=

1

3(a3L2T )3

3X
�;�;�=1

X
p;q;q02B

~A�(q) ~A�(q
0) ~A�(�q � q0)

� e
i
2
�(~q�~q 0) tr

h
V (1)
� (2p+ q)Q (p+ q)�1 V (1)

� (2p+ 2q + q0)Q
�
p+ q + q0

��1
� V (1)

� (2p+ q + q0)Q (p)�1
i
; (A.15)

whereas the second trace renders

Tr
�
(Dw;0 �M)�1Dw;1(Dw;0 �M)�1Dw;2

�
=

1

2(a3L2T )3

3X
�;�;�=1

X
p;q;q02B

~A�(q) ~A�(q
0) ~A�(�q � q0)

� e
i
2
�(~q�~q 0) tr

h
V (1)
� (2p+ q)Q (p+ q)�1 V (2)

�� (2p+ q)Q (p+ q)�1
i
: (A.16)

The third term Tr
�
[Dw;0 �M ]�1Dw;3

	
corresponds to the contribution of the tadpole

diagram which is irrelevant in the continuum limit. Adding together (A.15) and (A.16),

and identifying the kernel ���� , we recover the result of Eq. (2.37).

In the case of adjoint fermions, the calculation is analogous to the one describe above,

the main di�erence being the noncommutative phases. Again the results of Section 2.3 are

recovered.

B. Evaluation of the Feynman integrals

In this Appendix we will provide the reader with details of the calculation of some of the

Feynman integrals in Sections 3.2.1 and 3.2.2. As explained above, we consider a hermitian

representation of the 2� 2 gamma matrices satisfying �� = Æ�� + i�����. This implies

the following trace identities:

tr (���) = 2i���� ;

tr (����) = 2 (Æ��Æ�� + Æ��Æ�� � Æ��Æ��) ;
tr (�����) = 2i (Æ������ + Æ������ + Æ������ � Æ������) ;
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tr (������) = 2 (Æ��Æ��Æ�� + Æ��Æ��Æ�� � Æ��Æ��Æ�� � Æ��Æ��Æ��
+ Æ��Æ��Æ�� � Æ��Æ��Æ�� + Æ��Æ��Æ�� + Æ��Æ��Æ��

� Æ��Æ��Æ�� � ��������) : (B.1)

B.1 Fundamental fermions

As shown in [20], the integrand of the second term in Eq. (3.7) has negative degree so the

continuum limit exists and gives rise to the integral

I�� = �g2
Z

d3q

(2�)3
[1� T1(p)] tr f� [M + i(q=+ p=)]� [M + iq=]g

[M2 + (q + p)2] (M2 + q2)
: (B.2)

By using the trace identities (B.1) and writing the denominator as an integral over a

Feynman parameter

1

[M2 + (q + p)2] (M2 + q2)
=

Z 1

0
dx
�
(q + xp)2 +M2 + x(1� x)p2��2 ; (B.3)

one arrives at

I�� = �2g2
Z 1

0
dx

Z
d3q

(2�)3
[1� T1(p)]

n
M����p� � 2q�� + 2x(1� x)p�p�

+
�
M2 + q2 � x(1� x)p2� Æ��o �q2 +M2 + x(1� x)p2��2 : (B.4)

The �nal result (3.10) is readily obtained by computing the momentum integral. Note that,

because of the zero-momentum subtraction, the integral in (B.4) is free of divergences.

We now evaluate the function A(p1; p2)fund in (3.13). The relevant integral to calculate

is the continuum limit of Eq. (3.15) which can be cast into

I��� = �ig3
Z

d3q

(2�)3
[1� T0(p1; p2)]

�
tr
n
� [M + i(q=+ p=1)]� [M + i(q=+ p=1 + p=2)]�(M + iq=)

o
[M2 + (q + p1)2] [M2 + (q + p1 + p2)2] (M2 + q2)

: (B.5)

In order to compute A(p1; p2)fund we need to retain only those terms proportional to the

Levi-Civita tensor ���� . By expanding the trace in the numerator and using Eqs. (B.1) it

is straightforward to check that only two terms, proportional to M3 and M , contribute to

A(p1; p2)fund, namely

A(p1; p2)fund = 4Mg3
Z

d3q

(2�)3

Z 1

0
dx1

Z 1�x2

0
dx2 [1� T0(p1; p2)]

� M2 + q2 + (p1 + p2) � qn
[q + (x1 + x2)p1 + x2p2]

2 + �
o3 ; (B.6)

where we have reduced the denominator of (B.5) by introducing Feynman parameters and

