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Stable, time-dependent, exact solutions for brane models with a bulk scalar field
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We derive two classes of brane-world solutions arising in the presence of a bulk scalar field. For static field
configurations, we adopt a time-dependent, factorizable metric ansatz that allows for radion stabilization. The
solutions are characterized by a nontrivial warping along the extra dimension, even in the case of a vanishing
bulk cosmological constant, and lead to a variety of inflationary, time-dependent solutions of the 3D scale
factor on the brane. We also derive the constraints necessary for the stability of these solutions under time-
dependent perturbations of the radion field, and we demonstrate the existence of phenomenologically interest-
ing, stable solutions with a positive cosmological constant on the brane.
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I. INTRODUCTION

Over the last few years, there has been considerable i
est in models in which our universe is a 3-brane~a hyper-
surface! embedded in a higher dimensional bulk. Much
the interest in extra-dimensional field theory is due to
hope for a solution to the hierarchy problem@1–3#. In these
models, the extra dimensions are hidden from us, not ne
sarily by their smallness but by our confinement to a fo
dimensional slice of the bulk spacetime@1#. In contrast with
Kaluza-Klein scenarios, standard model interactions are c
fined to a brane whereas gravity propagates through the
perpendicular to the brane. The hierarchy problem can
resolved by either postulating large extra dimensions~in
which case the TeV scale is the fundamental scale of gra
and the Planck scale is derived in terms of the fundame
scale and the volume of the extra-dimensional space! @1# or
when the 4D metric scales exponentially throughout the b
~the so-called ‘‘warp’’ factor! @2#.

While static brane-world models have served as a us
tool for testing ideas in higher dimensional spacetimes, th
direct applicability to cosmology is limited. More realist
cosmological models may be derived by allowing a nonv
ishing four-dimensional cosmological constant, or by int
ducing time-dependent energy-densities on the branes. V
ous cosmological aspects of such models have b
investigated in the literature@4–12#. One of the serious prob
lems in brane models is the resulting unconventional se
Friedmann equations@5–7#. The Hubble parameter,H, on the
brane is often found to scale asH;r, rather than the stan
dard four dimensional dependence,H;Ar. It has been
shown, however, that this problem can be solved upon
proper stabilization of the extra dimension@13–15#, that re-
moves any unnecessary constraints between the b
energy-densities.

Both static and time-dependent generalizations of
0556-2821/2003/67~2!/024037~13!/$20.00 67 0240
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original Randall-Sundrum solutions@2# have been also con
structed by introducing a bulk scalar field@16,17#. As a mat-
ter of fact, the task of the stabilization of the extra dimens
was first accomplished by introducing a bulk scalar fie
which had different nonvanishing vacuum expectation val
on each of the two branes@18#. The same topic was furthe
elaborated in@17,19#. Here, we will derive two classes o
brane-world solutions which include a static bulk scalar fie
and provide inflationary solutions in the 4D slices. The tw
classes correspond to either vanishing or nonvanishing b
potential for the scalar field, and are characterized by a n
trivial warping of the metric along the extra dimension ev
in the case of zero bulk cosmological constant. Due to
appearance of a bulk curvature singularity, we are forced
consider two-brane-system configurations which, howe
have a fixed inter-brane distance and lead to conventio
Friedmann-Robertson-Walker~FRW! equations on the
branes without any additional fine-tuning. By using a meth
developed recently in Ref.@20#, we study the stability of
those solutions under time-dependent perturbations of the
dion field, and demonstrate that we can easily find param
regimes where these solutions arestable. Even more impor-
tant is the fact that some of these stable solutions hav
positivecosmological constant on the brane—previously
known solutions of this type were unstable@21#.

We organize this paper as follows. In Sec. II, we pres
the equations of motion of our theory and show how a f
torizable ~in time and the extra space coordinatey) scale
factor can be obtained in the presence of a bulk scalar fi
In Sec. III, we present two classes of inflationary brane
lutions involving a static bulk field with vanishing or nonva
nishing, respectively, bulk potential and we demonstrate
these solutions indeed lead to conventional FRW equatio
We derive the conditions for the stabilization of these so
tions in Sec. IV and investigate the parameter regimes
©2003 The American Physical Society37-1
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correspond to stable configurations. Finally, in Sec. V,
summarize our results.

II. EQUATIONS OF MOTION FOR GRAVITY AND A
BULK SCALAR FIELD

We start from the cosmological principle of isotropy a
homogeneity in the three space-like dimensions of the bra
The presence of the brane breaks the isotropy along the
dimension and this is reflected in the explicity-dependence
of the metric tensor. Based on these facts, we make the
lowing ansatz:

ds25gMNdxMdxN52n2~ t,y!dt21a2~ t,y!g i j dxidxj

1b2~ t,y!dy2, ~2.1!

where M ,N50,1,2,3,5,g i j is the usual Robertson-Walke
3-space metric tensor, andt, xi ( i 51,2,3), andy are the
time- and space-like coordinates along the brane and the
tra dimension, respectively.

In addition, we consider a bulk scalar fieldf(t,y), which
depends only on time and the extra coordinate.1 The action
of this five-dimensional, gravitational theory is given by

S52E d4xdyA2gH 2
M5

3

16p
R̂1LB1

1

2
]Mf]Mf1VB~f!

1(
i

@L i1Vi~f!#
d~y2yi !

b J , ~2.2!

whereM5 is the fundamental, five-dimensional Planck ma
R̂ denotes the five-dimensional scalar curvature, andVB and
Vi stand for the bulk and brane potentials, respectively, of
scalar field. Finally,LB and L i are the vacuum energies o
the bulk and the branes. From Eq.~2.2!, one can derive the
scalar field equation of motion:

1

n2
f̈2

1

b2
f92

1

n2 S ṅ

n
23

ȧ

a
2

ḃ

b
D ḟ2

1

b2 S n8

n
13

a8

a
2

b8

b Df8

1
]VB

]f
1(

i

]Vi

]f

d~y2yi !

b
50, ~2.3!

where dots and primes denote derivatives with respectt
andy, respectively.

