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Abstract

If the expectation value of the right-handed (rhd) sneutrino comes to dominate the uni-
verse, its decay naturally leads to successful leptogenesis, as well as significant dilution
of dangerous inflationary relics, such as the gravitino. The resulting baryon asymme-
try is independent of other cosmological initial conditions. This attractive variant of
leptogenesis requires at least one of the rhd neutrinos to have small Yukawa coupling
and to have mass ∼ 106 GeV, much smaller than the grand unified (GUT) scale. We
show that these features naturally arise in the context of independently motivated and
successful 5d orbifold GUTs with inverse-GUT-scale-sized extra dimensions. Rhd neu-
trinos are realized as bulk fields Ni with 5d bulk masses, while Yukawa couplings and
lepton-number-violating masses for the Ni are localized at the SM boundary. The expo-
nential suppression of the would-be Ni zero-modes leads to the desired small 4d Yukawa
couplings and small masses for the rhd neutrino states. The see-saw prediction for the
lhd neutrino mass scale is automatically maintained. We show that this realization of
rhd neutrinos is nicely accommodated within an attractive orbifold-GUT flavour model,
where all flavour hierarchies have a geometrical origin.

http://arxiv.org/abs/hep-ph/0208249v2


1 Basics of the scenario

With growing experimental evidence for neutrino masses in a range that is consistent
with a GUT-scale-based see-saw mechanism [1], leptogenesis has become the standard
scenario for the generation of the baryon asymmetry of the universe. In the original
proposal [2], the heavy rhd neutrinos decay in an out-of-equilibrium fashion once the
universe has cooled to a temperature below their mass scale. The resulting lepton number
is then converted to baryon number by standard model (SM) sphaleron processes (for
a recent review see, e.g., [3]). Alternatively, in a supersymmetric theory, lepton number
can be generated by the decay of a condensate of the scalar component Ñ of the rhd
neutrino superfield N [4]. In particular, a recent detailed analysis [5] of this scenario has
shown that, if Ñ comes to dominate the universe, its decay can naturally produce the
required lepton asymmetry independently of other cosmological initial conditions. At the
same time, the number density of dangerous inflationary relics, such as the gravitino, is
significantly diluted.

This cosmologically attractive variant of leptogenesis requires at least one of the rhd
neutrino masses to be very small compared with the GUT scale, ∼ 106 GeV, and the
corresponding Yukawa coupling to be suppressed. In the present paper, we show that such
a situation arises naturally in the context of independently motivated higher-dimensional
GUTs (with inverse-GUT-scale-sized extra dimensions). Before embarking, in Sects. 2
and 3, upon a detailed discussion of the orbifold-GUT model and of the cosmology, we
now explain the fundamentals of our scenario.

To be specific, we will formulate our ideas in the framework of supersymmetric SU(5)
orbifold GUTs [6, 7, 8, 9] in 5 dimensions. These theories are attractive because they
incorporate the success of MSSM gauge-coupling unification [8,9], while providing natural
doublet-triplet splitting as well as suppressed proton decay [6, 7, 8, 9]. Moreover, a three
generation model with a geometrical origin of hierarchical Yukawa couplings and see-saw
neutrinos can easily be realized [10].

The starting point for these models is a 5d super Yang-Mills theory compactified on
an interval with coordinate y ∈ [0, l]. At the y = 0 boundary (the ‘SU(5) brane’) the 5d
gauge symmetry is unbroken by boundary conditions, while at y = l (the ‘SM brane’),
the boundary conditions on the gauge fields explicitly break the 5d SU(5) down to the
SM gauge group. Below the compactification scale Mc ≡ 1/l, one has a 4d effective field
theory with SM gauge group (and N=1 supersymmetry).

