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H. Löhner,16 D.P. Mahapatra,19 V. Manko,5 M. Martin,4 G. Mart́ınez,10 A. Maximov,6 Y. Miake,14

G.C. Mishra,19 B. Mohanty,19 M.-J. Mora,10 D. Morrison,20 T. Mukhanova,5 D. S. Mukhopadhyay,3

H. Naef,4 B. K. Nandi,19 S. K. Nayak,10 T. K. Nayak,3 A. Nianine,5 V. Nikitine,6 S. Nikolaev,5 P. Nilsson,13

S. Nishimura,14 P. Nomokonov,6 J. Nystrand,13 A. Oskarsson,13 I. Otterlund,13 T. Peitzmann,9 D. Peressounko,5

V. Petracek,15 F. Plasil,7 M.L. Purschke,11 J. Rak,15 R. Raniwala,2 S. Raniwala,2 N.K. Rao,8 K. Reygers,9

G. Roland,18 L. Rosselet,4 I. Roufanov,6 J.M. Rubio,4 S.S. Sambyal,8 R. Santo,9 S. Sato,14 H. Schlagheck,9

H.-R. Schmidt,11 Y. Schutz,10 G. Shabratova,6 T.H. Shah,8 I. Sibiriak,5 T. Siemiarczuk,17 D. Silvermyr,13
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Abstract

Several hadronic observables have been studied in central 158A GeV Pb+Pb collisions
using data measured by the WA98 experiment at CERN: single π− and K− production, as
well as two- and three-pion interferometry. The Wiedemann-Heinz hydrodynamical model
has been fitted to the pion spectrum, giving an estimate of the temperature and transverse
flow velocity. Bose-Einstein correlations between two identified π− have been analysed as a
function of kT , using two different parameterizations. The results indicate that the source
does not have a strictly boost invariant expansion or spend time in a long-lived intermediate
phase. A comparison between data and a hydrodynamical based simulation shows very good
agreement for the radii parameters as a function of kT . The pion phase-space density at
freeze-out has been measured and agrees well with the Tomás̆ik-Heinz model. A large pion
chemical potential close to the condensation limit of mπ seems to be excluded. The three-
pion Bose-Einstein interferometry shows a substantial contribution of the genuine three-pion
correlation, but not quite as large as expected for a fully chaotic and symmetric source.

1 Introduction

The study of single particle distributions of particles produced in heavy-ion collisions gives
access to the degree of thermal and chemical equilibrium at freeze-out and allows the deter-
mination of the parameters of hydrodynamical expansion models of the source.

The spatio-temporal extension of the interaction region created in such collisions is not
directly observable, but the study of Bose-Einstein interferometry between identical particles
provides information on the geometry and on the dynamical evolution of the particle emission
sources. In particular, the correlations between produced pions give access to the size of the
homogeneity region, to the duration of emission, and to various parameters characterizing
the spatial extension of the fireball [1]. In addition, by combining information from the source
size in momentum-space obtained by interferometry, and from the momentum-space density
provided by the single particle distributions, an average phase-space density at freeze-out
can be calculated.

Compared to the two-particle correlation, the three-particle correlation can provide ad-
ditional information on the chaoticity and asymmetry of the source emission [2, 3, 4]. In
particular, the three-pion interference produced by a fully chaotic source is sensitive to the
phase of the Fourier transform of the source emission function and, hence, to the asymmetry
of the source.

In this paper, we present the analysis of single particle production, and of two- and three-
pion interferometry measured in the WA98 experiment for central 158A GeV 208Pb+208Pb
collisions at the CERN SPS. In addition, estimates of hydrodynamical expansion model
parameters, temperature and transverse flow velocity are extracted from these results.

2 Experimental setup and data processing

The CERN SPS fixed target experiment WA98 [5] combined large acceptance photon de-
tectors with a two arm charged particle tracking spectrometer. The experimental layout is
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shown in Fig. 1. The 158A GeV Pb beam interacted with a Pb target near the entrance
of a large dipole magnet. The online trigger centrality selection used a forward calorimeter
located at zero degrees and a mid-rapidity calorimeter measuring the total transverse energy
in the pseudorapidity interval 3.2 ≤ η ≤ 5.4. The results presented here have been obtained
from an analysis of the complete data set. These data were taken with the most central trig-
gers corresponding to about 10% of the minimum bias cross section of 6300 mb [6, 7], with
an average of 330 participating nucleons per collision. These quantities are estimated to have
an overall systematic error of less than 10%. The charged particle spectrometer made use
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Figure 1: The WA98 experimental setup.

