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Abstract

We consider an accumulation of the long-lived ioniza-
tion electrons in the electron cloud, which appears in the
storage ring around the bunched ion beam in presence of
ion leakage in the gap. In the frame of a one-dimensional
model, transverse electron motion is defined by the sec-
ond order non-linear differential equation with periodic co-
efficients depending on the ion longitudinal density. For
‘smooth’ density distributions an approximate solution of
the equation can be written in adiabatic form. Adiabatic-
ity perturbations results in half-integer resonances with
strengths defined by leakage factor and neutralization de-
gree. The action of these resonances in presence of non-
linearity limits the ‘survival’ region where electrons can
be accumulated. Electron concentration in this region is
defined by the balance between electron creation due to
ionization and electron losses due to electron scattering on
primary ions. An estimation of neutralization degrees for
SIS100/SIS200 (the rings now under design in GSI) has
shown that for reasonable leakage factors and nominal gas
pressure the electron concentration is small.

1 INTRODUCTION

An interaction of the electron cloud with the circular ion
beam can result in development of electron-ion dipole in-
stability, which was forecast many years ago [1]–[3]. Re-
cently this instability attracted significant attention due to
its experimental observation in high-current proton beams
(see, for example, Ref. [4]). The instability is especially
dangerous for ions with high charge number due to large
ionization cross-sections and large yield of electrons from
ions hitting the wall of the vacuum chamber.

A new accelerator complex is currently under construc-
tion at GSI (Germany) [5]. This complex includes two
synchrotrons/storage rings: SIS100 and SIS200. Four ion
bunches (for example, ions +28U238) should be injected
in SIS100 from synchrotron SIS18 with a time interval of
1/3 s. Then the ions are accelerated and injected in SIS200,
which is used as a ‘stretcher’ for physics experiments. Pa-
rameters of both machines are given in Table 1.

The goal of this paper is to investigate the electron
cloud accumulation in these accelerators. For chosen beam
parameters the number of electrons born due to secondary
emission (SEM) from the wall seems to be comparatively
small. Thus we limit ourselves to investigation of long-

lived electrons born inside the beam due to the ionization of
the residual gas. Accumulation of such electrons is possible
only if part of the ions escape from the bunch in the gap [6].
If the electron space charge density is less than the minimal
ion density in the gap such ions provide the focusing and
give to electrons a possibility to survive after a passage of
many bunches.

Table 1: Parameters of SIS100 and SIS200
Circumference (m) 1080 1080
Energy (MeV/u) 100 1000
Process time (s) 1 1
Number of bunches 4 None (1)
Kind of ions 238U+28 238U+28

Number of ions in each bunch Nb 2.5 × 1011 1012

Bunch length Lb (m) 216 (864)
rms vertical bunch size av (m) 0.015 0.01
rms horizontal bunch size ah (m) 0.015 0.01
Vacuum chamber radius (m) 0.05 0.05
Pressure (10−10 mbar, without beam) 0.05 0.1

One-dimensional (vertical) electron oscillations are de-
scribed by a non-linear equation of the second order whose
solution depends on longitudinal and transverse distribu-
tions of the ions in the ring (Section 2). In this Sec-
tion it is shown that for ‘smooth’ longitudinal distributions
(continuous with its derivative) the amplitude of the elec-
tron oscillations is defined by the adiabatic law.

In a frame of linear theory non-adiabaticity of oscil-
lations results in a set of half-integer resonances whose
strengths are expressed through the trace of a transfer ma-
trix (TrMT ) (Section 3). Examination of these resonances
for SIS100 has shown that their effect depends on the num-
ber of bunches in the ring (filling scheme) and longitudi-
nal distribution of the ions in the bunch as well as on the
values of the leakage factor and neutralization degree. The
most dangerous case corresponds to a completely filled ring
(four bunches) and a smooth (continuous with its deriva-
tive) distribution. If the resonances are crossed due to mod-
ulation of the electron bounce frequency (such modulation
can appear due to longitudinal electron motion) then these
resonances result in electron heating.