A basic property of such models is that the ‘bulk’, y ∈ (0, l), is moderately large
compared to the fundamental 5d Planck (or UV cutoff) length. Arguments pointing to
this conclusion include the weakness of the effective 4d unified coupling, the ‘observed’
smallness of GUT-scale threshold corrections, and the flavour hierarchies among the gen-
erations (see e.g. [8, 9, 11]). As we discuss in Sect. 2, an alternative way of quantifying
the size of the bulk follows from the requirement that gauge coupling unification (in-
cluding the KK-mode corrected logarithmic running above Mc) occurs at the 5d Planck
scale. Concretely this argument favours an orbifold GUT setup with Ml ≃ 300 and
M ≃ 1.4×1017 GeV, where M is the reduced 5d Planck mass. This is in accord with the
size of the bulk deduced from other arguments.
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If a bulk mass m, odd under 5d parity, is introduced for a bulk matter field, its zero
mode develops an exponential profile ∼ exp[−ym] [12] (see also [13,11] and [14]). Thus,
depending on the sign of m, zero modes can be strongly peaked at either brane. If one of
the three SM-singlet rhd neutrino fields Ni is exponentially peaked at the SU(5) brane,
while lepton number violating mass terms ∼ N2

i are allowed only at the SM brane, an
exponential suppression of both the 4d rhd neutrino mass and Yukawa coupling naturally
arises. The crucial observation is that the light neutrino masses are not affected even if one
or more of the Ni are such bulk fields with arbitrary bulk profile. This is clear because
the Ni zero modes receive only their kinetic term from the bulk, while their effective
4d mass and Yukawa coupling come from the brane. When the Ni are integrated out,
their kinetic term plays no role and thus it is irrelevant whether they are brane or bulk
fields. Therefore the traditional see-saw prediction for the lhd neutrino mass scale is
maintained. However, the rhd sneutrino mass scale is exponentially suppressed, as are
its Yukawa couplings, and thus decay width. These are the new features that allow us to
realise the attractive scenario of sneutrino (Ñ) dominated cosmology and leptogenesis.

In Sect. 2 we present a more detailed motivation and quantitative analysis of the
basic orbifold picture of neutrino masses and interactions, in particular a demonstration
that it can be successfully embedded in a full flavour model. Specifically, both Higgs
doublets and the three 5’s of SU(5) (denoted by F i) are localized at the SM brane, while
the three 10’s (denoted by Ti) are bulk fields. The quark and lepton mass hierarchies are
generated by the bulk profiles of the Ti s.

However, we emphasise that our neutrino mass construction is quite generic and
does not rely on the details of the specific SU(5) model worked out in the rest of this
paper. The crucial ingredient is a 5d, or higher-dimensional theory compactified on an
interval with Yukawa couplings and lepton-number-violating neutrino masses localized at
one of the boundaries. The exponential suppression of zero-mode wave functions at that
boundary generates both the fermion mass hierarchy and the desired light rhd neutrinos.

The cosmology of the above model of neutrinos has many attractive aspects. In
particular, over a wide parameter region it leads to the Ñ dominated early universe
of [5], as Ñ has an exponentially enhanced life-time. In more detail, if the initial value
of |Ñ | is of the order of M , a natural circumstance, then Ñ will come to dominate the
universe for inflationary reheating temperatures TR

>∼ 109 GeV. Moreover, if TR is varied
between ∼ 109 GeV and ∼ 1012 GeV, the gravitino number density in the late universe
remains fixed at the level corresponding to TR ∼ 109 GeV. This attractive feature of Ñ
dominated cosmology is due to the entropy produced by Ñ decay. Finally, the decay of
Ñ produces the lepton-number asymmetry.

This cosmology is a fascinating possibility since most of the important physical pa-
rameters in the present universe, such as baryon-number asymmetry, entropy (and, as
we later discuss, even spectrum of density fluctuations), are determined by the nature of
the scalar partner of the lightest rhd neutrino. In Sect. 3, we provide a more detailed dis-
cussion of this cosmology, while some further possibilities, together with our conclusions,
are contained in Sect. 4.
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2 The flavour model

Consistency of the orbifold GUT framework requires Mc = 1/l to be significantly smaller
than the UV scale M of the 5d gauge theory. To be more specific, the (reduced) Planck
masses in 4d (MP ) and in 5d (M), are related by