The matter content of the five-dimensional space-time
described by the energy-momentum tensor of the bulk sc
field and the bulk cosmological constant, which may be w
ten as

TN
M52LBdN

M2(
i

~Vi1L i !
d~y2yi !

b
dm

MdN
n dn

m1TN
M~f!,

~2.4!

1Again, we use the standard assumption that the three-dimens
space is homogeneous and isotropic. Thus, the field is indepen
of the three-dimensional spatial variables.
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wherem,n50,1,2,3, and

TMN~f!5]Mf]Nf2gMNF1

2
]Pf]Pf1VB~f!G .

~2.5!

We next consider the five dimensional set of Einstein eq
tions. They can be obtained by the variation of the act
~2.2! with respect to the metric, and, for the metric ans
~2.1!, they take the form2

G0053H 2
n2

b2 Fa9

a
1

a8

a S a8

a
2

b8

b D G1
ȧ

a
S ȧ

a
1

ḃ

b
D 1k

n2

a2J
5k5

2T00, ~2.6!

Gii 5
a2

b2
g i i H a8

a S a8

a
12

n8

n D2
b8

b S n8

n
12

a8

a D12
a9

a
1

n9

n J
1

a2

n2
g i i H 22

ä

a
1

ȧ

a
S 2

ȧ

a
12

ṅ

n
D 2

b̈

b

1
ḃ

b
S 22

ȧ

a
1

ṅ

n
D J 2kg i i

5k5
2Tii , ~2.7!

G0553S n8

n

ȧ

a
1

a8

a

ḃ

b
2

ȧ8

a
D 5k5

2T05, ~2.8!

G5553H a8

a S a8

a
1

n8

n D2
b2

n2 F ȧ

a
S ȧ

a
2

ṅ

n
D 1

ä

a
G2k

b2

a2J
5k5

2T55, ~2.9!

wherek5
258pG558p/M5

3 is the five-dimensional Newton’s
constant, andk50,61 denotes the spatial curvature of th
four-dimensional spacetime along the brane.

While the metric is continuous across the extra dime
sion, its derivatives with respect toy can be discontinuous
because of the inhomogeneity of the matter distribution
the fifth dimension, notably the branes. Therefore, a de
function appears in the Einstein tensor and this must
matched with a delta function in the energy-momentum t
sor @22#. Here we use a similar notation for thejump of the
scale factors3 as in Refs.@7,13# and obtain

1

bi

@a8# i

ai
52

k5
2

3
@L i1Vi~f i !#, ~2.10!

nal
ent

2Our convention for the Riemann curvature tensor isRnrl
m

5]rGnl
m 2]lGnr

m 1Gnl
h Grh

m 2Gnr
h Glh

m .
3Here a95aR91@a8# id(y2yi) where aR9 is the nondistributional

part of the second derivative ofa, and@a8# i is the jump in the first
derivative across y5yi , defined by @a8# i5a8(t,y5yi1e)
2a8(t,y5yi2e).
7-2
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1

bi

@n8# i

ni
52

k5
2

3
@L i1Vi~f i !#, ~2.11!

where the subscripti denotes evaluation of all quantities
y5yi . The correspondingjumpcondition for the scalar field
f is obtained from the field equation~2.3!:

1

bi
@f8# i5

]Vi~f!

]f U
y5yi

. ~2.12!

While the jump conditions for the scale factors~2.10! and
~2.11! are nontrivial given any inhomogeneous source on
brane, thejump condition for the bulk field~2.12! depends
only on the interaction between the bulk field and the bra
In particular, if the bulk field is sitting at an extremum on th
brane, then thejump of the scalar field~2.12! is zero.

The facility to find an exact solution to the field equatio
is often aided by our ability to factorize the scale factor
the brane. Consider the following:

d

dt

@a8# i

ai
52

k5
2

3
bi

]Vi

]f

df

dt U
y5yi

2
k5

2

3
ḃi@L i1Vi~f i !#.

~2.13!

If the scale factor can be factorized, then the right-hand s
of Eq. ~2.13! must vanish. From Eq.~2.13!, we note the
following: if the field is sitting at a local minimum on th
braneor the field is static on the brane, our ability to facto
ize the scale factor into independentt andy dependencies is
tied to the stability of the extra dimension on the braneḃi
50). Off the brane, a corresponding relation can be fou
by examining theG05 component of the Einstein equatio
~2.8!, which can be rewritten as

S n8

n
2

a8

a D ȧ

a
1

a8

a

ḃ

b
2

d

dt S a8

a D5
k5

2

3
ḟf8. ~2.14!

Without loss of generality we can writen(t,y)5n(y). Then,
Eqs.~2.10!,~2.11! lead to the following factorizable form o
the 3D scale factor4

a~ t,y!5a~ t !n~y!. ~2.15!

Inserting the above into Eq.~2.14! shows us that

n8

n

ḃ

b
5

k5
2

3
ḟf8. ~2.16!

Thus, if the bulk field is either time-independent
y-independent, our condition for the factorization of the sc
factor is intimately connected to the stability of the fifth c
ordinate. In what follows, we are going to assume thatḟ

5ḃ50, which brings our metric ansatz to the form

4A static four-dimensional universe can be obtained byn(t,y)
5a(t,y)5n(y). This was the ansatz used in Ref.@2# to solve the
hierarchy problem and obtain conventional Newtonian gravity.
02403
e

e.

e

d

e

ds25n2~y!@2dt21a2~ t !g i j dxidxj #1b2~y!dy2.
~2.17!

III. EXACT TIME-DEPENDENT SOLUTIONS

We now proceed to derive exact solutions of the coup
system of gravitational and scalar field equations that hav
nonstatic, four-dimensional line-element. We are going
present two classes of solutions: the first class correspond
a vanishing potential,VB(f), for the bulk scalar field, while
the second one arises in the presence of a nontrivial~expo-
nential, in a certain limit! bulk potential.

