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Residual mass effects in improved domain wall fermions ∗
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In order to improve simulations with domain wall fermions (DWFs), it has been suggested to project out a
number of low-lying eigenvalues of the 4-dimensional Dirac operator that generates the transfer matrix of DWF.
We investigate how this projection method affects chiral properties of quenched DWF. In particular, we study
the behaviour of the residual mass as a function of the size of the extra dimension.

1. Introduction

Domain wall fermions (DWFs) preserve chi-
ral symmetry [1,2,3] when the lattice size in the
5th direction, Ns, is taken to infinity. A mea-
sure of chiral symmetry breaking is the residual
mass mres. Even though the restoration of chi-
ral symmetry is expected to be exponentially fast
in Ns, in practice mres decreases very slowly as
first shown by CP-PACS [4,5]. This is due to the
existence of very small eigenvalues of the trans-
fer matrix along the 5th direction. At large Ns

these eigenvalues determine the rate of the expo-
nential decay. It is clear that any improvement
of the chiral properties of DWF has to come from
eliminating these low-lying eigenvalues.

One idea is to improve the gauge actions
[4,5,6,7]. However, besides the potential difficul-
ties with unitarity violations and the sampling
of topological charge sectors, this method does
not solve completely the problem. In particular
with the Iwasaki gauge action, the convergence
rate also becomes slow at large Ns [5] (see Fig.
2): very small eigenvalues of the transfer matrix,
even though less frequently, also appear in this
case. Using the DBW2 action seems to be much
better in this respect [7], but it is unclear whether
these small eigenvalues could eventually appear
there, too, leading to similar problems.

Another method to eliminate the small eigen-
values is to project them out of the transfer ma-
trix [8,9]. In this contribution, we investigate the
projection method based on Ref.[8], where the
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projection is performed on the transfer matrix it-
self. (In Ref.[9], the projection is operated only
on a boundary term.) The aim of this paper is to
investigate the effects of the projection method on
the residual mass in the quenched configurations.

2. Domain wall fermions

Details of our notation can be found in Ref.[8],
and we give only a brief summary below.

The 5D domain wall operator is defined as

D =
1

2
{γ5 (∂∗

s + ∂s) − a5∂s∂s} + M , (1)

where the operator M is obtained from the stan-
dard 4D Wilson–Dirac operator with negative
mass (DW mass). Choosing open boundary con-
ditions in the 5th dimension, chiral modes with
opposite chiralities are localized on the 4D bound-
ary plane at s = 1 and Ns. The action of “quark
fields”, which are constructed from the boundary
fermions, is related to an effective 4D operator
DNs

, which satisfies

aD ≡ lim
Ns→∞

aDNs
= 1 − A√

A†A
, (2)

where

A =
−a5M

2 + a5M
. (3)

The D of eq.(2) satisfies the Ginsparg–Wilson re-
lation and thus an exact lattice chiral symmetry.

In realistic simulations, for finite Ns, chiral
symmetry is explicitly broken to a certain extent
that can be quantified by the values of the so-
called residual mass, which measures the anoma-
lous term in the axial Ward–Takahashi identity
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[3]: 2J5q(x) ≡ ∇µAµ(x) − 2mfP (x), where Aµ

is the axial current and P is the pseudoscalar
density. The size of this extra chiral symmetry-
breaking term can be described by the residual
mass

mres = lim
t→∞

∑
x
〈J5q(t,x)P (t,x)〉∑
x
〈P (t,x)P (t,x)〉 . (4)

2.1. Improvement of domain wall fermion

We employ a method to project out the small
eigenvalue of A†A [8]. The improved operator M̂,
instead of M, satisfies the following relations in
order that eqs.(2) and (3) hold;

M̂† = γ5M̂γ5 , det(2 + a5M̂) 6= 0 . (5)

This is used to construct M̂ in such a way that
the very low eigenvalues of A†A disappear, while
keeping D invariant. Following Ref.[8], the new

operator M̂ satisfying eq.(5) is given by the fol-
lowing expression;

Â =
−a5M̂

2 + a5M̂
= A +

r∑

k=1

(α̂k − αk)γ5vk ⊗ v†k , (6)

where vk is the eigenvector of γ5A,

γ5Avk = αkvk , γ5Âvk = α̂kvk , (vk, vl) = δkl , (7)

and r is the number of eigenvalues projected out.
Therefore an improved DWF operator can be ob-
tained after substituting M in eq.(1) with M̂
given by

a5M̂ = a5M−
r∑

k,l=1

Xklwk ⊗ w†
l γ5 , (8)

where (X−1)kl = 2δkl(α̂k − αk)−1 + (vk, wl) and
wk = (2 + a5M)γ5vk.