M
2

P = M3 l , MP = MP /
√

8π ≃ 2.4 × 1018 GeV , (1)

and we demand gauge coupling unification at the fundamental scale M . In spite of the
UV sensitivity of the non-renormalizable 5d theory, the differences of inverse SM gauge
couplings αij = α−1

i − α−1

j (i = 1, 2, 3) continue to run logarithmically above Mc [8, 9]
because these differences are only sensitive to the SU(5)-breaking SM brane. In the
context of the minimal model of [9], where the Higgs-doublets are localized at the SM
brane, this ‘differential running’ [15] comes entirely from the gauge sector. With the
effective SUSY breaking scale set to mZ , we have

αij(mZ) = αij(M) +
1

2π

{

aij ln
M

mZ

+
1

2
bij ln

M

Mc

}

, (2)

where aij = ai − aj and bij = bi − bj (with ai = (33/5, 1,−3) and bi = (−10,−6,−4))
characterise the familiar MSSM running and the KK mode contributions respectively.
If we define the conventional 4d unification scale by the meeting of the U(1) and SU(2)
couplings α1 and α2, then the low-energy data α−1

i (mZ) = (59.0, 29.6, 8.4) imply MGUT ≃
1.9× 1016 GeV. By contrast, combining Eqs. (1) and (2) and assuming α−1

12 (M) = 0, one
derives the 5d unification scale M = 1.4 × 1017 GeV and Ml = 2.8 × 102. Of course,
these numbers represent only rough estimates since the αij(M) have, in general, non-
zero O(1) values, which perturb the calculation of Ml and M . (In the slightly different
approach of [16], the model is fixed by requiring the precision of simultaneous 1-2 and
2-3 unification to be better than with conventional MSSM running.)

The above discussion provides us with a motivation for an orbifold GUT setup with
M ≃ 1.4 × 1017 GeV and with the small parameter ε2 ≡ 1/(Ml) ≃ 1/300. Flavour is
described by introducing the three F i fields and the two Higgs doublets Hu and Hd on
the SM brane (recall that, because of the reduced symmetry of the SM brane, there is
no need for Higgs triplets), while allowing the Ti to propagate in the bulk.1 This large
disparity between T ’s and F ’s is the geometric origin of small quark and large lepton
mixing (cf. [17] and [10]). If a bulk mass m, odd under 5d parity, is introduced for a
5d hypermultiplet, its zero mode develops an exponential profile ∼ exp[−ym]. Thus,
depending on the sign of m, zero modes can be strongly peaked at either brane. In par-
ticular, this allows for a dynamical realization of SM-brane fields with quantum numbers
appropriate for an SU(5) representation (e.g., the Higgs doublets and the F i above).
We will use this additional tool to realize the fermion mass hierarchy by appropriately
localizing the Ti.

1 To be more precise, one introduces hypermultiplets Ti and T ′

i
and assigns boundary conditions

ensuring that the zero modes correspond to the field content of three 10’s of SU(5) [8,9]. Moreover, the
boundary conditions break N=2 to N=1 SUSY, leaving us with conventional chiral multiplets at low
energy E < Mc.
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An understanding of the observed hierarchies in the fermion masses and mixings
emerges naturally if the bulk mass of T3 is sufficiently large and negative, m < 0 (so
that, for all practical purposes, T3 is a SM brane field), while T2 has vanishing bulk mass
(flat zero-mode) and T1 has a finite bulk mass m > 0 (its zero-mode therefore being
suppressed at the SM brane).

Concretely, the primordial and unstructured O(1) Yukawa couplings λ at the SM
brane are rescaled as

λ → λ√
Ml

√

2ml

e2ml − 1
(3)

for each participating bulk field with bulk mass m. This rescaling follows from the 4d
canonical normalization of the 5d kinetic term and the exponentially suppressed zero-
mode field value at the SM brane. Applying this to T2, one finds that this field enters
Yukawa interactions with a suppression factor ε. The analogous suppression factor for
T1 depends on m and becomes ∼ ε2 for the choice ml ≃ 3.9. This leads to the following
realistic Yukawa matrix structure for the two effective 4d interactions HuT

T λTTT and
HdT

TλTF F :

λTT ∼







ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1





 , λTF ∼







ε2 ε2 ε2

ε ε ε
1 1 1





 , (4)

with unknown O(1) factors multiplying each entry.2 It is known that this Yukawa cou-
pling hierarchy also gives rise to an approximately correct CKM structure. The top
Yukawa coupling is naturally O(1). The required relative suppression of down-type
Yukawa couplings can be realized either by going to large tanβ or by slightly decreasing
the strength with which Hd is peaked at the SM brane.