The action of non-linearity results in the appearance of
a ‘physical chamber aperture’ where the electrons can sur-
vive for a very long time (Section 4). The value of this
aperture depends on the values of the leakage factor and
neutralization degree, as well as on the longitudinal distri-
bution of the ions.



These results are applied to the calculation of the equi-
librium neutralization degree (Section 5). The scheme is
the following:

1) The main source of electrons is ionization of residual
gas.

2) The rate of heating is defined by electron scattering on
the ions of the primary beam.

3) An electron is lost when its adiabatic invariant corre-
sponds to the ‘physical aperture’.

The analysis results in the expression for an equilibrium
neutralization degree similar to the expression derived ear-
lier for coasting beams [7]. However, in a bunched beam
the neutralization degree is decreased as the third power
of the dimensionless (divided by the r.m.s. ion beam size)
physical aperture of the electron oscillations.

Application of this theory to SIS100 and SIS200 (Sec-
tion 6) has shown that for both machine and nominal (very
low) pressure the expected values of neutralization degree
are small. However, the pressure increase (for example due
to desorption of the gas from the walls) can change the sit-
uation.

2 TRANSVERSE ELECTRON
OSCILLATIONS AND ADIABATIC

INVARIANT

A dimensionless equation of one-dimensional (vertical)
electron oscillations can be written as follows:

y′′ + (2πQ0)2F (τ)yΦ(x, y) = 0 , (1)

where y = Y/ae, x = X/ae (Y,X = vertical and horizon-
tal electron deviations, ae = r.m.s. transverse beam size),
independent variable τ = t/T (t = time, T = period of
the ion line density variation); Q0 = ‘average electron be-
tatron tune’, equal to the number of betatron oscillations on
the bunch length for uniform ion density.

Q0 =

√
NbreZiR

πβ2a2h
,

where re is the classical electron radius, Nb is the number
of ions inside the bunch, β is the ion relativistic parameter,
Zi is the charge ion number,R is the ring radius, h the num-
ber of bunches; the function Φ(x, y) defines the transverse
distribution of the gradient. For a round Gaussian beam
Φ(x, y) = (1 − exp[−(x2 + y2)])/(x2 + y2). In Eq. (1),
the ‘instantaneous tune’ Ω(τ) = 2πQ0

√
F (τ)Φ(x, y).

Longitudinal distribution of the charge density in the
bunch F (τ) = [Ziλi(τ) − λe]/〈[Ziλi(τ) − λe]〉, where
λi(τ) is an ion longitudinal density inside the bunch, λe

is an electron longitudinal density (uniform), the sign 〈〉
means averaging on the bunch length.

We have considered four models (in all cases the density
in the gap is uniform):

Figure 1: Different longitudinal distributions used in cal-
culations (1 – smcos, 2 – elliptic, 3 – cosine, 4 – square).

1) The ‘square’ model with uniform density in the bunch.

2) The ‘elliptical model’ with elliptical density in the
bunch.

3) The ‘cosine model’ with flat top of the bunch and co-
sine law in the bunch edge.

4) The smooth ‘cosine model’ with cosine density in the
bunch.

These distributions are plotted in Fig. 1. Let us remark
that the first model has breaks in the function and its deriva-
tive, the second one – only in derivative, the third and
fourth functions are continuous with derivatives.

As is well known [8] for ‘good’ functions (positive and
continuous with their derivatives) the ‘adiabatic invariant’
is approximately conserved. In our case the adiabatic in-
variant is

I(ymax, τ) = 4
∫ ymax

0

y′dy = 8πQ0

√
F (τ)

∫ ymax

0√
H(ymax) −H(y)dy,H(y) =

∫ y

0

uΦ(x, u)du . (2)

The maximal value of action corresponds to the gap
centre (τ = 0.5) and ymax = b (b is the ratio of the
vacuum chamber aperture to the beam size a). In an-
other point of the bunch ymax is defined by the equation
I(ymax, τ) = I(b, 0.5). Using this expression, we can find
the dependence of ymax on τ for different values of the pa-
rameters χ, η (the ‘gap density parameter’ χ is equal to the
ratio of ion density in the gap to ion density in the centre
of the bunch, the ‘neutralization degree’ η = Ne/ZiNi is
the relation of the number of electrons in the ring Ne to the
number of ions in the ringNi). A typical dependence of the
electron beam size on τ for different values of χ(η = 0) is
given in Fig. 2.