A. Solutions with a vanishing bulk potential: VBÄ0

In our first example, the assumption ofVB(f)50 leads to
a simplification of the field equations in the bulk. The de
vation of the solution is further facilitated by a transform
tion of the y-coordinate that allows us to write the metr
ansatz ~2.17! in terms of ‘‘conformal’’ coordinates, i.e.
b(y)5n(y). Then, Einstein’s equations may be rewritten
@henceforth,a denotes the 3D scale factor appearing in t
metric ansatz~2.17!#:

2
3n9

n
13S ȧ2

a2
1

k

a2D 5k5
2S f82

2
1n2LBD , ~3.1!

3n9

n
2S 2ä

a
1

ȧ2

a2
1

k

a2D 52k5
2S f82

2
1n2LBD , ~3.2!

6n82

n2 23S ȧ2

a2 1
ä

a
1

k

a2D 5k5
2S f82

2
2n2LBD . ~3.3!

By combining Eqs.~3.1! and ~3.2! we obtain

ä

a
2S ȧ

a
D 2

2
k

a2
50, ~3.4!

from which we can find the following time-dependent, infl
tionary solutions for the scale factor5:

a~ t !55
eH(t2t0) when k50

1

H
sinh@H~ t2t0!# when k521

1

H
cosh@H~ t2t0!# when k511

~3.5!

where H and t0 are constants. Fork50, we may obtain
Minkowski, de Sitter or anti–de Sitter solutions on the bra
whenH2 has either a zero, positive or negative value, resp
tively. Fork521, we may have solutions for either positiv
or negative values ofH2 ~in the latter case, the sinh-like

5In order to address the graceful exit problem, we would be
quired to consider a nonstatic bulk field which is beyond the sc
of this paper.
7-3
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solution above is replaced by sin@H̃(t2t0)#/H̃, with H̃25
2H2.0) while for k511 only solutions withH2.0 are
allowed.

Turning to the scalar field equation of motion~2.3!, we
see that it now becomes

f913S n8

n Df850. ~3.6!

The above equation can be integrated once to give

f8~y!5
c

n3~y!
, ~3.7!

wherec is an integration constant. The relation betweenf8
andn, derived above, can be used in Einstein’s equation
derive the form of the warp factor. In addition, we note th
all solutions for the scale factora(t) appearing in Eq.~3.5!
satisfy the relation

ä

a
5S ȧ

a
D 2

1
k

a2
5H2. ~3.8!

Inserting both Eqs.~3.7! and ~3.8! into the simplified set of
field equations~3.1!–~3.3!, we obtain

n9

n
5H22

k5
2

3 S c2

2n6
1n2LBD , ~3.9!

2S n8

n D 2

52H22
k5

2

3 S 2
c2

2n6
1n2LBD .

~3.10!

The above equations can be solved if we setLB50. In that
case, we find the following solution:

n3~y!5
sinh~3Huyu!
sinh~3Huy1u!

, where H25
k5

2

12
c2sinh2~3Huy1u!,

~3.11!

for a four-dimensional de Sitter spacetime (H2.0). The cor-
responding solutions for Minkowski and anti–de Sitter 4
spacetime are straightforward to derive by taking the lim
H→0 andH→ iH̃ , respectively. In the former case, the wa
factor is linear iny, while, in the latter, the solution is give
in terms of a sin-like function. For simplicity, we will, for the
remainder of this section, concentrate on the case withH2

.0. It is worth noting that, although we have assumed
vanishing bulk cosmological constant, nontrivial warpi
arises in all cases where the expansion rate,H, on the brane
is nonzero. As can be seen from the second of Eqs.~3.11!,
the expansion rate is closely related to the kinetic term of
scalar field in the bulk which, in a way, replaces the bu
cosmological constant.

The Ricci scalar of the five-dimensional spacetime
scribed by the metric ansatz~2.17! has the form
02403
to
t

s

a

e

-

R̂5
1

n2 S 6ȧ2

a2
1

6ä

a
1

6k

a2 D 2S 4n82

n4
1

8n9

n3 D 5
k5

2

n2
f82.

~3.12!

The second equality can be obtained by using E
~3.2!,~3.3!, together with Eq.~3.4!, with LB50, in Eq.
~3.12!. As we can see, there is a true singularity in the bu
at y50. If we choose to place the first brane aty5y1,0 @in
which case, we have the normalizationn(y1)51], then, in
order to remove this singularity, a second brane must
introduced at a pointy5y2, with y1,y2,0, so that the
singular point is never encountered.

We next examine thejump conditions imposed on the
warp factor and the scalar field at the positions of the t
branes aty1 and y2, respectively. Starting from Eqs.~2.11!
and ~2.12!, using the ‘‘conformal gauge’’b(y)5n(y), and
inserting the solutions found above, these conditions can
rewritten as

V11L15
6H

k5
2

coth~3Huy1u!, 2c5
]V1~f!

]f U
y5y1

,

~3.13!

V21L252
6H

k5
2n2

coth~3Huy2u!,
2c

n2
3

52n2

]V2~f!

]f U
y5y2

,

~3.14!

where we have used the normalization conditionn151. As
in the case of the two-brane static solution with a bulk sca
field found in Ref.@17#, the form of the interaction terms
Vi , completely determines the ratio of the warp facto
evaluated on the branes

S n1

n2
D 4

5S sinh~3Hy1!

sinh~3Hy2! D
4/3

52
~]fV2!y5y2

~]fV1!y5y1

. ~3.15!

Here too, the derivatives of the interactions are required
have opposite signs, just like the total self-energies of
two branes. Last, but not least, we may also observe tha
inter-brane distance can be derived from the above rela
which is accompanied, through the warp factorjump condi-
tions, by the fine-tuning of only one of the two brane se
energies.