The construction presented so far can be summarized as follows. By identifying
the 5d Planck mass with the unification scale, we have argued for a relative bulk size
characterized by ε ∼ 1/

√
Ml ∼ 1/

√
300. If all fields except T1 and T2 are localizing

at the SM brane, this bulk suppression factor beautifully explains the mass hierarchy
between the two heavier generations [11]. To explain the extreme lightness of the first
generation, we had to give T1 a bulk profile exponentially suppressed at the SM brane
using the additional tool of bulk masses. With this tool in hand, rhd neutrino singlets
can easily acquire the exponentially suppressed 4d masses and couplings required for the
Ñ dominated universe.

Now we discuss the rhd neutrinos in more detail. Consider introducing three neu-
trino fields Ni at the SM brane. Given a Majorana mass matrix MN,ij with O(M) entries
and O(1) Yukawa couplings between Ni, F i and Hu, the conventional see-saw mech-
anism leads to a light neutrino mass scale |Hu|2/M ≃ 2 × 10−4 eV. In the present
scenario, such a small mass scale is welcome since it ensures the out-of-equilibrium decay
of Ñ (see Sect. 3). The observed neutrino oscillations, which require a somewhat larger

2 A slight modification, leading to a welcome further suppression of electron and down-quark mass,
is obtained by placing one of the F ’s in the bulk. In fact, such a construction can be motivated by its
particularly high symmetry: One set of fields (T, F ) are on the SM brane, one set are massless bulk
fields, and the third set are massive bulk fields with the sign of the mass flipped between T and F

(making F effectively a SM brane field).
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light neutrino mass scale, can be accommodated by assuming that MN has two slightly
suppressed eigenvalues. (A concrete example of such a suppression mechanism will be
provided shortly.)

As discussed in Sect. 1, light neutrino masses are not affected if one or more of the
Ni are promoted to bulk fields. To be specific, let us declare N1 to be a bulk field with
bulk mass m1 and effective 4d mass (cf. Sect. 5 of [10])

M1 ≃ 2m1e
−2m1l . (5)

Due to the exponential suppression factor, the desired small value of M1 is easily realized:
for example, M1 ≃ 3 × 106 GeV for m1l ≃ 11. While this concludes the description of
our basic flavour model with a naturally light rhd neutrino, several open issues deserve
further discussion.

Firstly, we need to enhance two of the light neutrino masses. For example, one could
introduce a Froggatt-Nielsen U(1), broken by two charge-(±1) fields with vacuum ex-
pectation values |Φ±| where |Φ±|/M ≃ η ≪ 1 [18]. With charge assignments (0,−1,−1)
and (1,1,1) for the Ni and F i respectively, one obtains the following structures for the

Yukawa matrix λN in HuF
T

i λN,ijNj and the mass matrix:

λN ∼







η 1 1
η 1 1
η 1 1





 , MN ∼







1 η η
η η2 η2

η η2 η2





 . (6)

It is easy to convince oneself that all entries of the resulting light neutrino mass matrix
mν ≃ λNM−1

N λT
N × |Hu|2 are of the order η−2|Hu|2/M . This also sets the scale for two

of the eigenvalues. Although the remaining eigenvalue is suppressed to η2|Hu|2/M , all
three mixing angles are generically large.3 In our setup, realistic neutrino phenomenol-
ogy requires η ∼ 10−1. Furthermore, assigning a suitable U(1) charge to Hd provides
an alternative way to realize suppressed down-type masses. Let us finally argue why
the family-symmetry should be broken in the U(1) charge assignment of the Ni. One
possibility is to demand vanishing U(1) charges for all bulk fields. Alternatively, one
could replace the U(1) with a Z3 and then note that, while the cancellation of the mixed
Z3-SU(5) anomaly forces all three Fi to have the same charge, the Ni charges remain
unrestricted.