Adiabaticity criterion:

Kad =
dΩ(τ)
dτ

T/Ω(τ) =
dF (τ)
dτ

T/F (τ) � 1 . (3)



Figure 2: Dependence of normalized electron beam size
u = ymax(s, χ) on τ for different values of parameter
χ(η = 0).

Figure 3: Trajectory for χ = 0.01. Maximal deviation is
equal to 3.19 (in accordance with adiabatic theory 3.16).

The adiabaticity criterion depends on the form of longi-
tudinal distribution, as well as on the variables χ, η, τ ; it
reaches maximal value near the bunch edge. Let us remark
that the adiabaticity confines even for large values of the
adiabaticity criterion. For illustration let us see the exam-
ple of trajectory shown in Fig. 3.

3 LINEAR OSCILLATIONS

An adiabatic solution in the linear case is:

y = aϕ(τ) + CC,ϕ(τ)

= exp[i2πQ0

∫ τ

0

√
F (τ1)dτ1]/

√
2πQ0

√
F (τ) .

(4)
Here a is the complex amplitude, CC means complex

conjugate number, ϕ(τ) is the ‘adiabatic Floquet function’;
the adiabatic invariant I = 4|a|2. The adiabaticity pertur-
bations result in amplitude perturbations. Using the method
for the complex amplitude variation we obtain:

a′ = − i

2

{
aϕ(τ)

[
−Ω′′

2Ω
+

3(Ω′)2

4Ω2

]
+ CC

}
ϕ∗(τ) .

(5)

Analysis of the equation shows that the adiabaticity
perturbations produce a set of half-integer resonances
with strength depending on Ω′(τ),Ω′′(τ). The resonance
strengths can be calculated using standard matrix pro-
cedure. Eigenvalues of the transfer matrix MTλ1,2 =
Tr(MT )/2 ±

√
[Tr(MT )/2]2 − 1. If |Tr(MT )| < 2,

eigenvalues are imaginary and the motion is stable. In the
opposite case a motion is unstable, and resonance strength

g = ln
[
|Tr(MT )|/2 +

√
[Tr(MT )/2]2 − 1

]
. (6)

Owing to longitudinal motion the electrons cross these
resonances. Using the theory of fast resonance crossing [9],
we obtain the average rate of the invariant growth because
of half-integer resonances

〈dI
dτ

〉 ≈ 〈I〉
8

〈[(0.5TrMT )2 − 1]〉 . (7)

We see that in the frame of a linear model all electrons
should be lost after some time interval. The rate of reso-
nance heating strongly depends on the longitudinal density
distribution.

As an example we have examined linear electron dy-
namics during the injection in SIS100 when five different
schemes of bunch location are possible: 1) only one bunch
in the ring; 2) two bunches in opposite separatrices; 3) two
bunches in neighbouring separatrices; 4) one bunch is ab-
sent; 5) all four bunches are present.

The results of calculations have shown that stability
strongly depends on the filling schemes and longitudinal
distributions. The most unstable, of course, is the simple
‘square bucket’ model, which has breaks in function. In
Fig. 4 we see the ‘classical’ picture: dependence of the ‘fo-
cusing factor’ K1

foc = Tr(MT )/2 on the leakage factor µ,
which is equal to the ratio of the ion number in the gap to
the ion number in the bunch. We see that for the ‘smooth’
model the focusing is much better, and oscillations become
stable (i.e. adiabatical) for very small leakage factors.

At Fig. 5 is plotted a dependence of the focusing factor
K2

foc = 0.5|TrMT | − 1 on the beam radius for µ = 0.1,
η = 0 (elliptical model). These pictures have a typical res-
onance character. The resonance strength is much higher
for one bunch, then for four bunches.

Owing to random variations of tune the electrons cross
the resonances. The heating rate is defined by

〈dI
dt

〉 ≈ 〈I〉
8T

K3
foc, K

3
foc = 〈Tr(MT )2

2
〉 − 1 . (8)

At Fig. 6 is plotted a dependence of this factor on µ for
η = 0 and the elliptical model. We see that the filling
scheme with four bunches is much more dangerous than
the last ones.

