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Stable, time-dependent, exact solutions for brane models with a bulk scalar field
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We derive two classes of brane-world solutions arising in the presence of a bulk scalar field. For static field
configurations, we adopt a time-dependent, factorizable metric ansatz that allows for radion stabilization. The
solutions are characterized by a nontrivial warping along the extra dimension, even in the case of a vanishing
bulk cosmological constant, and lead to a variety of inflationary, time-dependent solutions of the 3D scale
factor on the brane. We also derive the constraints necessary for the stability of these solutions under time-
dependent perturbations of the radion field, and we demonstrate the existence of phenomenologically interest-
ing, stable solutions with a positive cosmological constant on the brane.
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[. INTRODUCTION original Randall-Sundrum solutiori®] have been also con-
structed by introducing a bulk scalar fidlti6,17]. As a mat-
Over the last few years, there has been considerable inteter of fact, the task of the stabilization of the extra dimension
est in models in which our universe is a 3-braiaehyper-  was first accomplished by introducing a bulk scalar field,
surface embedded in a higher dimensional bulk. Much of which had different nonvanishing vacuum expectation values
the interest in extra-dimensional field theory is due to theon each of the two brang48]. The same topic was further
hope for a solution to the hierarchy probléf+3]. In these elaborated iN17,19. Here, we will derive two classes of
models, the extra dimensions are hidden from us, not necegrane-world solutions which include a static bulk scalar field
sarily by their smallness but by our confinement to a four-and provide inflationary solutions in the 4D slices. The two
dimensional slice of the bulk spacetirfid]. In contrast with  classes correspond to either vanishing or nonvanishing bulk
Kaluza-Klein scenarios, standard model interactions are co otential for the scalar f|e|d, and are characterized by a non-
fined to a brane whereas gravity propagates through the burﬁ)ﬁvial warping of the metric along the extra dimension even
perpendicular to the brane. The hierarchy problem can bg, {he case of zero bulk cosmological constant. Due to the
resolved by either postulating large extra dimensidins o 0arance of a bulk curvature singularity, we are forced to
which case the Tev sgale IS the fundamental scale of grav"%onsider two-brane-system configurations which, however,
and the Planck scale is derived in terms of the fundament ave a fixed inter-brane distance and lead to conventional

scale and the volume of the extra-dimensional spgkor Friedmann-Robertson-Walker(FRW) equations on the
\(Nﬁen the éllldeetnc s;f:ales)ta[xa)onent|ally throughout the bu”f:)ranes without any additional fine-tuning. By using a method
the so-called “warp” factor 2]. . ’ o

While static brane-world models have served as a usefn.ﬁ_‘evemp?d _recentl(;j/ n .Ref.go], wg study thi S.t ab|l|t3; c;]f
tool for testing ideas in higher dimensional spacetimes, thei 10S€ SO utions under time-dependent pertur a'qons of the ra-
direct applicability to cosmology is limited. More realistic dion field, and demonstrate that we can easily find parameter

cosmological models may be derived by allowing a nonvan/€9imes where these solutions ateble Even more impor-
ishing four-dimensional cosmological constant, or by intro-tant is the fact that some of these stable solutions have a
ducing time-dependent energy-densities on the branes. Vafrositivecosmological constant on the brane—previously all
ous cosmological aspects of such models have beelnown solutions of this type were unstapii].
investigated in the literatufgt—12]. One of the serious prob- ~ We organize this paper as follows. In Sec. I, we present
lems in brane models is the resulting unconventional set othe equations of motion of our theory and show how a fac-
Friedmann equatiori$—7]. The Hubble parametdr, on the torizable (in time and the extra space coordinate scale
brane is often found to scale &5~ p, rather than the stan- factor can be obtained in the presence of a bulk scalar field.
dard four dimensional dependence,~p. It has been In Sec. Ill, we present two classes of inflationary brane so-
shown, however, that this problem can be solved upon thé&tions involving a static bulk field with vanishing or nonva-
proper stabilization of the extra dimensift3—15, that re-  nishing, respectively, bulk potential and we demonstrate that
moves any unnecessary constraints between the bratleese solutions indeed lead to conventional FRW equations.
energy-densities. We derive the conditions for the stabilization of these solu-
Both static and time-dependent generalizations of thdions in Sec. IV and investigate the parameter regimes that
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correspond to stable configurations. Finally, in Sec. V, wewhereu,»=0,1,2,3, and
summarize our results.

1
= - = Po+ :
Il. EQUATIONS OF MOTION FOR GRAVITY AND A Tun(#)=dmbind—gun| 5 9p¢7" ¢ VB(@}
BULK SCALAR FIELD (2.9

We start from the cosmological principle of isotropy and we next consider the five dimensional set of Einstein equa-
homogeneity in the three space-like dimensions of the brangions. They can be obtained by the variation of the action
The presence of the brane breaks the isotropy along the fiftfp 2) with respect to the metric, and, for the metric ansatz
dimension and this is reflected in the expligilependence (2.1), they take the form
of the metric tensor. Based on these facts, we make the fol-

lowing ansatz: n?[a” a'[a’ b’\] afa b| n?
o Goo=3\ ~ 5| =+ = P __+5 k—
ds?=gundxMdxN=—n?(t,y)dt*+a?(t,y) y;dx dx] bsla ata aia a
+b2(t,y)dy?, 2.) = K5To0, (2.6
where M,N=0,1,2,3,5, y;; is the usual Robertson-Walker a2 a'la’ n'\ b'(n a a’ n"
3-space metric tensor, artd x' (i=1,2,3), andy are the Gii:—zy“[— — —) b —+2—|+2—+—
time- and space-like coordinates along the brane and the ex- b ala n
tra dimension, respectively. ) . : N
In addition, we consider a bulk scalar figgt,y), which + a_y“[ ZE + al_ E+22 _ E
depends only on time and the extra coordirtaféie action 27 a a a n/ b
of this five-dimensional, gravitational theory is given by ) )
b a n
3 1 + B —2—+ - ] — k’yii
f d4xdyy— { R+A + 5+ Vg(¢) an
:KéTii y (27)

(y y.)