of a 1.6 Tm dipole magnet with a 2.4×1.6 m2 air gap which deflected the charged particles
in the horizontal plane into two tracking arms located downstream, one on each side of the
beam axis. The results shown here are measurements of π− and K− observed in the nega-
tive particle tracking arm of the spectrometer. This tracking arm consisted of six multistep
avalanche chambers with optical readout [8]. Inside the chambers, triethylamine (TEA) pho-
toemissive vapour produced UV photons along the path of charged particles, these photons
being subsequently converted to visible light via wavelength shifter plates. On exit, the light
was reflected by mirrors at 45◦ to CCD cameras equipped with two image intensifiers. The
active area of the first chamber was 1.2×0.8 m2 and that of the other five 1.6×1.2 m2. Each
CCD camera pixel viewed a region of about 3.1×3.1 mm2 on the chambers. Downstream
of the chambers, at a distance of 16.5 m from the target, a 4×1.9 m2 time of flight wall
allowed for particle identification with a time resolution of better than 120 ps. The resulting
particle separation is shown in Fig.2. The π− rapidity acceptance ranged from y = 2.1 to
3.1 with a rapidity average at 2.7, close to the mid-rapidity value of 2.9. The momentum
resolution of the spectrometer was ∆p/p = 0.005 at p = 1.5 GeV/c, resulting in an average
precision of better than or equal to 10 MeV/c at vanishing pT for all the Q variables used in
the correlation analysis and defined in sections 4 and 6: σ(Qinv) = 7 MeV/c, σ(QTO) = 10
MeV/c, σ(QTS) = 5 MeV/c, σ(QL) = 3 MeV/c, σ(QT ) = 8 MeV/c, σ(Q0) = 5 MeV/c,
σ(Q3) = 7 MeV/c.

Severe track quality cuts were applied, resulting in a final sample of 7.9×106 π−, providing
13.7×106 pairs and 13.1×106 triplets for the Bose-Einstein correlation analysis.

3



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.88 0.9 0.92 0.94 0.96 0.98 1
β

1/
p 

[G
eV

/c
 -1

]

p
–

K - π-

Figure 2: Particle identification in the negative arm of the spectrometer.

3 Single particle spectra and hydrodynamical model

The study of inclusive distributions of single particles produced in heavy-ion collisions can be
interpreted in the context of models of the source using hydrodynamical expansion. Within
the context of such models, which assume local thermal equilibration, parameters like the
temperature and collective velocity at freeze-out can be determined. In the limit of a sta-
tionary fireball, the distribution takes the simple form [9]

E
dN

dp3
≡ dN

mTdmT dydφ
∝ Ee−(E−µ)/T (1)

where p is the Cartesian particle momentum, mT ≡
√

p2
T + m2

0 is the transverse mass, pT is

the transverse momentum, m0 is the rest mass, y is the rapidity, E = mT cosh(y − yfireball),
µ is the chemical potential and T is the temperature. In the limit where only a narrow
rapidity interval close to yfireball is measured, the spectrum becomes

E
dN

dp3
∼ mT e−mT /T

and in the case of a rapidity-integrated spectrum

dN

mT dmT
∝ mT K1

(

mT

T

)

−→ ∼ √
mT e−mT /T

where K1 is a modified Bessel function. The last approximation holds in the limit mT ≫
T . Plotted against mT − m0, all particles from a thermalized emitter should show the
same universal exponential behaviour. However, different additional features like transverse
hydrodynamic expansion or particles originating from the decay of resonances will distort the
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shape of the spectrum. It is noted in [10] that for the popular fit with a simple exponential
in mT (without the mT -prefactor)

E
dN

dp3
= Ce−mT /T (2)

an interpretation of the resulting slope parameter in terms of a temperature is not possible.
However, since it is found to fit the measured spectrum better than the previous expressions,
it is useful for obtaining an estimate of the inverse slope parameter T .

3.1 Data analysis

A detailed description of the analysis of the single particle spectra presented here can be
found in [11]. The correction for detector acceptance and efficiency applied to the measured
spectrum is based on a precise simulation of the detector, tuned in order to reproduce the
measured detector response as accurately as possible using the VENUS [12] event generator
as input. Multiple scattering, decays and all other reactions within the detector material
are taken into account. Efficiency maps depending on the hit position on each chamber, the
particle momentum and its identity are applied, together with position resolution and noise
simulation. Simulated events are then reconstructed using the same code as for real data,
ensuring that any software-induced systematics are also taken into account. The output is
then matched to the VENUS input. This correction procedure ensures that the final result is
little sensitive to remaining contamination, such as pions in a kaon sample. A detailed study
of the systematic uncertainty has been performed and it is found to be small, especially as
regards the slope of the spectrum (∼3%). The absolute normalisation on the other hand is
more sensitive to detector instabilities which could not be perfectly simulated and is found
to have an estimated uncertainty of at most 20%.

Since the statistical uncertainty on the final mT spectrum is negligible compared to the
systematics, it is possible to apply very severe quality cuts on the reconstructed tracks and
on the events used. In contrast to the Bose-Einstein analysis, only a subset of all data is
kept using only run periods where the detector operation remained particularly stable. The
analysis is performed separately for identified π− and K−. The final data sample consists
of 4.7×105 π− tracks and 1.8×104 K− drawn from 3.8×105 central events. Figures 3 and 4
show the detector acceptance for negative pions and kaons respectively, obtained from the
simulation. The π−/π+ ratio and the K−/K+ ratio of the number of detected pions and
kaons have also been measured using two opposite magnetic field polarities. The results will
be presented in a separate publication.

3.2 Results

Figure 5 shows the final (fully corrected) single particle spectrum for π− plotted as a function
of the two variables mT and y. The form of the detector acceptance shown in Fig. 3 is
clearly noticeable, except for the low pT -low y lobe, which has been omitted here. Figure
6 shows the projection on the mT axis (normalized to a unit rapidity interval using the
VENUS profile) of the two-dimensional spectrum of Fig. 5. A fit to the exponential form
of eq. 2 over the interval mT − m0 = [0.1, 1.2] GeV/c2 (not shown in Fig. 6) yields C =
5220 ± 80 (stat.) +1270

−200 (syst.), and T = 0.168 ± 0.001 (stat.) +0.001
−0.005 (syst.) GeV, with a χ2

per degree of freedom of 1.6. This result is in agreement with the NA49 result [13].
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Figure 5: Two-dimensional (fully corrected) single pion spectrum as a function of the two variables
mT and y.