Equation (8) shows that in the linear approximation the
adiabaticity perturbations result in diffusion which for a
long enough time results in the loss of all particles. The
situation is changed with field non-linearity.
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Figure 4: Dependence of K1
foc on µ for single-bunch

mode; (a) smooth cosine model, (b) elliptical model.
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Figure 5: Dependence of K2
foc on the beam size for the

elliptical model and µ = 0.1; (a) one bunch, (b) four
bunches.

4 NON-LINEAR OSCILLATIONS

As is well known non-linearity stabilizes the oscillations.
For illustration let us consider a half-integer resonance in
presence of non-linearity. Then the normalized (divided on
resonance strength) Hamiltonian H = kI2 + I cos(2θ).
The corresponding phase diagram in the I, χ plane is plot-
ted in Fig. 7.

The character of stability depends on the chamber aper-
ture Imax. From the diagram we see that if the chamber
aperture Imax > 0.2 (this value corresponds to the sepa-
ratrix), for each initial phase there are particles which live
infinitely long.
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Figure 6: Dependence of K3
foc on µ for the elliptical

model; (a) one bunch, (b) four bunches.

Figure 7: Phase diagram in action-phase plane for half-
integer resonance in presence of cubic non-linearity (k =
5); curves: 1 − H = −0.04; 2 − H = −0.02; 3 − H =
0.0; 4−H = 0.01; 5−H = 0.02; 6−H = 0.04; 7−H =
0.06; 8 − H = 0.08; 9 − H = 0.1).

We have calculated the dependence of the electron max-
imal amplitude at the bunch centre on the time for different
numbers of the ions in the beam, different values of ‘gap
factor’ and neutralization η = 0 (SIS100, 4 bunches, ‘co-
sine model’).

We see from Fig. 8 that for high time intervals the ampli-
tude of the surviving particles goes to some limit depend-
ing on the gap density factor χ(Y (χ)). Similar results are
obtained for SIS200 (Fig. 9).

In the following text we use the term ‘sharp border
model’: we assume that particles survive only if Y <
Y (χ), (the parameter Y (χ) will be named ‘physical cham-
ber aperture’ for the electrons).
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Figure 8: a) SIS100, four bunches, dependence of Y on
N = t/T , for different values of the number of ions in
the bunch in 1012Ni (curves: 1 − Ni = 0.245; 2 − Ni =
0.25; 3 − Ni = 0.24); χ = 0.1; η = 0. b) SIS100, de-
pendence of Y on N = t/T , for different values of χ
(curves: 1−χ = 0.2; 2−χ = 0.1; 3−χ = 0.05), (Ni0 =
0.25 × 1012), η = 0.
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Figure 9: SIS200, dependence of Y = YAP (χ, η,N) on
N = t/T, for different values of χ (curves: 1 − χ =
0.2; 2 − χ = 0.1), (Ni0 = 1 × 1012), η = 0.

5 NEUTRALIZATION DEGREE

The ionization rate per ion may be written as follows

1
Tion

=
1
Ni

dNe

dt
= βcNLoschP 〈σion〉 , (9)

where P is the residual gas pressure (in bar), NLosch =
2.7 × 1019 cm−3 (Loschmidt number), 〈σion〉 = ioniza-
tion cross-section averaged on beam components; partial
ionization cross-section is defined by [10]:

σm
ion = Z2

i K
Ωm(β)

β2 ,

Ωm(β) = Cm +M2
m

(
ln β2

1−β2 − β2
) . (10)

Here K = 1.87 × 1020 cm2, the parameters Cm and Km

depend on the kind of gas.