Let us briefly comment on the relation between the exp
sion rateH and the brane potentialsVi . To do so, we must
first define the four-dimensional Newton’s constant. Rec
ing the gravitational part of our original action~2.2! and
noting that the first combination inside brackets in Eq.~3.12!
stands for the 4D scalar curvature, we may write

1

2k5
2E d4xdyA2gR̂5

1

2k5
2E d4xdyA2g4n5

3S 1

n2
R (4)1••• D

[
1

2k4
2E d4xA2g4~R (4)1••• !,

~3.16!
7-4
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whereA2g45a3(t). Thus, we have

1

k4
2
[

1

k5
2 R dyn35

2

k5
2Ey1

y2
dyn352

2

k5
2

ni
3

3H
coth~3Huyi u!uy1

y2

5(
i 51

2

ni
4 Vi1L i

9H2
, ~3.17!

where we have used the jump conditions~3.13! and~3.14! to
obtain the last equality. Note that although it appears thak4
is independent ofk5 , (Vi1L i) and H are interdependen
throughk5.

Finally, to check the Hubble equation on the brane,
must compute the effective cosmological constant,Le f f , de-
fined as

Le f f5 R dyn5H 2
R̂(y)

2k5
2

1LJ , ~3.18!

where R̂(y) is given by the second two terms of Eq.~3.12!
andL contains all of the nongravitational pieces of Eq.~2.2!.
The result of the integration~taking care to eliminate the
boundary terms associated withn9) is

Le f f5(
i 51

2

ni
4Vi1L i

3
, ~3.19!

which when combined with Eq.~3.17!, leads to the standar
form of the Friedmann equation,

H25
k4

2

3
Le f f ~3.20!

without the need of any fine-tunings.
We will return to this solution in Sec. IV, to test its sta

bility under small time-dependent perturbations.

B. Solutions with a nontrivial bulk potential: VBÅ0

In this section, we allow for a nonzero bulk potentia
VBÞ0, a fact which will modify the equations in the bul
and subsequently their solution. Although we retain the fo
of the metric~2.17!, we choose to work with nonconforma
coordinates; therefore, we redefine they-coordinate and fix
the scale factorb to a constant value, i.e.b51. Under the
above assumptions, Einstein’s equations become

23n2S n9

n
1

n82

n2 D 13S ȧ2

a2
1

k

a2D 5k5
2n2S f82

2
1VB1LBD ,

~3.21!

3n2S n9

n
1

n82

n2 D 2S 2ä

a
1

ȧ2

a2
1

k

a2D
52k5

2n2S f82

2
1VB1LBD , ~3.22!
02403
e

6n2
n82

n2
23S ȧ2

a2
1

ä

a
1

k

a2D 5k5
2n2S f82

2
2VB2LBD .

~3.23!

By combining Eqs.~3.21! and ~3.22!, we can once again
derive Eq.~3.4! indicating that our previous solutions for th
scale factora(t), appearing in Eq.~3.5!, are still valid. What
remains to be found is the new form of the warp factor a
the scalar field. Plugging in the solutions fora(t), the above
gravitational equations become

n9

n
1

n82

n2
5

H2

n2
2

k5
2

3 S f82

2
1VB~f!1LBD , ~3.24!

2n82

n2
5

2H2

n2
2

k5
2

3 S 2
f82

2
1VB~f!1LBD .

~3.25!

For H5VB50, the above equations lead to the static so
tions with a bulk scalar field found in Ref.@17#. In general,
Eqs. ~3.24!,~3.25! are difficult to solve and we expect tha
many solutions are possible depending on one’s choice oVB
andf8. By choosing a relationship between the two, we c
in fact derive an analytical solution for both the warp fact
and the scalar field. For example, by rearranging E
~3.24!,~3.25!, we obtain the single differential equation

n9

n
52

k5
2

6 S 3
f82

2
1VB~f!1LBD . ~3.26!

If we now choosef8 and VB to satisfy the following rela-
tion:

f82

2
1

1

3
VB~f!5E, ~3.27!

whereE is a constant, we find a subclass of solutions wit

n~y!55
uyu
uy1u

where x2y1
251,

sin~vuyu!
sin~vuy1u!

where x2sin2~vy1!5v2,

sinh~vuyu!
sinh~vuy1u!

where x2sinh2~vy1!5v2.

~3.28!

In the above, we have imposed the normalization condit
n15n(y1)51, and defined

v252
k5

2

6
~3E1LB! ~3.29!

and

x25H21
c2k5

2

3
. ~3.30!
7-5
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The three solutions presented in Eq.~3.28! correspond to the
combination (3E1LB) being zero, positive or negative, re
spectively. All three solutions are characterized by a t
singularity aty50. If we place, as in the previous section,
brane aty5y1,0, then a second brane should be introduc
at y5y2, with y1,y2,0, if we want the singular poin
shielded.

Going back to the scalar field, its equation of motion
the bulk has the form

f914S n8

n Df85
dVB

df
. ~3.31!

By differentiating Eq.~3.27! with respect toy, we get

f8f91
1

3

dVB

df
f850, ~3.32!

which, when combined with Eq.~3.31!, yields the simple
equation

f91
n8

n
f850, ~3.33!

whose solution is

f8~y!5
c

n~y!
, ~3.34!

wherec is again an integration constant.
The bulk potential of the scalar field is defined throu

Eq. ~3.27!. The exact form can be easily derived by using t
expression off8, in terms ofn(y), according to Eq.~3.34!.
The potential is everywhere well defined apart from the
gime close to the singularity. Neary50, all three solutions
~3.28! lead to the following expression for the bulk potentia

VB~f!53E2
3

2
c2y1

2expS 2f

cuy1u D . ~3.35!

The scalar field, near the singularity, behaves asf.
2cuy1u lnuyu, and therefore diverges, asy→0, causing the
bulk potential to diverge as well. The sign ofc2, appearing
in front of the exponential, determines whether the poten
diverges towards plus or minus infinity. Forc2.0, f82 is
also positive and the kinetic term of the scalar field has
correct sign; however, the potential diverges towards mi
infinity, being unbounded from below. In this case, the int
duction of a second brane to shield the singular point in
bulk is imperative. If, on the other hand, we consider t
c2,0 case, then we end up with a ‘‘tachyonic’’ kinetic ter
for the scalar field; nevertheless, an infinitely high poten
barrier is rising in front of the singularity in this case, th
shielding the singular point and allowing, in principle, sing
brane configurations. Nevertheless, in what follows, we w
introduce a second brane to shield the singular point e
when the latter case is considered.