+2 [Ai+Vi(p)]———— 2.2

Goszs(——Jr————):KgTOS, (2.9
whereMs is the fundamental, five-dimensional Planck mass,

n

R denotes the five-dimensional scalar curvature, dgcnd a'la’ n'\ b2la 3 b2
V; stand for the bulk and brane potentials, respectively, of the Ggs=3{ — = F) =la 5_ Sl tal kS
scalar field. FinallyAg and A; are the vacuum energies of n a

the bulk and the branes. From E@.2), one can derive the _ 2
, : - = K555, 2.9
scalar field equation of motion:

1 1 1/h a4 b 1/n  a b wherexi=87Gs=87/M3 is the five-dimensional Newton’s
—p——¢"— _( —3—— |- _(_+3___) &' constant, anck=0,=1 denotes the spatial curvature of the
2" p? n2\n "a b pb2\n ~a b four-dimensional spacetime along the brane.
While the metric is continuous across the extra dimen-
% E ‘9_\/' S(y—vi) -0 (2.3 sion, its derivatives with respect §pcan be discontinuous
ap T P b ' ' because of the inhomogeneity of the matter distribution in

the fifth dimension, notably the branes. Therefore, a delta
where dots and primes denote derivatives with respec¢t to function appears in the Einstein tensor and this must be
andy, respectively. matched with a delta function in the energy-momentum ten-
The matter content of the five-dimensional space-time isor[22]. Here we use a similar notation for tfiemp of the
described by the energy-momentum tensor of the bulk scalascale factorsas in Refs[7,13] and obtain
field and the bulk cosmological constant, which may be writ-

ten as 1[a)  «3
b a3 lAitViel, (2.10
M (y yl) M ov M : I
—AedN =2 (Vit A= SN+ TR(#),
(2.9 20ur convention for the Riemann curvature tensor RS,

=gl — o\ Iy, + T8 —T7 T,
3Here a”—aR+[a ] 6(y yl) wherea is the nondistributional
Again, we use the standard assumption that the three-dimensionpért of the second derivative af and[a’]; is thejumpin the first
space is homogeneous and isotropic. Thus, the field is independederivative acrossy=y;, defined by [a'];=a’(t,y=Yy;+¢€)
of the three-dimensional spatial variables. —a'(t,y=y;—e).
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ds?=n?(y)[ —dt*+a?(t) y;;dXdx ]+ b?(y)dy>

1[n'], «2
= (2.17)

5
b, — 3 [AitTVile)], (2.11)

where the subscrigt denotes evaluation of all quantities at [ll. EXACT TIME-DEPENDENT SOLUTIONS
y=Y;. The correspondingump condition for the scalar field

4 is obtained from the field equatia@.3): We now proceed to derive exact solutions of the coupled

system of gravitational and scalar field equations that have a

1 V() nonstatic, four-dimensional line-element. We are going to
E[¢’]i = 90 (2.12 present two classes of solutions: the first class corresponds to
: Y=Y a vanishing potentialVg(¢), for the bulk scalar field, while

) ) » the second one arises in the presence of a nontrigigdo-
While the jump conditions for the scale factor@.10 and  pential. in a certain limjtbulk potential.

(2.19) are nontrivial given any inhomogeneous source on the
brane, thgump condition for the bulk field(2.12 depends
only on the interaction between the bulk field and the brane.
In particular, if the bulk field is sitting at an extremum on the  In our first example, the assumption\8§(¢) =0 leads to
brane, then thgump of the scalar field2.12 is zero. a simplification of the field equations in the bulk. The deri-
The facility to find an exact solution to the field equationsvation of the solution is further facilitated by a transforma-
is often aided by our ability to factorize the scale factor ontion of the y-coordinate that allows us to write the metric
the brane. Consider the following: ansatz (2.17) in terms of “conformal” coordinates, i.e.
b(y)=n(y). Then, Einstein’s equations may be rewritten as

A. Solutions with a vanishing bulk potential: Vg=0

d[a'] Ké oV, do Kf;. [henceforth,a denotes the 3D scale factor appearing in the
dt a3 g¢ dt _gbi[Ai‘FVi(‘ﬁi)]- metric ansat£2.17)]:
(213) 3n” éZ k ¢r2
_ _ _ -—+3| S+ =K§(—+n2AB), (3.0

If the scale factor can be factorized, then the right-hand side n a® a’ 2
of Eg. (2.13 must vanish. From Eq(2.13, we note the
following: if the field is sitting at a local minimum on the 3n” (2a a2 k 12
braneor the field is static on the brane, our ability to factor- I ( a +=+ —2) == Ké T+ nZAB) , (3.2
ize the scale factor into independdrdandy dependencies is ar a
tied to the stability of the extra dimension on the brabg ( 2 cy 2
=0). Off the brane, a corresponding relation can be found 6n _al2 §+ h = K2 ¢——n2A 3.3
by examining theG,; component of the Einstein equation nZ a? a a° °\ 2 ® '