At high pT , where perturbative QCD becomes applicable, the spectra are expected to
attain a power-law behaviour as observed in numerous high energy pp measurements (see
for example [14]). The heavy-ion data of this experiment seem to follow that trend even
into the lower pT range. Therefore, a parametrization originally inspired by QCD [15] and
successfully applied already to pp data [14] and heavy-ion data [16] can be used to fit the
spectrum:

E
d3σ

dp3
= C

(

p0

pT + p0

)n

(3)

with C, p0, and n taken as free parameters. A link to the more familiar exponential slope
parameter T is obtained from the derivative of this expression according to

Tpower−law = − f(pT )
∂f(pT )

∂pT

=
p0

n
+

pT

n
.

Thus, p0/n characterizes the slope of the transverse momentum spectrum in the limit pT → 0,
while 1/n characterizes its gradient along pT , i.e. the strength of the concave curvature. The
extracted parameters are C = 4150 ± 70, p0 = 4.80 ± 1.04 GeV/c and n = 29.0 ± 5.9, which
gives a slope parameter T ≡ p0/n = 0.166± 0.005 GeV. The χ2 per degree of freedom is 1.0.
The same fit performed on the π0 spectrum measured by the WA98 experiment [7, 6, 17, 18]
yields C = 5120±140, p0 = 5.08±0.18 GeV/c, n = 29.3±0.8, and so T = 0.173±0.002 GeV.
The acceptance for the π0 measurement being different, it is interesting to note that fitting
only the pT = [0.3, 1.4] GeV/c common interval of both spectra yields T = 0.169 GeV for
the π− and T = 0.166 GeV for the π0, showing that the result is stable with respect to the
fit interval and that the spectra agree quite well.
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It has also been shown that fluctuation of the parameter in an exponential distribution
leads to a final distribution of the power-like form [19]. This behaviour can be interpreted
in terms of a suitable application of the nonextensive statistics of Tsallis [20]. This interpre-
tation is convenient to describe particle production at fluctuating T , as may occur near the
phase transition. These fluctuations would exist in small parts of the hadronic system with
respect to the whole system rather than between events. The average 〈T 〉 around which the
temperature fluctuates is given by p0/n = 0.166 GeV and the relative variance of 1/T is

ω =

〈

( 1
T )2

〉

−
〈

1
T

〉2

〈

1
T

〉2 =
1

n
= 0.034 ,

both for π− and π0. This corresponds to a nonextensivity parameter q = 1+ω of 1.034. This
result, interpreted in the spirit of [19], indicates a relative fluctuation ∆T/T of 18.4 ± 1.9%
(18.4±0.3%) for the π− (π0) measurement. However, this analysis neglects the contributions
of resonance decays and of flow velocity distributions. Both of these effects increase the
curvature of the pion spectrum. Thus the value of ∆T/T = 18.4% should be considered an
upper limit on the temperature fluctuations.

The averaged negative pion yield per unit rapidity in the acceptance window is 1/NevtdN/dy =
129 ± 1 (stat.) +23

−5 (syst.). Figure 7 shows the same plot as above for kaons. A fit
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Figure 6: One-dimensional (fully corrected) mT -spectrum for π−. The errors are statistical. The
power-law fit of eq. 3 is superimposed on the data points. The fit interval is mT − m0 =
[0.05, 1.2] GeV/c2.

to the exponential form 2 yields C = 1000 ± 120 (stat.) +260
−1 (syst.), and T = 0.181 ±

0.005 (stat.) +0.001
−0.009 (syst.) GeV. So the inverse slope T for kaons and pions are comparable.

It should be noted that the rapidity acceptance is quite different for the two particle species,
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The inset shows the (bin by bin) ratio of the two pT spectra.

the π− acceptance being much closer to mid-rapidity. An estimate of the effect induced
by this difference in acceptance can be made using the term cosh(∆y) given below eq. 1.
The inverse slope for K− would become of the order of 0.230 GeV. The K−/π− ratio at a
common rapidity of 2.3 is 11.4 ± 0.4 (stat.) +0.6

−2.7 (syst.)%, which is in agreement with the

NA49 result [13].

3.3 Hydrodynamical Source Expansion Model

The single pion spectrum has been fitted in the interval 0.05 < mT −m0 < 1.2 GeV/c2 with
the Wiedemann-Heinz (W.-H.) model [21, 22, 23, 24, 25, 26]. It relies on the following idea:
the main characteristics of the particle phase-space distribution at freeze-out can be quanti-
fied by its widths in the spatial and temporal directions, a collective dynamical component
(parameterized by a flow field) which determines the strength of the position-momentum
correlations in the source, and a second, random dynamical component in momentum space
(parameterized by a temperature). The model emission function contains seven parameters,
but the shape of the single particle transverse mass spectrum is fully determined by the tem-
perature T and the transverse flow rapidity profile ηT (r) = ηf

r
R which is assumed to depend

linearly on the transverse coordinate r, where ηf is the transverse flow rapidity strength,
and R the Gaussian transverse spatial width. The mean transverse flow velocity 〈βT 〉 can
be easily calculated as the mean value of tanh(ηT (r)) over the transverse source profile. The
results will be given as a function of 〈βT 〉 rather than ηf , since its physical interpretation is
more straightforward.