The jump conditions, for the solution presented abov
follow from Eqs.~2.11! and~2.12! upon substituting the ex
pressions for the warp factor~3.28! and the scalar field~3.34!
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and settingb51 ~here, we show the result only for the ca
3E1LB,0). They take the form

V11L15
6v

k5
2
coth~vuy1u!, 2c5

]V1~f!

]f
uy5y1

,

~3.36!

V21L252
6v

k5
2
coth~vuy2u!, 2c52n2

]V2~f!

]f
uy5y2

,

~3.37!

and may lead to the fixing of the location of the two bran
in terms of the remaining fundamental parameters of
theory.

Let us finally check the form of the Friedmann equati
on the brane in this case. As in the previous subsection,
must first define the 4D gravitational constant. In terms
nonconformal coordinates, Eq.~3.16! still holds, with the
factorn5 appearing in the first line replaced byn4. Then, we
may write

1

k4
2
[

1

k5
2 R dyn25

1

k5
2
I~y1 ,y2!5

uy2u2uy1u

k5
2sinh2~vy1!

1(
i 51

2

ni
2 Vi1L i

6v2
, ~3.38!

where we have used again the solution forv2.0, and de-
finedI(y1 ,y2) as the integral ofn2 over the internal compac
space. Turning to the form of the effective cosmological co
stant on the brane and using the fact that nowR̂(y)5
2(12n82/n218n9/n), we find

Le f f5
3H2

k5
2

I~y1 ,y2!. ~3.39!

In the above, we have also used the jump conditio
~3.36!,~3.37!. Eliminating the integralI(y1 ,y2) from the
above equation by making use of the definition of the
Newton’s constant~3.38!, we recover once again the conve
tional 4D Friedmann equation~3.20!.

IV. STABILITY ANALYSIS

In this section, we perform a stability analysis of the s
lutions found in the previous section under small, tim
dependent perturbations by using the stabilization constra
that were recently found in@20#. Here, we will closely follow
the method and notations used in that work deviating o
when the needs of the particular solutions presented in
paper demand it.

A. Stability behavior of the solutions with VBÄ0

We start our analysis by perturbing the metric ans
~2.17!, written in terms of conformal coordinates, in the fo
lowing way
7-6
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ds25n2~ t,y!@2dt21a2~ t !g i j dxidxj1b2~ t !dy2#.
~4.1!

As in @20#, we assume that the time-dependence of the s
factor b along the extra dimension induces a tim
dependence to the warp factorn. Although the method tha
we follow is identical to that in@20#, we need to repeat par
of the calculation: a different metric ansatz is used here
fact that changes the final expressions of the stabiliza
constraints.

Starting from the gravitational part of the action, we ne
to express the five-dimensional scalar curvature in term
the metric functions appearing in Eq.~4.1!. It takes the form

R̂5
1

n2
R (4)2

2

b
DmDmb1R̂(y)1Lkin , ~4.2!

where

R (4)5
6ȧ2

a2
1

6ä

a
1

6k

a2
, R̂(y)52

1

b2 S 4n82

n4
1

8n9

n3 D .

~4.3!

In Eq. ~4.2!, Lkin contains time-derivatives ofn and b that
will eventually give rise to the kinetic term of the canon
cally normalized radion field. Here, we are interested in
stability behavior of the solutions which can be found fro
the expression of the effective potential, therefore, we hi
light only the points of our analysis that lead to the form
this quantity.

Now, the gravitational effective action can be written a

SG52E d4xA2g4H 2A~b!
R (4)

2k4
2

2
1

2k5
2E dyn5b~Lkin1R̂(y)!J ~4.4!

whereA2g45a3, and the conformal factorA(b) is

A~b!5
k4

2

k5
2 R dybn3~ t,y!. ~4.5!

A conformal transformation of the four-dimensional metr
(g4)mn5(ḡ4)mn /A(b), removes the coupling betweenb and
R (4) and brings the total effective action to the form

S52E d4xA2ḡ4H 2
R̄(4)

2k4
2

1L̄kin1V̄e f fJ , ~4.6!

where the effective potentialV̄e f f is given by
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V̄e f f~b!5
1

A2~b!
R dyn5bH 2

R̂(y)

2k5
2

1
f82

2b2n2

1(
i

~Vi1L i !
d~y2yi !

bn J . ~4.7!

The integral overy is performed over a compact dimensio
with y taking values in the ‘‘circle’’ consisting of the sym
metric intervals (y1 ,y2) and (y2 ,y1) while passing across
the branes.

The extremizationand stabilization constraints follow
from Eq. ~4.7! by taking derivatives with respect tob. We
may use the fact thatb is always multiplied byy in the action
to define a new coordinatej5by. Then, the effective poten
tial may be rewritten as

A2~by1 ,by2!V̄e f f52E
by1

by2
djn3S 2

6

k5
2

n82

n2
1

f82

2 D
1(

i 51

2

n4~byi !~Vi1L i !, ~4.8!

where now primes denote derivatives with respect toj. The
extremizationconstraint follows by taking the first derivativ
of Eq. ~4.8! with respect tob. Then, we obtain

A2
dV̄e f f

db
52yini

2S 2
6

k5
2

ni8
2

ni
2

1
f i8

2

2 DU
i 51

i 52

1(
i 51

2

yi

]

]~byi !
@ni

4~Vi1L i !#22A
dA

db
V̄e f f .

~4.9!

In order to simplify the above expression, we may now u
the jump conditions in conformal coordinates, that relateni8
and f i8 to Vi ’s and which are valid for the static solution
They can be written as

ni8

ni
57

k5
2

6
ni@L i1Vi~f i !#, f i856

ni

2

]Vi~f!

]f U
y5yi

,

~4.10!

for i 51,2, respectively. In addition, we may use Eq.~4.5! to
derive the first derivative ofA with respect tob

dA

db
52

k4
2

k5
2

yini
3U

i 51

i 52

. ~4.11!