(2.8), which can be rewritten as

2
KS. ,
T dtl a0

(2.19

é

a

(3.9

Without loss of generality we can writg(t,y) =n(y). Then,
Egs.(2.10,(2.11) lead to the following factorizable form of from which we can find the following time-dependent, infla-
the 3D scale factdr tionary solutions for the scale factor

a(t,y)=a(t)n(y). (2.19 eh(t=to) when k=0
Inserting the above into Eq2.14 shows us that isin H(t—t when k=—1
_ at)={ H HH(t—to)] 3.5
n b KE. , 1
FBZ?d’dJ (2.1 ﬁcosr[H(t—to)] when k=+1

Thus, if the bulk field is either time-independent or
y-independent, our condition for the factorization of the scal
factor is intimately connected to the stability of the fifth co-
ordinate. In what follows, we are going to assume that

=b=0, which brings our metric ansatz to the form

4A static four-dimensional universe can be obtained gy, y)
=a(t,y)=n(y). This was the ansatz used in REZ] to solve the
hierarchy problem and obtain conventional Newtonian gravity.

where H and t, are constants. Fok=0, we may obtain

eMinkowski, de Sitter or anti—de Sitter solutions on the brane

whenH? has either a zero, positive or negative value, respec-
tively. Fork=—1, we may have solutions for either positive
or negative values oH? (in the latter case, the sinh-like

SIn order to address the graceful exit problem, we would be re-
quired to consider a nonstatic bulk field which is beyond the scope
of this paper.
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solution above is replaced by BHi(t—t,)]/H, with H?= . 1[6a® 6a 6k| [4n'? 8n"| «i

—H2>0) while for k=+1 only solutions withH?>0 are R=¥ 2 g’L; T T T .

allowed. (3.12
Turning to the scalar field equation of motid@.3), we ‘

see that it now becomes The second equality can be obtained by using Egs.

(3.2,(3.3), together with Eq.(3.4), with Ag=0, in Eq.
n’ (3.12. As we can see, there is a true singularity in the bulk,
F) ¢'=0. (3.60  aty=0. If we choose to place the first braneyaty,<0 [in
which case, we have the normalizatiofly;)=1], then, in
order to remove this singularity, a second brane must be
introduced at a poiny=y,, with y;<y,<0, so that the
singular point is never encountered.
¢ (3.7) We next examine théump conditions imposed on the
n3(y)’ warp factor and the scalar field at the positions of the two
branes aty; andy,, respectively. Starting from Eq$2.11)
wherec is an integration constant. The relation betwen and(2.12, using the “conformal gaugeb(y)=n(y), and
andn, derived above, can be used in Einstein’s equations téhserting the solutions found above, these conditions can be
derive the form of the warp factor. In addition, we note that'éwritten as

¢"+3

The above equation can be integrated once to give

d'(y)=

all _solutions for.the scale fact@(t) appearing in Eq(3.5 6H N4 ()
satisfy the relation Vi+ A =—coth3H|y,|), 2c= p ,
_ Ks ¢ y=y1
a [al® « (3.13
—=|= +—2=H2. (3.8
a \a/ a 6H 2¢c N p)
Vo+Ap=———Coth3H[y,|), —=-n; 90 :
Inserting both Eqs(3.7) and (3.8 into the simplified set of K5y nz y=Y,
field equationg3.1)—(3.3), we obtain (3.149
, 2/ o where we have used the normalization conditmr=1. As
n_ H2_ Ks| C n2A (3.9 in the case of the two-brane static solution with a bulk scalar
n_ 3 | op6 B ' field found in Ref.[17], the form of the interaction terms,
V;, completely determines the ratio of the warp factors
2 5 5 evaluated on the branes
2 n _oH2- 15 —C—+n2A - 13
nj 31 ond Bl (n1>4_(smk(3Hyl)>4 _ (0gVa)yy, 315
(3.10 n, sinh(3HYy,) (0gVi)y=y, '
The above equations can be solved if we Agt=0. In that  Here too, the derivatives of the interactions are required to
case, we find the following solution: have opposite signs, just like the total self-energies of the
two branes. Last, but not least, we may also observe that the
sinh(3H|y|) K% inter-brane distance can be derived from the above relation
n3(y)=—————, where H2=-—2c2sint?(3H|y,|), which is accompanied, through the warp fagtomp condi-
sinh(3H|y ) 12 tions, by the fine-tuning of only one of the two brane self-

311 energies.
) ) ) o Let us briefly comment on the relation between the expan-
for a four-dimensional de Sitter spacetint¢“-0). The cor-  gjon rateH and the brane potentialé, . To do so, we must

responding solutions for Minkowski and anti—de Sitter 4Dfirst define the four-dimensional Newton’s constant. Recall-
spacetime are straightforward to derive by taking the Iimits,ng the gravitational part of our original actiof2.2) and
H—0 andH—iH, respectively. In the former case, the warp noting that the first combination inside brackets in B312
factor is linear iny, while, in the latter, the solution is given stands for the 4D scalar curvature, we may write

in terms of a sin-like function. For simplicity, we will, for the 1 1

remainder of this section, concentrate on the case With — d“xdy\/—_gﬁzz—f d*xdyy—gyn®

>0. It is worth noting that, although we have assumed a 2K§ ZKf—,

vanishing bulk cosmological constant, nontrivial warping
arises in all cases where the expansion rdteon the brane

1
TR

) X

is nonzero. As can be seen from the second of Egj41), n

the expansion rate is closely related to the kinetic term of the

scalar field in the bulk which, in a way, replaces the bulk 1

cosmological constant. EF d*xy—ga(R @+ ),
The Ricci scalar of the five-dimensional spacetime de- Ka

scribed by the metric ansat2.17) has the form (3.19
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where/—g,=a3(t). Thus, we have n'2 a2 a k b'?
6n?——3| —+—+ — | =«2n?| = —Vg—Az|.
3 n? a2 a a2 ° |2
1 1 3 2 (v2 3 2 n y
=== 3€ dyn == dyn =—— ﬁcotK3H|yi|)|y2 (3.23
K;g  Ks KgJY1 Kg 1