The three parameters that are allowed to vary freely during the fitting procedure are T ,
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ηf , and an overall normalization factor. The result of the fit is T = 0.084 ± 0.003 GeV and
〈βT 〉 = 0.50 ± 0.02, the χ2/d.o.f. being 1.1. The resulting curve is not shown in Fig. 6 as
it is hardly distinguishable from the power-law fit. The temperature and flow parameters
are strongly correlated, so it is more interesting to consider a χ2 contour plot of the fit
to the measured single particle spectrum as a function of those two parameters. Figure 8
shows the result assuming a Gaussian transverse spatial profile, and Fig. 9 assuming a box
profile of the same rms width as the Gaussian one. Only direct pions are considered in the
model. Furthermore, only statistical errors are taken into account during the fit. The curves
displayed represent different confidence levels for the (T, 〈βT 〉) values. The dependence of

〈βT〉

T
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Figure 8: χ2 contour plot of the hydrodynamical model fit to the measured π− single particle
spectrum of Fig. 6. A Gaussian profile is assumed for the transverse spatial profile of the source.
The curves displayed represent successively (starting with the innermost one) contours at 50%
CL, 90% CL, 99% CL (dashed line), 99.9% CL, and the last curve indicates a highly excluded
region. The black square represents the best parameter values.

the χ2/d.o.f. on the shape of the source is very small, the best χ2/d.o.f. being slightly larger
for the box profile (1.5). While the best fit temperature appears to be independent of the
shape of the source, the best fit flow velocity is considerably smaller (〈βT 〉 = 0.29) for the
box profile. Inclusion of the resonance decay contribution in the model calculation would
be expected to reduce the extracted flow velocity parameters and increase the temperature
parameters. The precise effects do however depend on details of the models used.

4 Two-pion correlations

Bose-Einstein interferometry is most commonly used to study pairs of identical particles.
The correlation function C2 is defined, up to a proportionality factor N , as the ratio of a
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Figure 9: Same plot as in Fig. 8, but assuming a box profile for the transverse spatial profile of
the source.

two-particle spectrum P2 over the product of two single particle spectra P1:

C2(~p1, ~p2) = N P2(~p1, ~p2)

P1(~p1) · P1(~p2)

with

P1(~p) = E
dN

dp3

and

P2(~p1, ~p2) = E1 E2
dN

dp3
1 dp3

2

where Ei and ~pi are the energy and momentum of particle i, respectively.
Experimentally, the product of one-particle distributions in the denominator is commonly

obtained by a mixed event technique whereas the two-particle distribution in the numerator
is constructed from all pair combinations of identical particles found in each event. C2 is
then normalized to unity far away from the interference region.

A fully chaotic source can be seen as a superposition of uncorrelated elementary sources,
and one- and two-particle distributions may be expressed through the Wigner function of
the source S(x, k12) [1]. The correlation function is then written

C2(~p1, ~p2) = 1 + λ
| ∫ d4x S(x, k12) exp[iq12x]|2

| ∫ d4x S(x, k12)|2

with q12 = p1 − p2, the 4–momentum difference of the two particles, k12 = (p1 + p2)/2 and
x = (x1 + x2)/2, the mean space-time coordinate of the pair emission point. The chaoticity
parameter λ is inserted to take into account the possibility that the source may not be fully
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chaotic and also that any wrongly reconstructed tracks, or tracks originating from decays of
long-lived resonances, will dilute the Bose-Einstein correlations in the data.

A one-dimensional interferometry analysis is commonly made as a function of Qinv ≡
√

−q2
12, whereas a multidimensional analysis uses a set of Q variables which are defined as

various projections of q12.

4.1 Data analysis and results

Two independent analyses were performed with the complete data set recorded in the nega-
tive tracking arm [11, 27] totalling 13.7×106 pairs of identified π−. These data were corrected
for resolution and Coulomb effects in an iterative way [28]. The Gamow correction was not
used as it overcorrects the data in the Qinv range of 0.1 to 0.3 GeV/c. Because the finite
resolution in the measurement of the Q variables leads to an underestimate of the radii and
λ parameters, a correction has to be implemented in the fitting procedure. This is done by
a convolution method, replacing the C2( ~Q) formula expressing the two-particle correlation
function used to fit the data by

Crc
2 (~Q) =

∫ ∫ ∫

r( ~Q, ~Q′) C2( ~Q′) d ~Q′

where r(~Q, ~Q′) is the resolution function which is chosen to be Gaussian:

r(~Q, ~Q′) = 1/(2π)3/2 1/|V |1/2

× exp[−1/2 (~Q − ~Q′)T V −1 (~Q − ~Q′)]

The diagonal elements of the covariance matrix V are set equal to the square of the various
Q-resolutions, which are estimated by a full simulation of the experimental setup as a function
of the kT = |~pT1 + ~pT2|/2 of the pairs. The non-diagonal elements of V are neglected, as the
resolution correction has a very small effect compared to the Coulomb correction. Figure
10 shows C2, the measured π−π− correlation function, plotted as a function of Qinv before
and after the resolution and Coulomb corrections. In the plot, the correction for resolution
is obtained by multiplying each data point by Crc