� is de�ned in Eq. (3.17). The integral can be easily evaluated using standard techniques

to �nd the result given in Eq. (3.16).
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B.2 Adjoint fermions

In the case when the fermions are in the adjoint representation, the evaluation of the Feyn-

man integrals is more involved due to the presence of noncommutative phases dependent

on the loop momentum. Let us focus �rst on the two-point function. As explained above,

contrary to the planar part where the tadpole diagram introduces the zero momentum

subtraction that makes the whole amplitude �nite, in the nonplanar sector the tadpole

diagram cancels exactly. This can be seen by noticing that, up to a total derivative term

that cancels in the continuum limit, the nonplanar contribution of the tadpole diagram in

the continuum limit is given by

���(p; �)adj

���
tadpole

= �4g2
Z

d3q

(2�)3
(M2 + q2)Æ�� � 2q�q�

(q2 +M2)2
cos [�(~p� ~q)]

+ 4g2�(p)�

Z
d3q

(2�)3
q�

q2 +M2
sin [�(~p� ~q)] : (B.7)

The relevant integrals can be easily solved in terms of modi�ed Bessel functions of the

second kind (! 2 R):
Z

d3q

(2�)3
2q�q� � q2Æ��
(q2 + !2)2

ei�(~p�~q) =
1

8�

r
2

�
j!j 32 (�j~pj) 12

n
K 1

2
(�j~pj j!j)Æ��

� 2K 3
2
(�j~pj j!j) �(p)��(p)�

�(p)2

o
; (B.8)Z

d3q

(2�)3
ei�(~p�~q)

(q2 + !2)2
=

1

8�

r
2

�
j!j� 1

2 (�j~pj) 12K 1
2
(�j~pj j!j) ; (B.9)Z

d3q

(2�)3
q�

q2 + !2
ei�(~p�~q) =

i

4�

�(p)�
�(p)2

r
2

�
(�j~pj) 12 j!j 32K 3

2
(�j~pj j!j) : (B.10)

Substituting these expressions into (B.7) one �nds a cancellation between the di�erent

terms.

As for the nonplanar part of the two-point function coming from the �rst diagram in

Eq. (2.34), the relevant integral to evaluate is

I��� = �g2
Z

d3q

(2�)3
tr f� [M + i(q=+ p=)]� [M + iq=]g

[M2 + (q + p)2] (M2 + q2)
ei�(~p�~q): (B.11)

Here one can follow the same steps as in the case of fundamental fermions, leading to

I��� = �2g2
Z 1

0
dx

Z
d3q

(2�)3
(B.12)

� M����p� � 2q�� + 2x(1� x)p�p� +
�
M2 + q2 � x(1� x)p2� Æ��

[q2 +M2 + x(1� x)p2]2 ei�(~p�~q):

Once more, by using (B.8)-(B.10) one readily �nds the expressions (3.21).

To conclude, we outline the calculation of the function A(p1; p2; �)NP in Eq. (3.22).

As in the case of the two point function, the only di�erence with respect to the planar part
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analyzed in the previous subsection [cf. Eq. (B.6)] is the presence of the noncommutative

phase. This yields

A(p1; p2; �)NP = 4Mg3
Z

d3q

(2�)3

Z 1

0
dx1

Z 1�x2

0
dx2

� M2 + q2 + (p1 + p2) � qn
[q + (x1 + x2)p1 + x2p2]

2 +�
o3W(p1; p2; q)NP; (B.13)

where the phases are given in Eq. (3.24). Because of the structure of the noncommutative

phases, A(p1; p2; �)NP is indeed a sum of terms of the form (3.25). After shifting the loop

momentum, the integral can be evaluated with the help of Eq. (B.9) together withZ
d3q

(2�)3
q�e

i�(~p�~q)

(q2 + !2)3
=

i

32�

�(p)�
�(p)2

r
2

�
j!j� 1

2 (�j~pj) 52K 1
2
(�j~pj j!j) ;Z

d3q

(2�)3
ei�(~p�~q)

(q2 + !2)3
=

1

32�

r
2

�
(�j~pj) 32 j!j� 3

2K 3
2
(�j~pj j!j) : (B.14)

In our case the constant ! is replaced by �. Thus, for large values of the fermion mass

and at �xed incoming momenta the argument of the Bessel functions is very large and the

corresponding integrals vanish exponentially. In the same way, ifM ! 0 at �nite momenta

� is nonzero and the corresponding integrals remain �nite. Thus, because of the presence

of an overall power of M in front of (B.13), all the integrals contributing to the function

A(p1; p2; �)NP will vanish in that limit.
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