By combining Egs.(3.21) and (3.22, we can once again
Vi+A; derive Eq.(3.4) indicating that our previous solutions for the

i (317 scale factom(t), appearing in Eq(3.5), are still valid. What

remains to be found is the new form of the warp factor and

the scalar field. Plugging in the solutions faft), the above

gravitational equations become

where we have used the jump conditid8sl3 and(3.14) to
obtain the last equality. Note that although it appears #hat

is independent oks, (Vi+A;) andH are interdependent N n'2 H2 «2 b2
through k. —+—2:—2——5<—+VB(¢)+AB ,  (3.29
Finally, to check the Hubble equation on the brane, we N n n 312
must compute the effective cosmological constant;;, de-
fined as 2n'2 2H?2 KE[ ¢'?
&0 e 3l 2 Ve@F ]
A= % dyn5[ - F+£], (3.18 (3.29
Kg

For H=Vg=0, the above equations lead to the static solu-
whereRY) is given by the second two terms of E@.12) tions with a bulk scalar field found in Ref17]. In general,
and . contains all of the nongravitational pieces of E22.  Eds. (3.24),(3.29 are difficult to solve and we expect that
The result of the integratiofitaking care to eliminate the Mmany solutions are possible depending on one’s choidgsof

boundary terms associated with) is and¢'. By choosing a relationship between the two, we can
in fact derive an analytical solution for both the warp factor
2 Vit A, and the scalar field. For example, by rearranging Egs.
Aeti= 2, ni“T, (3.19  (3.29,(3.29, we obtain the single differential equation
=1
. - - n’ KE ¢72
which when combined with Eq3.17), leads to the standard FE 37+VB(¢)+AB . (3.26
form of the Friedmann equation,
Kﬁ If we now chooses’ and Vg to satisfy the following rela-
H2=§Aeff (3.20 tion:
¢12
without the need of any fine-tunings. - + §VB(¢) =E, 3.29
We will return to this solution in Sec. IV, to test its sta-
bility under small time-dependent perturbations. whereE is a constant, we find a subclass of solutions with

B. Solutions with a nontrivial bulk potential: Vg#0 (

In this section, we allow for a nonzero bulk potential, M where Xzyf=l,
Vg#0, a fact which will modify the equations in the bulk [v4l

and subsequently their solution. Although we retain the form sin(w|y|)
of the metric(2.17), we choose to work with nonconformal ~ N(Y)= sin(lyq])

coordinates; therefore, we redefine threoordinate and fix

where x%sirf(wy,)=w?, (3.29

the scale factob to a constant value, i.da=1. Under the 5_'”““)|Y|) where y2sinf(wy;) = w?.
above assumptions, Einstein’s equations become \ sinf(wly|)
n” n’'2 a? k , P2 . o .
-3n?| —+ — | +3| =+ — | =«kin?| — +Vg+Ag], In the above, we have imposed the normalization condition
n n2 a2 a2 2 _ _ !
n,=n(y;)=1, and defined
(3.2)
255
n’ an 2a éZ k w —_€(3E+AB) (329)
% —+ — || —+—=+—
n n? a a? a?
and
= — k2Zn? ¢—,2+V +A (3.22 c?xs
SR N ' Xo=H2 (3.30
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The three solutions presented in E§.28 correspond to the and settingo=1 (here, we show the result only for the case
combination (E+ Ag) being zero, positive or negative, re- 3E+ Ag<0). They take the form
spectively. All three solutions are characterized by a true

singularity aty=0. If we place, as in the previous section, a 6w Vi(d)

brane aty=y, <0, then a second brane should be introduced Vit+Ay=—coth(wlyy]), 2c= szyl'

at y=y,, with y;<y,<0, if we want the singular point K5 (3.36
shielded. '

Going back to the scalar field, its equation of motion in

6w No(P)
the bulk has the form Vot Ay=— 7cotl"(w|y2|), 2c=-n, o |y=y2,
poa ™), _dVe ’ (3.37)
_ o . and may lead to the fixing of the location of the two branes
By differentiating Eq.(3.27) with respect toy, we get in terms of the remaining fundamental parameters of the
1dv theory.
"+ = B =0 33 Let us finally check the form of the Friedmann equation
¢ "+ 3544 ¢ =0 (3.32 Iy ch . | .
3 d¢ on the brane in this case. As in the previous subsection, we

must first define the 4D gravitational constant. In terms of

which, when combined with E¢(3.31), yields the simple ,hconformal coordinates, E¢3.16 still holds, with the

equation factorn® appearing in the first line replaced b§. Then, we
n' may write
"+ Fd)’ =0, (3.33
1 1 Y2l =1yl
= 2 = - 7
whose solution is K2 K2 jg dyn Kéz(yl'yZ) KkZsintP(wy;)
Cc 2 V. + A
"(y)= —, 3.3 2 fiT A
¢'(y) n(y) (3.39 D et (3.39

wherec is again an integration constant. . .
9 9 hWhere we have used again the solution &>0, and de-

The bulk potential of the scalar field is defined throug fined T the int [ ofi2 the int | ¢
Eq. (3.27. The exact form can be easily derived by using the inedI(y,,y,) as the integral oh” over the internal compac

expression ofp’, in terms ofn(y), according to Eq(3.34). space. Turning to the form of the effective cosmological con-

The potential is everywhere well defined apart from the retant on tzhe brane and using the fact that &Y =
gime close to the singularity. Negr=0, all three solutions —(12n"%/n“+8n"/n), we find
(3.28 lead to the following expression for the bulk potential:

3H?
3 .,, 2¢ Aett=—5Z(Y1.,Y2). (3.39
VB(¢)=3E—§CZy1eX m . (3.395 K5
1

In the above, we have also used the jump conditions
(3.36,(3.37. Eliminating the integralZ(y,,y,) from the
above equation by making use of the definition of the 4D
a[\lewton’s constant3.38), we recover once again the conven-
ional 4D Friedmann equatioB.20.