2 (Qinv)/C2(Qinv). C2 is clearly exponential
[29]. The solid curve is a fit of the form 1+λeexp[-2QinvRinv] which gives Rinv = 7.33± 0.08
fm and λe = 0.788±0.009 for 〈kT 〉 = 0.116 GeV/c. This exponential behaviour appears not to
hold in the 3-d analysis, where the projected slices are better represented by Gaussians. The
3-d analysis of Bose-Einstein correlations has been done using two different parameterizations
in the Longitudinally CoMoving System (LCMS): the standard Pratt-Bertsch fit (PB) in the
3-dimensional space of momentum differences QTS (perpendicular to the beam axis and to
the transverse momentum of the pair), QTO (perpendicular to the beam axis and parallel to
the transverse momentum of the pair), and QL (parallel to the beam axis) [30], including a
cross term R2

out−long as predicted [31]

C2 = 1 + λ exp[−Q2
TSR2

TS − Q2
TOR2

TO − Q2
LR2

L

−2QTOQLR2
out−long]

and the Yano-Koonin-Podgoretskĭı fit (YKP) [21] in the Q0 (energy difference of the pair),
QT ,QL space

C2 = 1 + λ exp[−Q2
T R2

T + (Q2
0 − Q2

L)R2
4 − (Q·U)2(R2

0 + R2
4)]
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Figure 10: The measured two-pion correlation function C2 (full symbols), corrected for resolution
and Coulomb effects, as a function of Qinv. The full line is a fit to an exponential form whereas
the dashed curve is a fit to a Gaussian form. The empty symbols show the data before corrections.
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average kT of the bin and the horizontal bars indicate the bin width. The open symbols in the
figure at bottom right show the λ parameter after correction for background from misidentified
pions, as explained in section 5.
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where U = γ(1, 0, 0, vL), γ = 1/
√

1 − v2
L with vL in units of c = 1. In the YKP parame-

terization the different radii are invariant under a longitudinal Lorentz boost, and the speed
parameter vL connects the local rest frame to the measurement frame (the LCMS in our
case). The results as a function of the kT of the pairs are shown in Figs. 11 and 12 and
summarized in Table 1. The λ parameters of the YKP fit (not shown in Table 1) are found
compatible with the λ parameters of the PB fit.
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Figure 12: Comparison between the PB and YKP fits in the LCMS. The cross term R2
out−long from

the PB fit and vL from the YKP fit both show a deviation from zero at large kT when estimated in
the LCMS. The RTS and RL parameters from the PB fit are in good agreement with respectively
RT and R4 from the YKP fit.

The systematic errors, not included in Figs. 11 and 12, and Table 1, are estimated by
varying the different analysis cuts, including the cuts used to identify the pion with the time
of flight system. The systematic error on the Coulomb correction due to the error on the
determination of the radius parameters is also taken into account. All these variations are
added in quadrature. The total relative systematic errors on the radii ∆R/R amount to
0.8% for Rinv, 1.4% for RTS , 3.5% for RTO, 9.1% for RL, 0.8% for RT , and 9.7% for R4.
Systematic errors on R2

out−long and vL are asymmetric and reach respectively +2.2
−1.7 fm2 and

+0.13
−0.08 .

The RTS and RL parameters from the PB fit are in good agreement respectively with
RT and R4 from the YKP fit. The cross term R2

out−long from the PB fit and vL from the
YKP fit deviate from zero. In a source undergoing a boost invariant expansion the local rest
frame coincides with the LCMS. Both the cross term and vL expressed in the LCMS are then
expected to vanish [21]. As this is not quite the case, it suggests that the source seen within
the acceptance does not have a strictly boost invariant expansion. The strong decrease of the
longitudinal radius RL or R4 with kT compared to the transverse radii RT , RTS, RTO shows
a longitudinal expansion which is larger than the transverse one. Finally, the R0 parameter
(not shown in the figures), which corresponds to the duration of emission of particles from
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the source, is compatible with zero for all kT bins, excluding a long-lived intermediate phase.
These results agree with the previously published WA98 results obtained using roughly half
of the present data sample [29]. The WA98 analysis is compatible with the NA49 results
obtained in a slightly different rapidity range (〈y〉 = 3.2) with unidentified negative particles
[32].

4.2 Comparison with a hydrodynamical model based simula-

tion

The W.-H. model can be used to generate correlation functions which can be compared to
the data. For that purpose, all necessary integrations are performed numerically [25] to get
the value of C2 in the PB parameterization for given values of QTS , QTO, QL, kT , and the
rapidity Y = (y1 + y2)/2 of a pair. To simulate properly the acceptance of the negative
tracking arm, the mean values of kT and Y for each (QTS , QTO, QL) bin are calculated
using real data, and then for each bin the mean values (〈QTS〉 , 〈QTO〉 , 〈QL〉 , 〈kT 〉 , 〈Y 〉) are
used as input for the hydrodynamical calculation. This procedure is repeated for all five
kT intervals used in the data analysis. The correlation functions are generated neglecting
contribution from resonances, using T = 85 MeV, ηf = 0.5 (values extracted from the single
particle spectra analysis), R = 8 fm, τ0 = 11 fm/c, ∆τ = 2 fm/c and ∆η = 1.3 (see [25]
for definitions of the parameters). Figure 13 shows the Bose-Einstein radii extracted from
fitting the simulated correlation functions with the PB formula. The error bars used to
perform these fits are taken to be the same as the ones calculated for the real data in each
(QTS , QTO, QL) bin. The measured results are shown on the same plot, and the agreement
is found to be good. The shift in the the cross term R2

out−long between data and simulation
is compatible with the systematic uncertainty.