3. Eigenvalues of matrix A†A

The eigenvalues of A†A can be calculated by
a straightforward generalization [8] of the Ritz
functional method in Ref.[10]. We have cal-
culated the convergence rate from eigenvalues
of A†A [8,11] and the distributions of low-lying
eigenvalues for various gauge actions [11].

4. Simulation of improved DWF

The values α̂k can be chosen freely as long as
α̂k > αk. This can be used to reduce the value of
the residual mass. Here we use α̂k = 2sgn(αk)|αl|
with (max{k}; l) = (3; 10) and (10; 10) in the pla-
quette gauge action. The notation in the figures
is λproj = 2λl = 2|αl|, then α̂k = sgn(αk)λproj.

For the Wilson gauge action we have chosen the
gauge coupling to be β = 6.0 (a−1 ∼ 2 GeV) and
the DW mass to be m0 = 1.8. The lattice size is
123 × 24 × Ns. This size is a little smaller than
the ones used in simulations of the CP-PACS and
RBC collaborations (163 × 32×Ns); the value of
the lattice spacing is, however, the same. The
bare quark mass is always fixed to mf = 0.02.

In Fig.1, the quantity
〈J5qP 〉
〈PP 〉 without and with

projection for Ns = 32 and 48 is plotted. The
number of projected modes is 0, 3 and 10. Note
the large fluctuations of the residual mass when
no projection is performed. As the number of
eigenvalues projected out is increased, the deter-
mination of the residual mass is much more stable
and cleaner.
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Figure 1.
〈J5qP 〉
〈PP 〉 without and with projection for

Ns = 32 and with projection for Ns = 48. The
fitting range for mres is 4 ≤ t ≤ 20.
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Figure 2 shows our main result: the comparison
of the behaviour of the residual mass against Ns

for different improvement methods. The result
at small Ns, for example Ns = 16, reveals that
the projection method does not show any effect.
In the large-Ns region, the effect of the projec-
tion of the low-lying eigenvalues on the residual
mass is, however, remarkable. This is explained
[5] by simple and qualitative arguments, as fol-
lows; mres ∼

∑
α e−αNs ∼

∫
dαρ(α)e−αNs , where

α is the square root of eigenvalues of the opera-
tor A†A and ρ(α) is the eigenvalue density, which
grows with α. In the contribution to the residual
mass of each eigenvalue, there is a competition
between the density function and the exponen-
tial suppression. Therefore, at large Ns, the low-
lying eigenvalues dominate owing to the exponen-
tial suppression. At small Ns, however, not only
low-lying but also bulk eigenvalues contribute to
mres, owing to ρ(α).
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Figure 2. Residual mass as a function of Ns with
and without using the projection method. Filled
symbols represent our data. We also add data
from simulations of the CP-PACS and RBC col-
laborations for comparison. The lines are just to
guide the eyes.

5. Summary

We have studied the residual mass effect of the
projection method [8] on the restoration of chi-
ral symmetry for quenched DWF. At large Ns,
the low-lying eigenvalues of A†A dominate the
behaviour of the residual mass. Therefore the de-
cay rate of the residual mass with Ns can be sim-
ply controlled by the number of modes projected
out. The residual mass for smaller Ns, however,
is controlled by the low-lying and bulk eigenval-
ues. This is consistent with the arguments in the
previous section [5]. Our numerical study shows
that the projection method is superior to the im-
provement of the gauge action at large Ns.

We have also observed that the quantity
〈J5qP 〉/〈PP 〉 becomes much more stable after
performing the projection, which may affect also
other correlation functions to be stable and clean.

Since the projection method leads to a small
numerical overhead, we conclude that using Wil-
son gauge action combined with the projec-
tion method is competitive with using improved
gauge actions. To understand the projection
method further, we are investigating the projec-
tion method with improved gauge actions [11].
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