The scalar field, near the singularity, behaves &s
—c|yi|Inly|], and therefore diverges, as—0, causing the
bulk potential to diverge as well. The sign of, appearing
in front of the exponential, determines whether the potenti
diverges towards plus or minus infinity. Fof>0, ¢'? is
also positive and the kinetic term of the scalar field has the

correct sign; however, the potential diverges towards minus IV. STABILITY ANALYSIS

infinity, being unbounded from below. In this case, the intro- |, this section, we perform a stability analysis of the so-
duction of a second brane to shield the singular point in thetions found in the previous section under small, time-

bglk is imperative. If, on the other hand, we consider thegependent perturbations by using the stabilization constraints
c“<0 case, then we end up with a “tachyonic” kinetic term {hat were recently found if20]. Here, we will closely follow
for the scalar field; nevertheless, an infinitely high potentiakhe method and notations used in that work deviating only

barrier is rising in front of the singularity in this case, thus ynen the needs of the particular solutions presented in this
shielding the singular point and allowing, in principle, single haper demand it.

brane configurations. Nevertheless, in what follows, we will
introduce a second brane to shield the singular point even
when the latter case is considered.

The jump conditions, for the solution presented above, We start our analysis by perturbing the metric ansatz
follow from Egs.(2.11) and(2.12 upon substituting the ex- (2.17), written in terms of conformal coordinates, in the fol-
pressions for the warp fact¢8.28 and the scalar fiel(B.34) lowing way

A. Stability behavior of the solutions with Vg=0

024037-6
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ds?=n?(t,y)[ —dt?+a?(t) y;dx'dx +b?(t)dy?]. _ 1 : RY) 2
4.1 Y, bz—id by — —+
4.9 eff(D) AZ(b) y 22 2b%n?
As in [20], we assume that the time-dependence of the scale Sy—y)
factor b along the extra dimension induces a time- +2 (\44./\0& (4.7
dependence to the warp factor Although the method that [ bn

we follow is identical to that if20], we need to repeat part

of the calculation: a different metric ansatz is used here, dhe integral ovey is performed over a compact dimension,

fact that changes the final expressions of the stabilizatiowith y taking values in the “circle” consisting of the sym-

constraints. metric intervals ¢,,y,) and (y,,y;) while passing across
Starting from the gravitational part of the action, we needthe branes.

to express the five-dimensional scalar curvature in terms of The extremizationand stabilization constraints follow

the metric functions appearing in E@t.1). It takes the form from Eq. (4.7) by taking derivatives with respect ta We

may use the fact thdttis always multiplied by in the action

to define a new coordinate=by. Then, the effective poten-

R= %R(4)_§DMDMb+ R+ Lyin, (4.2)  tial may be rewritten as
n
o by. 6 n/2 12
where AZ(bYLbyZ)Veff:ZI 2d§n3( T2 ot ¢_)
byy Kg N 2
_6a° 6a 6k oy L[4n? 8’ 2
RU=Z' a2 B el +2 nfby)(Vi+A), (48

4.3

where now primes denote derivatives with respecg.tdhe
In Eq. (4.2), Ly, contains time-derivatives af andb that  extremizatiorconstraint follows by taking the first derivative
will eventually give rise to the kinetic term of the canoni- of Eq. (4.8) with respect tdb. Then, we obtain
cally normalized radion field. Here, we are interested in the

stability behavior of the solutions which can be found from — ' yor |i=2

the expression of the effective potential, therefore, we high- Azdveff —ovn?| - 6 ”i_+ ¢_.

light only the points of our analysis that lead to the form of db yin kE n? 2/

this quantity. ' =1

Now, the gravitational effective action can be written as 2 J dA_
—— TnXV )]—2A —
+I:El Yi a(by|)[nl(V|+Al)] 2Adbveff'
R#)
se=- [ a=ay ~AD) 49

2K,

In order to simplify the above expression, we may now use
1 R the jump conditions in conformal coordinates, that relate
- ﬁj dymb(Lyjn+ R(Y))] (4.4 and ¢/ to V;'s and which are valid for the static solutions.
5 They can be written as

where J—g,=a3, and the conformal factoA(b) is N’ 2 N
[ ke , .
=T NAAHVI(E)], b=t

Vi(b)
K2 9% y:yi’
A(b)=— fﬁ dybri(t,y). 4.5 (4.10
Ksg

fori=1,2, respectively. In addition, we may use E4.5) to
derive the first derivative of with respect tdb

A conformal transformation of the four-dimensional metric,

(94) Vz(al)#,,/A(b), removes the coupling betweérand 5
R ) and brings the total effective action to the form dA  «; 3

4.11)

4 - RW =
S=— | d*xV—04 _F+£kin+veff
Ky

, (4.9 Finally, we need to know the value ®;; evaluated at the

static solution. From the effective actigd.6) and for £y,
o =0, we may easily see th&t¢; is the effective cosmologi-
where the effective potentidl.¢ is given by cal constant on the brane and it is given by
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4k AKA KA

(4.12

Vet

Alternatively, the above result may follow by writing
=Aqst/A and using Eq.3.20. If we put everything to-
gether, theextremizationconstraint becomes
T
i=1

(4.13

12H? &2 dv;\ %' ~?
n—i2+§(Ai+Vi)

Azdveff_ )
d¢

dVers 2 L
db

4

5
=ying - —
Ksg

0.
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FIG. 1. The behavior of the second derivative of the radion
effective potentialV is displayed as a function dfl (for H2

The above expression is indeed zero as can be seen by usir®) and the inter-brane distance.

the explicit jump conditions (3.13,(3.14. Thus, we may
confirm that the solutiori3.11), together with Eq(3.5), ex-
tremizes the radion effective potential.