5 Average pion phase-space density at freeze-out

As the mT spectrum gives the momentum-space density at freeze-out and as the Bose-
Einstein correlation radii provide information on the covariant volume for particles of mo-
mentum ~p, it is possible, by combining these results, to extract the average phase-space
density 〈f〉 (pT , y) at freeze-out [33, 34]:

〈f〉 =

√
λ

( Eπ

π3/2 )RTS

√

R2
TOR2

L − R4
out−long

dn

dy pT dpT dφ

with Eπ =
√

m2
π + p2 = mT cosh y. The radii and λ are functions of pT and y. The factor

λ, which comes from the two-pion correlation analysis, corrects for contributions of pions
originating from long-lived resonances decaying close to the primary vertex. A difficulty
of this method is to include only the contribution of the real pions in the determination
of λ, excluding backgrounds from misidentified particles. This is achieved by applying to
λ, separately for each kT bin, a correction factor obtained from a full simulation of the
experimental setup, taking into account geometrical acceptance, backgrounds and efficiency
of the chamber-camera-time of flight system. The effects can be seen in Fig. 11, bottom
right, where λ with and without correction is displayed. Figure 14 and Table 2 show the
results on the average phase-space density for π− as a function of pT . The error bars reflect
the statistical errors only. The systematic uncertainties are dominated by the uncertainty
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Figure 13: Comparison between simulation and data as a function of kT . The open symbols are
the result of the fit of the PB formula to the correlation functions produced by the hydrodynamical
model, whereas the full symbols are the result of the fit to the data.
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of the correction on the λ parameter, which is estimated to be 20%, and by the systematic
error on RL, giving a total of 13.7% systematic error on 〈f〉. Within errors, all nuclear
collision measurements at the SPS are found to be indistinguishable [35], and our result at
mid-rapidity agrees well with these previous measurements. The dashed lines indicate Bose-
Einstein density distributions 〈f〉 = [exp(Eπ/T )− 1]−1 of static sources of pions (Eπ ≈ mT )
for three choices of the freeze-out temperature T : 80 MeV, 100 MeV, and 120 MeV, from the
lower to the higher curve. The results are in rough agreement with the 100 MeV distribution
at low pT , but show a clear deviation from a Bose-Einstein distribution at high pT . As pointed
out in [36], this deviation is mainly due to the strong longitudinal expansion of the fireball
which reduces the spatially averaged phase-space density and, to a lesser extent, due to the
radial collective flow, which adds extra transverse momentum to the particles compared to
particles emitted by a static source. Consequently, even in the absence of transverse flow, 〈f〉
will be reduced compared to a Bose-Einstein density distribution. This effect may necessitate
a positive pion chemical potential in order to match the experimental observation. Such a
positive potential can be related to the presence of pions from short-lived resonance decays.
The Tomás̆ik-Heinz (T.-H.) model [36] used to fit the data assumes a thermalized fireball
with a longitudinally boost-invariant expansion and a transverse flow rapidity profile which
depends linearly on the transverse coordinate. This model includes a pion chemical potential
and has three free parameters, the freeze-out temperature T , the strength of the transverse
flow rapidity profile ηt, and µ0, the chemical potential value in the center of the fireball. In
Fig. 14, the full line is a fit of the T.-H. model with a box transverse density profile, whereas
the point-dashed line is a fit of the same model with a Gaussian transverse profile. Both fits
agree well with the data with a χ2/d.o.f. of 0.78 and 0.93 for respectively the box and the
Gaussian profiles, giving T = 87+52

−27 MeV, ηt = 0.49+0.07
−0.22 and µ0 = 57+29

−125 MeV for the

box profile. This ηt result corresponds to a mean transverse flow velocity 〈βT 〉 = 0.42+0.05
−0.18 .

Due to the lack of experimental points at large pT , the T.-H. model with the Gaussian profile
provides very loose estimates of these parameters, which are nevertheless compatible with
those from the box profile. Figure 15 shows the χ2 contour plot for the T.-H. model with
the box profile for T and ηt. The curves represent (starting from the centre) contours at
39%, 70% and 99% confidence level. The best fit is obtained for a pion chemical potential
µ0 = 57 MeV (black square) but a solution with µ0 = 0 MeV is also possible (full circle). On
the other hand, a large pion chemical potential at freeze-out, close to the Bose condensation
limit of µ0 = mπ, as could be speculated given the rather low mass of the pion, seems to
be excluded in view of the error bar on µ0. The results of the fit of the W.-H. model on
the single π− spectrum can be compared to the fit of the T.-H. model on the phase-space
distribution. The agreement is good for T , and satisfactory for 〈βT 〉 when taking into account
the systematic error. It should be noted that the constraint provided by the fit of the T.-H.
model is weak compared to the one given by the W.-H. model because of the relatively small
amount of experimental points in the phase-space distribution. Moreover the T.-H. model
uses a pion chemical potential whereas the W.-H. model doesn’t. Finally, as 〈f〉 is the pion
occupation per 6-d position⊗momentum cell, the obtained values do not provide striking
evidence for the presence of an excess of pions or for the presence of large disoriented chiral
condensates. This chiral condensate phenomena has been investigated by other means within
WA98 [37, 38].
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Figure 15: χ2 contour plot for the T.-H. model with a box profile. Starting from the centre, the
curves represent contours at 39%, 70% and 99% confidence level for T and ηt. The black square
is the best fit (µ0 = 57 MeV). The full circle is the result with µ0 excluded from the fit and set to
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6 Three-pion correlations