Finally, we need to know the value ofV̄e f f evaluated at the
static solution. From the effective action~4.6! and for Lkin

50, we may easily see thatV̄e f f is the effective cosmologi-
cal constant on the brane and it is given by
7-7
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V̄e f f5
R̄(4)

4k4
2

5
R(4)

4k4
2A

5
3H2

k4
2A

. ~4.12!

Alternatively, the above result may follow by writingV̄e f f
5Le f f /A and using Eq.~3.20!. If we put everything to-
gether, theextremizationconstraint becomes

A2
dV̄e f f

db
5yini

5F2
12

k5
2

H2

ni
2

1
k5

2

3
~L i1Vi !

22
1

4 S dVi

df D 2GU
i 51

i 52

[0. ~4.13!

The above expression is indeed zero as can be seen by
the explicit jump conditions ~3.13!,~3.14!. Thus, we may
confirm that the solution~3.11!, together with Eq.~3.5!, ex-
tremizes the radion effective potential.

The stability behavior of those solutions under sma
time-dependent perturbations will become manifest in
sign of the second derivative of the effective potential. T
stabilization constraint, that requires a positive second d
rivative, can be obtained by differentiating Eq.~4.9! one
more time with respect tob. If we again use the jump con
ditions ~4.10! as well as the scalar field equation in the bu
we find

A2
d2V̄e f f

db2
5(

i 51

2

k5
2yi

2ni
6~Vi1L i !F5k5

2

18
~Vi1L i !

2

2
13

24S dVi

df D 2G1(
i 51

2
1

4
yi

2ni
6 d2Vi

df2 S dVi

df D 2

22F S dA

dbD 2

1A
d2A

db2G V̄e f f . ~4.14!

In the above expression, a term proportional todV̄e f f /db has
been already dropped due to theextremizationconstraint. If
we use the jump conditions~3.13!,~3.14!, the second deriva
tive takes the form

A2
d2V̄e f f

db2
5X1

12H3

k5
2sinh~3Huy1u!

H 23
@y2sinh~3Hy2!2y1sinh~3Hy1!#2

cosh~3Hy1!2cosh~3Hy2!

12@y1
2cosh~3Hy1!2y2

2cosh~3Hy2!#

28F y1
2cosh~3Hy1!

sinh2~3Hy1!
2

y2
2cosh~3Hy2!

sinh2~3Hy2!
G J ,

~4.15!

where
02403
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X5(
i 51

2
12H2

k5
2

yi
2ni

4

sinh2~3Hyi !

d2Vi

df2
~4.16!

is the term involving second derivatives of the interacti
terms of the scalar field on the branes. Let us, for the m
ment, ignore this term and concentrate on the expres
inside curly brackets in Eq.~4.15!. A simple numerical
analysis will reveal the sign of this combination. In Fig.
we display the value of this expression, as a function ofH
and the inter-brane distance parametrized by the locatio
the second brane,y2P(y1,0)—for simplicity, we fix y15
21. As one can see, this combination is always negative
becomes more negative as bothH and the inter-brane dis
tance increases. Equations~4.15!,~4.16! are valid for H2

.0, that corresponds to a de Sitter four-dimensional spa
time. Solutions with a positive cosmological constant on
brane have been derived in the literature before and t
were shown to be unstable@21#. However, the presence of
bulk scalar field, with nontrivial brane interaction terms, m
significantly modify this picture: the destabilizing behavi
displayed in Fig. 1 may be counterbalanced by theX-term
~4.16! by choosing appropriately the interaction termsVi . If
d2Vi /df2 are positive and large enough, stable brane-wo
solutions with a positive effective cosmological constant c
easily arise in the framework of this model. In the flat-bra
limit, H→0, the expression inside curly brackets reduces
zero. This is also in agreement with results in the literat
that consider flat-brane solutions which are saddle po
~flat directions of the potential! @21,20#. However, even in
the flat limit, the presence of the scalar field allows for
nontrivial X-term and the second derivative is written as

A2
d2V̄e f f

db2
5(

i 51

2
4

3k5
2

ni
4 d2Vi

df2
. ~4.17!

Again, choosing appropriately the interaction terms of t
scalar field, even the Randall-Sundrum flat-brane soluti
can be made stable.

Finally, in the case of anti–de Sitter spacetime,H25

2H̃2,0, the expression for the second derivative follow
from Eq. ~4.15! after making the substitutions:H→ iH̃ and

FIG. 1. The behavior of the second derivative of the rad

effective potentialV̄e f f is displayed as a function ofH ~for H2

.0) and the inter-brane distance.
7-8
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sinh(3Huyiu)→isin(3H̃uyiu). In that case, the expression insid
curly brackets turns out to be positive-definite revealing
existence of a stabilizing force acting on the system. Thi
again in agreement with results presented in the litera
@21#. TheX-term in this case has the form

X5(
i 51

2
12H̃2

k5
2

yi
2ni

4

sin2~3H̃yi !

d2Vi

df2
, ~4.18!

and it may act again as an extra stabilizing force
d2Vi /df2.0. It is worth noting that, if the above inequalit
holds, theX-term acts as auniversal stabilizing forceinde-
pendently of the value of the effective cosmological const
on the brane.

B. Stability behavior of the solutions with VBÅ0

We now turn to the stability analysis of the solutions d
rived in Sec. III B that are characterized by a nonvanish
bulk potentialVB . Changing to nonconformal coordinate
the perturbed five-dimensional line-element may be writ
as

ds25n2~ t,y!@2dt21a2~ t !g i j dxidxj #1b2~ t !dy2.
~4.19!

The above metric ansatz is similar to that used in Ref.@20#,
therefore, the details of the analysis that lead to the exp
sions of the stabilization constraints can be found the
Here, we present only the main points of our calculation t
allow for the generalization of those results in the case o
nonvanishing effective cosmological constant.