The stability behavior of those solutions under small,
time-dependent perturbations will become manifest in the

sign of the second derivative of the effective potential. Th
stabilization constraint, that requires a positive second de
rivative, can be obtained by differentiating EGL.9) one
more time with respect tb. If we again use the jump con-
ditions (4.10 as well as the scalar field equation in the bulk,
we find

2 2

dzv ff 5K5
g~ NIV A g (Vi A7
2 2 2
1AV 5 L, e ViV
24\ do 147 gg2 | do
SN .
-2 b +AW Vetf- (4.19

In the above expression, a term proportionadi¥.¢;/db has
been already dropped due to tbetremizationconstraint. If
we use the jump condition8.13),(3.14), the second deriva-
tive takes the form

Azdzveff: 12H3
db? KESinh(3H]y,|)

_Q[yzsin“3HY2)_Y15inr(3HY1)]2

cosh{3Hy;)—coshi3Hy,)

+ 2[y2cosh(3Hy;) — y3cosh(3Hy,)]

. yicosti3Hy,) y3costi3Hy,)
sint(3Hy,)  sintA(3Hy,) |

(4.15
where

€

12H2  y?n} d?v,

kZ sintP(3Hy;) d¢?

x=2

=1

(4.16

is the term involving second derivatives of the interaction
terms of the scalar field on the branes. Let us, for the mo-

ment, ignore this term and concentrate on the expression
inside curly brackets in Eq(4.15. A simple numerical
analysis will reveal the sign of this combination. In Fig. 1,
we display the value of this expression, as a functiotHof
and the inter-brane distance parametrized by the location of
the second braney, e (y,,0)—for simplicity, we fixy,;=

—1. As one can see, this combination is always negative and
becomes more negative as bdthand the inter-brane dis-
tance increases. Equatiortd.15),(4.16 are valid for H?

>0, that corresponds to a de Sitter four-dimensional space-
time. Solutions with a positive cosmological constant on the
brane have been derived in the literature before and they
were shown to be unstabJ21]. However, the presence of a
bulk scalar field, with nontrivial brane interaction terms, may
significantly modify this picture: the destabilizing behavior
displayed in Fig. 1 may be counterbalanced by f&erm
(4.16 by choosing appropriately the interaction terts If
d?V;/d¢? are positive and large enough, stable brane-world
solutions with a positive effective cosmological constant can
easily arise in the framework of this model. In the flat-brane
limit, H—0, the expression inside curly brackets reduces to
zero. This is also in agreement with results in the literature
that consider flat-brane solutions which are saddle points
(flat directions of the potential[21,2(0. However, even in
the flat limit, the presence of the scalar field allows for a
nontrivial X-term and the second derivative is written as

v 2
AZ dzveff _

db?

4 ,d%

—n—.
=13k2 " dgp?

(4.17

Again, choosing appropriately the interaction terms of the
scalar field, even the Randall-Sundrum flat-brane solutions
can be made stable.

Finally, in the case of anti—de Sitter spacetinit?=

—H?<0, the expression for the second derivative follows
from Eq. (4.15 after making the substitution$i —iH and

024037-8
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sinh(H|y;))—isin(F|yi)). In that case, the expression inside €valuated at the background soluti128. Differentiating
curly brackets turns out to be positive-definite revealing the?Ce With respect to and using thgump conditions
existence of a stabilizing force acting on the system. This is

again in agreement with results presented in the literature n_i,__K_g AtV ,_ L oVi(9)
[21]. The X-term in this case has the form n_ 6 [AitVi(¢l, di==3 i |,
_ (@2
12H2  y?nd d?y, 4.239
X=2 ——— : (4.18 . . .
=1 k& sir?(3Hy;) d¢? for i=1,2, respectively, we obtain:

and it may act again as an extra stabilizing force if 4y, o K2 1({dv.\2]i=2
d?V;/d¢?>0. Itis worth noting that, if the above inequality Azd—;=2yini4 Ag+Vg+ €5(Ai+vi)2— §<d—') }
holds, theX-term acts as aniversal stabilizing forcende- ¢ i=1
pendently of the value of the effective cosmological constant dA_
on the brane. _ZA%Ve”' (4.24

B. Stability behavior of the solutions with Vg#0 . . . .
The expression ol A/db is given, in this case, by E¢4.11)

with n? replaced byn?, while V. is still given by Eq.
g(4.12). Finally, we may use the relation

We now turn to the stability analysis of the solutions de-
rived in Sec. Il B that are characterized by a nonvanishin
bulk potentialVg. Changing to nonconformal coordinates,
the perturbed five-dimensional line-element may be written

as 2

. (4.295

Va(y)=3E— S gr2=3g— oIV
s(Yi)= _Ed’i “°ET3g do

ds?=n?(t,y)[ —dt?+a?(t) y;dxX'dx ]+ b?(t)dy>2.
(4.19 If we put everything together, thextremizationconstraint