In the hypothesis of a fully chaotic source of identical particles, the two-pion correlation
function can be written C2 = 1 + |F12|2 where |F12|2 is the Fourier transform squared of the
space-time source function. The three-pion correlation function is then C3 = 1 + |F12|2 +
|F23|2 + |F31|2 +2 ·Re{F12 ·F23 ·F31}. The terms |Fij |2, which express the contribution of the
three combinations of the two-pion correlations contained in the triplet (123), provide the
largest contribution to C3. The last term only represents the genuine three-body correlation.
It can be written 2 · |F12| · |F23| · |F31| · W , where Fij is defined as |Fij | exp[iφij ] and W ≡
cos(φ12 + φ23 + φ31). The simultaneous measurement of C2 and C3 provides information on
W , the cosine of the sum of the three phases of the Fourier transforms. In contrast, the
measurement of C2 alone gives access only to the radii of the source and not to the phases. If
the emission source is fully chaotic, W measures the asymmetry of the source. In the presence
of not fully chaotic sources, which is likely to be the case, W , the strength of the true three-
body correlation, is basically sensitive to the coherence. So, in the framework of the partially
coherent model [39], W gives information on the degree of chaoticity of the emission source
in a manner which is insensitive to backgrounds such as the contributions from resonances.
The complete data set recorded with the negative tracking arm yielded a total of 13.1×106

triplets of π−. After correction for resolution and Coulomb effects 1, a strong C3 signal is
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Figure 16: The three-pion correlation function C3 as a function of Q3. The full line is a fit to
a double exponential form (see text). The dotted and the dashed lines are fits to respectively a
single exponential and a Gaussian form.

observed (Fig. 16) as a function of Q3 ≡
√

Q2
12 + Q2

23 + Q2
31 with Qij ≡

√

−(pi − pj)2, which

1 The Coulomb correction applied to a particular triplet is the product of the Coulomb corrections used for the
three pair combinations contained in that triplet.
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can be fitted by a double exponential function

C3 = 1 + λ1 exp[−2Q3R1] + λ2 exp[−2Q3R2]

with fitted parameters R1 = 5.08 ± 0.26 fm, λ1 = 3.12 ± 0.27, R2 = 1.66 ± 0.08 fm, λ2 =
0.341 ± 0.046 and χ2/d.o.f. = 1.10. Such non-Gaussian behaviour was in fact predicted by
a final-state rescattering model [40]. After the measurement of C2 and C3, the data are
analysed again and the experimental value of W is calculated using

W =
{C3(Q3) − 1} − {C2(Q12) − 1} − {C2(Q23) − 1} − {C2(Q31) − 1}

2 ·
√

{C2(Q12) − 1}{C2(Q23) − 1}{C2(Q31) − 1}

individually for each triplet found, characterized by Q3 and by the values Q12, Q23, and Q31

corresponding to the three pair combinations contained in the triplet.
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Figure 17: The factor W as a function of Q3. The error bars include statistical and systematic
errors. The statistical errors alone are contained within the size of the symbols.

As described earlier, the estimate of systematic errors is done by varying the different
analysis cuts, both in the two- and three-pion correlation analysis. The effects on W of
the statistical errors in the measurement of C2 and C3 are treated as systematic errors by
changing C2 (C3) by ±σC2

(±σC3
). This last source of error dominates the other ones. All

these variations are then added in quadrature.
Figure 17 and Table 3 show W as a function of Q3 for Q3 ≤ 60 MeV/c, beyond which

the W significance is too low. The error bars include statistical and systematic errors. The
statistical errors (not shown separately in Fig. 17) are by comparison negligible. In view of
the errors, no significant Q3 dependence is observed. The genuine three-pion correlation is
found to be substantial with a weighted mean over the five bins 〈W 〉 = 0.735±0.004(stat.)±
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0.146(syst.). 2

This result is in agreement with the previously published WA98 result obtained using
about half of the present data sample [41], where a more detailed description of the three-
pion analysis method can also be found. More recently, the NA44 experiment [42] obtained
with lower statistics a factor 〈W 〉 which agrees with our results.

7 Conclusions

We have studied mT distributions for identified π− and K− produced in central Pb+Pb
collisions at 158A GeV. The W.-H. hydrodynamical model has been fitted to the pion spec-
trum. The resulting fitted parameters favor a combination of a relatively low temperature
T ∼85 MeV and an average transverse flow velocity 〈βT 〉 ∼0.50. The shape of the π−

mT distribution is in good agreement with the π0 mT distribution measured in the same
experiment.