For the above ansatz, the scalar curvature may be
pressed as in Eq.~4.2! with the only difference, relevant to
our purposes, being

R̂(y)52
1

b2 S 12n82

n2
1

8n9

n D . ~4.20!

Substituting the expression ofR̂ in the action and performing
the same conformal transformation, the effective poten
finally takes the form

A2~by1 ,by2!V̄e f f52E
by1

by2
djn4S 2

6

k5
2

n82

n2
1

f82

2
1LB

1VBD 1(
i 51

2

ni
4~Vi1L i !, ~4.21!

where now

A~by1 ,by2!5
2k4

2

k5
2 Eby1

by2
djn2~j!. ~4.22!

The extremizationconstraint demands the first derivative
the effective potential, with respect tob, to vanish when
02403
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evaluated at the background solution~3.28!. Differentiating
once with respect tob and using thejump conditions

ni8

ni
57

k5
2

6
@L i1Vi~f i !#, f i856

1

2

]Vi~f!

]f U
y5yi

,

~4.23!

for i 51,2, respectively, we obtain:

A2
dV̄e f f

db
52yini

4FLB1VB1
k5

2

6
~L i1Vi !

22
1

8 S dVi

df D 2GU
i 51

i 52

22A
dA

db
V̄e f f . ~4.24!

The expression ofdA/db is given, in this case, by Eq.~4.11!
with ni

3 replaced byni
2 , while V̄e f f is still given by Eq.

~4.12!. Finally, we may use the relation

VB~yi !53E2
3

2
f i8

253E2
3

8 S dVi

df D 2

. ~4.25!

If we put everything together, theextremizationconstraint
becomes

A2
dV̄e f f

db
5yini

4F2
12

k5
2

H2

ni
2

1
k5

2

3
~Vi1L i !

22S dVi

df D 2

12~3E1LB!GU
i 51

i 52

[1 . ~4.26!

We can easily check that the second equality indeed hold
we use thejump conditions~3.36!,~3.37!.

After differentiating twice Eq.~4.21! with respect tob, we
arrive at thestabilizationconstraint. Once again, using th
jump conditions ~4.23! and the equation of motion of th
scalar field in the bulk~3.31!, together with Eq.~3.27!, we
arrive at

A2
d2V̄e f f

db2
5(

i 51

2

yi
2ni

4k5
2~Vi1L i !F2k5

2

9
~Vi1L i !

21
4

3
~3E

1LB!2
3

4 S dVi

df D 2G1
1

4 (
i 51

2

yi
2ni

4 d2Vi

df2 S dVi

df D 2

22F S dA

dbD 2

1A
d2A

db2G V̄e f f . ~4.27!

Let us first concentrate on the case withv2.0. By using the
corresponding solution for the warp factor from Eq.~3.28!
and the jump conditions ~3.36!,~3.37!, we obtain the final
expression
7-9
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FIG. 2. The two plots depict the second derivative of the radion effective potentialV̄e f f as a function ofv ~with v2.0) and for positive
and negative values ofc2, respectively.
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Eq.
A2
d2V̄e f f

db2
5X1

v

k5
2 H S 12v2

sinh2~vy1!
25k5

2c2DY116S k5
2c2

2
3v2

sinh2~vy1!
DZJ , ~4.28!

where we have definedX, Y, andZ as

X5(
i 51

2

c2yi
2ni

2 d2Vi

df2
, ~4.29!

Y5
y1

2sinh~2vuy1u!2y2
2sinh~2vuy2u!

sinh2~vy1!
, ~4.30!

Z5
1

sinh2~vy1!

3
@y2sinh2~vy2!2y1sinh2~vy1!#2

2v~y12y2!1sinh~2vuy1u!2sinh~2vuy2u!
.

~4.31!

In Eq. ~4.28!, the constraint relatingx andv that appears in
Eq. ~3.27!, may be rewritten as

H25
v2

sinh2~vy1!
2

k5
2c2

3
, ~4.32!

and has been used to eliminate one parameter from the
pression of the second derivative. The value of this quan
still depends onv and c2, that parametrize the size of th
bulk quantities,LB andLB(f), and the inter-brane distanc
parametrized by the values ofyi . For simplicity, we may fix
the locations of the two branes atyi521 and y2520.5,
while the singularity lies aty50. As was pointed out in Sec
III B, the parameterc2 may take both positive and negativ
values; this may lead to different behaviors of the ba
ground solution under time-dependent perturbations, as
will now see. In Fig. 2, we display the value of the seco
02403
x-
ty

-
e

derivative of the effective potential—the expression ins
curly brackets in Eq.~4.28!—for both signs ofc2 and we
comment on the results below:

c2.0: The second derivative assumes positive values
large enoughc2 but smallv. In other words, the backgroun
solution is more stable when the kinetic term of the sca
field is larger and the bulk cosmological constant is smal
Equation ~4.32! then reveals that this particular regime
parameters corresponds to solutions with anegativecosmo-
logical constant on the brane.

c2,0: Positive values for the second derivative can
achieved for large enough values of bothc2 and v. In this
case, the effective cosmological constant on the bran
positive by definition and therefore physically interestin
stable solutions may emerge in this case.

It is worth noting that, in the above cases, we obtain po
tive sign for the second derivative of the radion potent
even if we assume thatd2Vi /df250, contrary to what hap-
pened in Sec. IV A. An extra stabilizing force may arise, f
c2.0 or c2,0, if d2Vi /df2.0 or d2Vi /df2,0, respec-
tively. Let us finally note that in the parameter regimes wh
the solution is clearly stable or unstable, the sole effect of
inter-brane distance is to change the magnitude of the ra
mass squared: larger inter-brane distances imply larger~in
absolute value! second derivatives. In the intermediate r
gime, where the solutions struggle between stability and
stability, stable solutions may arise when the second bran
located closer to the first one and away from the singular

In the special case ofv50, the expression of the secon
derivative of the effective potential may be obtained fro
Eq. ~4.28! by taking the limitv→0. Then, we find

A2
d2V̄e f f

db2
5(

i 51

2 c2yi
4

y1
2

d2Vi

df2
1

2

k5
2y1

2 ~k5
2c226x2!