The above metric ansatz is similar to that used in fg}, ~ 2ecOMes

therefore, the details of the analysis that lead to the expres-
sions of the stabilization constraints can be found there. V.
Here, we present only the main points of our calculation that aAz—eft :yini4
allow for the generalization of those results in the case of a db
nonvanishing effective cosmological constant. i=2
For the above ansatz, the scalar curvature may be ex- +2(3E+AB)H —1 (4.26)
I

12H2 &2 , [dv)?
K5 N

pressed as in Eq4.2) with the only difference, relevant to

our purposes, being =1

We can easily check that the second equality indeed holds if
S0y 1({12n'?2 8n” we use thgump conditions(3.36),(3.37).
RY=— 2l n2 +T . (4.20 After differentiating twice Eq(4.21) with respect td, we
arrive at thestabilization constraint. Once again, using the
jump conditions (4.23 and the equation of motion of the
calar field in the bulk3.31), together with Eq(3.27), we

Substituting the expression Bfin the action and performing
the same conformal transformation, the effective potentia

rrive at
finally takes the form
_ by, 6 n'2 ¢'? dVyi & 2k2 4
2 _ Y 2 eff _ 2.4, 2/\/ ) S\ N2y
A%(by;,by2) Ve szyl dén ( 2 e T +Ag A FTER-Y yiniks(VitAj) 9 (Vi+A)) +3(3E
2 2 2 2
3(dv, 1 d?V, [ dV;
+Vg |+, nH(V,+A)), 4.2 Sy il - 2pa” L L
B ;1 |(| |) ( :D +AB) 4 dd’ +4i21ylnld¢2 d¢
where now da\®  d2A]_
-2 b +AE Vess - (4.27
Ay by =24 [P, @22
, = n . . ) . .
Y1:0Y2 k& Joy, Let us first concentrate on the case withi>0. By using the

corresponding solution for the warp factor from H§.28
The extremizationconstraint demands the first derivative of and thejump conditions (3.36),(3.37), we obtain the final
the effective potential, with respect f@ to vanish when expression
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FIG. 2. The two plots depict the second derivative of the radion effective potggtfiahs a function ofv (with @?>0) and for positive

and negative values @, respectively.

d?V, 1202
P O 2 5i2c? |y 16| wic?
db? kg |\ sinf(wy,)
S P (4.28
sintf(wy;) ' '
where we have defined, ), and Z as
2
d?v;
x=> c?y?n?—, 4.29
2, it (429
20 2e;
yisinh(2w|y4|) —y5sinh(2w|y,|)
S Vit 2olys) —yisinn2olys)
sinf(wy;)
- 1
sint?(wy;)

[y,SintF(wy,) —yssintf(wy;)]?
2w(y1—Y2) +sinh2o]y,|) —sinh(2w|y,|) ’
(4.31

In Eq. (4.28, the constraint relating and w that appears in
Eq. (3.27), may be rewritten as

2 2.2
2 w K5C

- = 43
sintP(wy;) 432

and has been used to eliminate one parameter from the ex-
pression of the second derivative. The value of this quantity A?
still depends onw andc?, that parametrize the size of the

bulk quantities A g and Lg(¢), and the inter-brane distance,

parametrized by the values gf. For simplicity, we may fix
the locations of the two branes gt=—1 andy,=—0.5,

derivative of the effective potential—the expression inside
curly brackets in Eq(4.28—for both signs ofc? and we
comment on the results below:

c?>0: The second derivative assumes positive values for
large enougtt? but smallw. In other words, the background
solution is more stable when the kinetic term of the scalar
field is larger and the bulk cosmological constant is smaller.
Equation (4.32 then reveals that this particular regime of
parameters corresponds to solutions withegativecosmo-
logical constant on the brane.

c?<0: Positive values for the second derivative can be
achieved for large enough values of bathand w. In this
case, the effective cosmological constant on the brane is
positive by definition and therefore physically interesting,
stable solutions may emerge in this case.

It is worth noting that, in the above cases, we obtain posi-
tive sign for the second derivative of the radion potential
even if we assume thafV; /d¢?=0, contrary to what hap-
pened in Sec. IV A. An extra stabilizing force may arise, for
c?>0 or c?<0, if d?V;/d¢?>>0 or d?V,/d¢p?<0, respec-
tively. Let us finally note that in the parameter regimes where
the solution is clearly stable or unstable, the sole effect of the
inter-brane distance is to change the magnitude of the radion
mass squared: larger inter-brane distances imply latiger
absolute valugsecond derivatives. In the intermediate re-
gime, where the solutions struggle between stability and in-
stability, stable solutions may arise when the second brane is
located closer to the first one and away from the singularity.

In the special case ab=0, the expression of the second
derivative of the effective potential may be obtained from
Eq. (4.28 by taking the limitw— 0. Then, we find