Bose-Einstein interferometry of π− pairs gives fitted radii of typically 7 fm. This has
to be compared to the equivalent rms radius of the initial Pb ion of 3.2 fm, indicating an
expanded emission volume at freeze-out.

The analysis of two-pion correlations has been performed as a function of kT using two
different parameterizations in the LCMS. The results are consistent between the standard
3-dimensional Pratt-Bertsch fit and the Yano-Koonin-Podgoretskĭı fit.

A clear dependence of all radius parameters on kT is observed, with a stronger dependence
for the longitudinal radii, indicating a larger longitudinal than transverse expansion. Both
the cross term R2

out−long from the PB fit and vL from the YKP fit deviate from zero, which
suggests that the source seen within the acceptance does not undergo a strictly boost invariant
expansion. Moreover the short duration of emission disfavours any long-lived intermediate
phase.

A comparison of the data with a hydrodynamical simulation based on the Wiedemann-
Heinz model, and taking into account acceptance and resolution effects has been made for
the radii parameters as a function of kT . The agreement is found to be very good.

The average pion phase-space density at freeze-out has been calculated from measured
quantities as a function of pT . The results indicate a clear deviation from a Bose-Einstein
distribution at high pT , but are very well fitted by the Tomás̆ik-Heinz model. The pion
chemical potential, which is included in the model, is found to be compatible with zero,
while a large pion chemical potential close to the condensation limit of mπ, seems to be
excluded.

Finally, we have studied the π−π−π− interference and found a substantial contribution of
genuine three-pion correlations in central collisions. For Q3 ≤60 MeV/c a weighted mean of
the strength of the genuine three-pion correlations 〈W 〉 = 0.735± 0.004(stat.)± 0.146(syst.)
was extracted. This is somewhat smaller than what is expected for a fully chaotic and
symmetric source.

2 The weighted systematic error is obtained by calculating the weighted average over the five Q3 bins separately
for each kind of systematic error. These errors are then added in quadrature. On the other hand, adding quadrat-
ically the systematic errors of the five Q3 bins, as done for weighted statistical errors, would give ±0.078 instead
of ±0.146 for the systematic uncertainty.
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[2] I.V. Andreev, M. Plümer, and R.M. Weiner, Int. J. Mod. Phys. A8, 4577 (1993).

[3] B. Lörstad, Int. J. Mod. Phys. A4, 2861 (1989) and references therein.

[4] H. Heiselberg and A.P. Vischer, Phys. Rev. C55, 874 (1997).

[5] WA98 collaboration, Proposal for a large acceptance hadron and photon spectrometer,
1991, Preprint CERN/SPSLC 91-17, SPSLC/P260.

[6] M.M. Aggarwal et al., Eur. Phys. J. C23, 225 (2002).

[7] M.M. Aggarwal et al., nucl-ex/0006007 (2000).

[8] J.M. Rubio et al., Nucl. Instr. and Meth. A367, 358 (1995).
A.L.S. Angelis et al., Nucl. Phys. A566, 605c (1994).
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Table 1: 3-dimensional analysis as a function of kT for the PB and the YKP fits. λ after correction
for backgrounds from misidentified pions is also shown.

〈kT 〉 0.02 GeV/c 0.07 GeV/c 0.125 GeV/c 0.175 GeV/c 0.285 GeV/c
RTS 6.48±0.18 fm 6.67±0.15 fm 5.55±0.24 fm 5.13±0.32 fm 4.81±0.29 fm
RTO 6.95±0.20 fm 6.62±0.16 fm 6.70±0.29 fm 6.29±0.43 fm 6.07±0.50 fm
RL 8.69±0.26 fm 7.54±0.19 fm 5.95±0.27 fm 5.45±0.37 fm 5.15±0.34 fm
R2

out−long 1.51±2.11 fm2 0.55±1.45 fm2 -0.52±1.96 fm2 -3.01±2.31 fm2 -4.51±1.94 fm2

λ 0.334±0.012 0.362±0.010 0.337±0.018 0.324±0.026 0.391±0.036
λcor 0.646±0.023 0.634±0.018 0.557±0.030 0.511±0.041 0.596±0.055
RT 6.66±0.14 fm 6.54±0.13 fm 5.99±0.19 fm 5.78±0.29 fm 5.17±0.26 fm
R4 8.68±0.26 fm 7.52±0.19 fm 5.97±0.28 fm 5.49±0.39 fm 4.94±0.35 fm
vL 0.02±0.08 fm -0.04±0.06 fm 0.08±0.08 fm 0.14±0.10 fm 0.20±0.09 fm

Table 2: Average π− phase-space density 〈f〉 at freeze-out as a function of pT .

〈pT 〉 0.02 GeV/c 0.07 GeV/c 0.125 GeV/c 0.175 GeV/c 0.285 GeV/c
〈f〉 0.319±0.018 0.272±0.012 0.237±0.019 0.182±0.022 0.088±0.012

Table 3: Weighted mean of the strength of the genuine three-pion correlations 〈W 〉 as a function
of Q3.

Q3 0.01 - 0.02 GeV/c 0.02 - 0.03 GeV/c 0.03 - 0.04 GeV/c 0.04 - 0.05 GeV/c 0.05 - 0.06 GeV/c

〈W 〉 0.830
+0.201
−0.175

0.780
+0.156
−0.143

0.736
+0.145
−0.138

0.654
+0.177
−0.193

0.557
+0.258
−0.293
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