3~ uy1u32uy2u3!. ~4.33!

The second term has a positive value only ifk5
2c2.6x2

.0. In this case, the first term also contributes positively
the second derivative ifd2Vi /df2.0. In this case, stable
solutions with a negative cosmological constant on the br
arise. Finally, we turn to the case withv2,0. The expres-
sion of the second derivative may again be obtained from
7-10
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~4.28! by making the substitutions:v→ i ṽ and sinh(vyi)

→i sin(ṽyi). Given the new form of the warp factor, the tw
branes should now be located between the two singular
at y50 and ṽy52p. We therefore sety152p and we
allow ṽ to vary in the interval~0,1!—y2 is placed in be-
tween, with the size of the inter-brane distance having
effect on the behavior of the second derivative. In Fig. 3,
display the value of the second derivative as a function oc2

andṽ. We may easily see that stable solutions arise for la
enough, positive values ofc2, with the solutions becoming
more and more stable as the value ofṽ increases. An un-
stable regime appears whenṽ→1, which is equivalent to
placing the first brane very close to the singularity atṽy5
2p. By using Eq.~4.32!, we may see that the stable regim
corresponds to solutions with anegativecosmological con-
stant on the brane.

V. CONCLUSIONS

There has been a lot of work related to the stabilization
the radion field that parametrizes the size of the extra dim
sion in the context of brane-world models. Most work h
focused on the derivation of solutions with a constant rad
field, i.e. a static extra dimension, with only a few pape
investigating whether these solutions correspond to a
minimum of the radion effective potential. In this paper, w
presented two new, brane-world solutions arising in the p
ence of a bulk scalar field, and studied their stability un
time-dependent perturbations of the radion field demons
ing the existence of phenomenologically interesting, sta
solutions with a positive cosmological constant on the bra

For our analysis, we used a factorizable ansatz for
line-element along the brane. Under the assumption that
total energy of each brane is the sum of a constant br
tension and the interaction term of a time-independent, b
scalar field, the factorization of the 3D scale factor w
shown to be directly related to the stabilization of the ex
dimension. This relation holds both on and off the brane
one can see by using the scale factorjumpconditions and the
off-diagonal component of Einstein’s equations, respectiv

The first class of solutions presented here corresponds
vanishing bulk potential for the scalar field and a vanish

FIG. 3. The plot depicts the second derivative of the rad

effective potentialV̄e f f as a function of theṽ andc2 parameters.
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bulk cosmological constant. Surprisingly enough, bra
world solutions with nontrivial warping along the extra d
mension did emerge, with the ‘‘warping’’ parameter bein
the expansion rate on the brane. These configurations ac
a variety of time-dependent solutions for the scale factor
the brane, with flat (k50) or curved (k561) 3D spacetime
and a zero, positive or negative effective cosmological c
stant. All of the above solutions are characterized by
presence of a bulk curvature singularity, which inevitab
leads to the introduction of a second brane in the model. O
can show that thejump conditions, imposed on the war
factor and the scalar field, lead to the fixing of the inter-bra
distance, in terms of the fundamental parameters of
theory, and that the conventional Friedmann equation on
brane is successfully recovered.

In the second class of solutions that we derived, the p
ence of a nontrivial bulk potential and a bulk cosmologic
constant was restored. In this case, the warping of the
metric was governed by the bulk cosmological const
shifted by a constant quantity given in terms of the kine
and potential energy of the bulk field. The same variety
cosmological solutions on the brane emerge here as w
The sign of the kinetic term of the scalar field reveals
nature~normal or tachyonic! and affects the behavior of th
bulk potential: a normal kinetic term leads to a potent
which is unbounded from below, near the bulk singulari
whereas a tachyonic kinetic term leads to an infinitely h
potential barrier that may be used to shield the singularity
single-brane configurations. Here, we introduced a sec
brane in order to do so, and we demonstrated that, as in
first case, the inter-brane distance is fixed and the form of
Friedmann equation on the brane is recovered.

In the second part of our paper, we investigated the
bility of our solutions under small, time-dependent perturb
tions of the radion field. We derived theextremizationcon-
straints for both types of solutions and demonstrated tha
expected, they correspond to extrema of the radion effec
potential. Thestabilization constraints were also derived
These revealed the stability behavior of the solutions and
type of extrema to which they correspond, either minima
maxima. In the first class of solutions, brane configuratio
with positive, zero or negative effective cosmological co
stant were studied and it was shown that, in the absence
scalar field potential, those solutions come out to be lo
maxima, saddle points or minima of the radion effective p
tential, respectively, in agreement with the literature. Ho
ever, in our case, the presence of an extra term, involv
second derivatives of the interaction terms of the scalar fi
on the branes, acts as auniversalstabilizing force, indepen-
dent of the sign of the cosmological constant on the brane
long as the second derivatives are positive. In this way,
lutions with a positive cosmological constant on the bra
may become stable, saddle-point solutions a` la Randall-
Sundrum may turn to true minima, and AdS-type solutio
on the brane may be further stabilized. The results for
second class of solutions found in this paper are even m
interesting: the aforementioned term with the derivatives
the interaction terms may still act as an extra stabiliz
force—upon appropriate choice of the sign of the seco

n
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derivatives—nevertheless, stable solutions can arise eve
the case where this term is zero. The parameter regimes
correspond to stable solutions are determined by the va
of the bulk cosmological constant and the kinetic term of
scalar field. It is worth noting that the sign of the latter qua
tity also defines the sign of the effective cosmological co
stant of the stable solution: a normal~positive! kinetic term
gives rise to solutions with negative cosmological consta
while a tachyonic~negative! one leads to a positive effectiv
cosmological constant.

We may, therefore, conclude that the introduction o
li,

.

h-
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bulk scalar field, in a brane-world model, may successfu
lead to a variety of stable solutions, but more importan
it may lead to cosmologically interesting, stable solutio
with a positive effective cosmological constant—a ty
of solution that has been difficult to derive up to now.
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