c?yl d2v;
y; de?
X(ly1l2=1yal®). (4.33

The second term has a positive value only;<§c2>6)(2

-3

2

2.2 2

e + 2 Q(KSC _6X)
i=1 KsY1

while the singularity lies ag=0. As was pointed out in Sec. >0. In this case, the first term also contributes positively to
Il B, the parametec? may take both positive and negative the second derivative ifi>V;/d¢$?>0. In this case, stable
values; this may lead to different behaviors of the back-solutions with a negative cosmological constant on the brane
ground solution under time-dependent perturbations, as warise. Finally, we turn to the case with?<0. The expres-
will now see. In Fig. 2, we display the value of the secondsion of the second derivative may again be obtained from Eq.
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bulk cosmological constant. Surprisingly enough, brane-
world solutions with nontrivial warping along the extra di-
mension did emerge, with the “warping” parameter being
the expansion rate on the brane. These configurations accept
a variety of time-dependent solutions for the scale factor on
the brane, with flatK=0) or curved k= *+1) 3D spacetime
and a zero, positive or negative effective cosmological con-
stant. All of the above solutions are characterized by the
presence of a bulk curvature singularity, which inevitably
leads to the introduction of a second brane in the model. One
can show that thgump conditions, imposed on the warp
factor and the scalar field, lead to the fixing of the inter-brane
FIG. 3. The plot depicts the secondeerivative of the radio”distance, in terms of the fundamental parameters of the
effective potentiaV.; as a function of thes andc® parameters.  theory, and that the conventional Friedmann equation on the
brane is successfully recovered.

(4.28 by making the substitutionsw—i® and sinhfy,) In the second class of solutions that we derived, the pres-
o~ _ ence of a nontrivial bulk potential and a bulk cosmological
—1isin(wy;). Given the new form of the warp factor, the tWo .,ngtant was restored. In this case, the warping of the 5D
branes shoqu now be located between the two singularitie,atric was governed by the bulk cosmological constant
aty=0 and wy=—m. We therefore sey;=—m and we  shifted by a constant quantity given in terms of the kinetic
allow o to vary in the interval(0,1)—y, is placed in be- and potential energy of the bulk field. The same variety of
tween, with the size of the inter-brane distance having n®osmological solutions on the brane emerge here as well.
effect on the behavior of the second derivative. In Fig. 3, weThe sign of the kinetic term of the scalar field reveals its
display the value of the second derivative as a functioc?of nature(normal or tachyonicand affects the behavior of the
and®. We may easily see that stable solutions arise for larg@ulk potential: a normal kinetic term leads to a potential

enough, positive values af, with the solutions becoming Which is unbounded from below, near the bulk singularity,
whereas a tachyonic kinetic term leads to an infinitely high

, ~ o , potential barrier that may be used to shield the singularity in
stable regime appears when— 1, which is equivalent to  gingle-prane configurations. Here, we introduced a second
placing the first brane very close to the singularityegt= brane in order to do so, and we demonstrated that, as in the
—ar. By using Eq.(4.32), we may see that the stable regime first case, the inter-brane distance is fixed and the form of the
corresponds to solutions with egativecosmological con-  Friedmann equation on the brane is recovered.
stant on the brane. In the second part of our paper, we investigated the sta-
bility of our solutions under small, time-dependent perturba-
tions of the radion field. We derived thextremizationcon-
straints for both types of solutions and demonstrated that, as

There has been a lot of work related to the stabilization oexpected, they correspond to extrema of the radion effective
the radion field that parametrizes the size of the extra dimerpotential. Thestabilization constraints were also derived.
sion in the context of brane-world models. Most work hasThese revealed the stability behavior of the solutions and the
focused on the derivation of solutions with a constant radiortype of extrema to which they correspond, either minima or
field, i.e. a static extra dimension, with only a few papersmaxima. In the first class of solutions, brane configurations
investigating whether these solutions correspond to a truwith positive, zero or negative effective cosmological con-
minimum of the radion effective potential. In this paper, we stant were studied and it was shown that, in the absence of a
presented two new, brane-world solutions arising in the presscalar field potential, those solutions come out to be local
ence of a bulk scalar field, and studied their stability undemaxima, saddle points or minima of the radion effective po-
time-dependent perturbations of the radion field demonstratential, respectively, in agreement with the literature. How-
ing the existence of phenomenologically interesting, stablever, in our case, the presence of an extra term, involving
solutions with a positive cosmological constant on the branesecond derivatives of the interaction terms of the scalar field

For our analysis, we used a factorizable ansatz for then the branes, acts asuaiversalstabilizing force, indepen-
line-element along the brane. Under the assumption that theéent of the sign of the cosmological constant on the brane, as
total energy of each brane is the sum of a constant brankeng as the second derivatives are positive. In this way, so-
tension and the interaction term of a time-independent, bulkutions with a positive cosmological constant on the brane
scalar field, the factorization of the 3D scale factor wasmay become stable, saddle-point solutiondaaRandall-
shown to be directly related to the stabilization of the extraSundrum may turn to true minima, and AdS-type solutions
dimension. This relation holds both on and off the brane, asn the brane may be further stabilized. The results for the
one can see by using the scale fagtonp conditions and the second class of solutions found in this paper are even more
off-diagonal component of Einstein’s equations, respectivelyinteresting: the aforementioned term with the derivatives of

The first class of solutions presented here corresponds tothe interaction terms may still act as an extra stabilizing
vanishing bulk potential for the scalar field and a vanishingforce—upon appropriate choice of the sign of the second

more and more stable as the valuew@fincreases. An un-

V. CONCLUSIONS
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derivatives—nevertheless, stable solutions can arise even bulk scalar field, in a brane-world model, may successfully
the case where this term is zero. The parameter regimes thigad to a variety of stable solutions, but more importantly,
correspond to stable solutions are determined by the valués may lead to cosmologically interesting, stable solutions
of the bulk cosmological constant and the kinetic term of thewith a positive effective cosmological constant—a type
scalar field. It is worth noting that the sign of the latter quan-of solution that has been difficult to derive up to now.

tity also defines the sign of the effective cosmological con-
stant of the stable solution: a norm@lositive) kinetic term
gives rise to solutions with negative cosmological constant,
while a tachyonidnegative one leads to a positive effective
cosmological constant.
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