Let us limit ourselves to a case of small neutralization
degree. Then the rate of birth for ionization electrons in the
‘survival layer’ is

(
dNe

dt

)
surv

≈ Ni

Tion
Y (χ) . (11)

The lifetime of these electrons is defined by Coulomb
scattering of electrons on circulating ions. The heating rate
is [7]:

dWe

dt
= E0

4πcρir
2
eZ

2
i

β
LCoul . (12)

The energy, corresponding to the ‘physical aperture’, for
paraxial electrons is W lim

e ≈ E02πZiρia
2reY (χ)2, and

the mean energy of born electrons 〈We〉 ≈ W lim
e /2; then

we find the electron lifetime:

Tlife ≈ W lim
e

2
/

(
1
2
dWe

dt

)
=

βa2Y (χ)2

2creZiLCoul
. (13)

Using Eqs. (9–13) we obtain the following equation for
neutralization degree

dη

dt
=
Y (χ)2

T 0
neutr

− η

T 0
lifeY (χ)

. (14)

Here T 0
neutr = TionZi, T

0
life = Tlife/Y (χ)2. If η0 �

χ and τ 	 τlife, an approximate solution for neutralization
degree can be written analytically in the following form:

ηeq = ηeq
0 Y (χ )3, ηeq

0 = K0a
2P 〉Ωm(β)〉 (15)

where a is in centimetres, P is in 10−10 mbar, and the con-
stant

K0 =
10−13NLoschK

2reLCoul
=

0.0992
LCoul

.

An interesting feature of this expression is the weak depen-
dence of the equilibrium neutralization degree on β and the
independence from the ion charge Zi.

Let us underline that in a frame of this simple model the
equilibrium neutralization for coasting beam is defined by
ηeq
0 ; the reduction of the electron population due to bunch-

ing is described by the multiplier Y (χ)3.

6 APPLICATION TO SIS100/SIS200

Estimations for SIS200 (coasting beam) have shown that
for nominal vacuum pressure the neutralization degree is an



Table 2: Neutralization parameters for SIS100-SIS200: kind of ions +28U238, in SIS100 P = 5× 10−12 mbar, in SIS200
P = 10 × 10−12 mbar, gas composition coincides with measured gas composition in SIS-18 (H2 = 65%, O/H2O =
17%, CO/N2 = 8%, Ar = 4%, Cl = 4%, CO2 = 1%).

Machine SIS100 SIS100 SIS200 SIS200
χ = 0.1 χ = 0.2 χ = 0.1 χ = 0.2

〈σion〉(10−16 cm2) 10.3 10.3 7.25 0.05
τ0
neutr (s) 15.6 15.6 13.1 13.1
τ0
life (s) 0.102 0.102 0.092 0.092
ηeq
0 = τ0

life/τ
0
neutr 6.5 × 10−3 6.5 × 10−3 7.0 × 10−3 7.0 × 10−3

Y (χ) 0.2 0.4 0.1 0.4
τlife(χ) 0.0204 0.0408 0.0092 0.368
η0(χ) = ηeq

0 Y (χ)3 5.2 × 10−5 4.2 × 10−4 7.0 × 10−6 4.5 × 10−4

order of 0.6–0.8%. However, the situation can become dan-
gerous if the pressure increases sharply due to gas desorp-
tion. In this case the electron concentration can be dimin-
ished by beam bunching in one bunch (bunch length = 80%
from the circumference).

The calculated values of equilibrium neutralization de-
gree are given in Table 2. We see that these values are com-
paratively small (let us remark that the real neutralization
degree will be less to an order of magnitude since typical
system time is less than neutralization time to an order of
magnitude).

7 RESULTS AND DISCUSSION

1) In the presence of non-linearity periodic variations of
the electrical field result in the appearance of ‘physical
aperture’, i.e. maximal amplitude of oscillations for
‘surviving’ electrons.

2) The degree of neutralization is determined by the bal-
ance between electron creation due to ionization and
electron loss due to Coulomb collisions with circulat-
ing ions; bunching of the beam results in the reduction
of the equilibrium neutralization degree as the third
power of normalized (divided on r.m.s. beam size a)
physical aperture.

3) The application of the model to SIS100/SIS200 has
shown that for nominal vacuum pressure typical val-
ues of neutralization degree are small.

Further plans:

1) To check the model by comparison with more detailed
numerical calculations.

2) To estimate the influence of other electron sources
(SEM electrons and electrons born in walls due to
ion–electron emission).
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