Secondly, it is necessary to forbid both parity-even bulk masses as well as SU(5)-
brane-localized mass terms for the rhd neutrinos. Following [10], this can be done by
gauging U(1)χ (named as in [20]), defined by SU(5)×U(1)χ ⊂ SO(10). Since Ñ domina-
tion requires a large initial value of Ñ1, the D-term potential for Ñ1 has to be suppressed.
This can be achieved by dynamically breaking U(1)χ at the high scale M in 5d. A sur-
viving discrete subgroup will be sufficient to forbid the dangerous mass operators. In
addition, it is natural that U(1)χ is broken by orbifolding at the SM brane [10], making
it the only possible location for the required lepton-number violating mass term.

3 The smallness of 1-3 mixing may be accidental (cf. [19]). Alternatively, it could be explained in a
modified model where one of the F ’s is a bulk field.
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Furthermore, we would like to comment on the relation of our method of generating
the fermion mass hierarchy and the light N1 field to the familiar Froggatt-Nielsen ap-
proach. Certainly the assignment of bulk masses to different sets of fields resembles the
assignment of U(1) charges. This similarity becomes even more pronounced if the bulk
masses are dynamically realized by expectation values of U(1) fields with Fayet-Iliopoulos
terms at the boundary (see, e.g., [21]). However, especially in the case of the large sup-
pression factor needed for N1, it is a significant advantage that the bulk mass effect is
exponential rather than power-like. Furthermore, there are crucial qualitative differences
in the resulting phenomenology. For example, higher-order Kähler-terms involving T †

i Ti

together with the SUSY-breaking spurion, which can lead to dangerous flavour violation,
are unrestricted by U(1) symmetries. In our case, if SUSY breaking is localized at the
SM brane, such terms will be geometrically suppressed for the first two generations. The
argument extends to the F i if some of them are promoted to bulk fields.

Finally, note that the bulk masses used in the above construction are significantly
smaller than the fundamental 5d scale M . This may follow naturally if bulk masses come
from expectation values of weakly coupled U(1) fields. Alternatively, one may imagine the
5d theory to descend from a 6d theory, where bulk masses are forbidden, so that 5d bulk
masses are due to small, non-perturbative effects arising in the 6d to 5d compactification
process.

3 Cosmology

Let us turn to the discussion of cosmology. It is a reasonable assumption that the scalar
partner of at least one of the right-handed neutrinos has, during inflation, an expectation
value of the order of the cutoff scale M . The reason for this is that higher-dimension
operators in the Kähler potential link the inflationary sector, in particular the superfield
whose F -term or D-term gives rise to the non-zero vacuum energy, and the rhd neutrino
superfields. (Higher order superpotential terms can be forbidden by a continuous or
discrete symmetry acting on the superfield N1.) This leads to a contribution to the
(mass)2 of the sneutrino of order m2

eff
∼ (Hinf)

2, where Hinf is the inflationary expansion
rate. The sign depends upon the unknown Kähler operator coefficient. If m2

eff < 0, then
Ñ1 gains an expectation value only limited by yet higher-order terms in the Kähler
potential, suppressed by powers of M . (Note that the parametrically small inflationary
F - or D-term expectation value multiplies the entire set of higher dimension operators
which lead to a potential for Ñ1.) Here we have assumed that Hinf is larger than the
mass of the right-handed neutrino.

As described in the previous sections, for the lightest rhd sneutrino field Ñ1 both its
mass M1 (cf. Eq. 5) and its effective 4d Yukawa coupling,

λN,i1 ≃ η
√

2m1/M e−m1l , (7)

are exponentially suppressed. When the expansion rate H after the end of inflation
decreases below M1, Ñ1 starts coherently oscillating. Given a condition on the post-
inflationary reheating temperature TR (to be discussed below), the oscillation energy
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dominates the energy density of the early universe, and its decay produces the baryon
asymmetry observed today without any cosmological difficulty.

If the Yukawa couplings λN,ij of the Nj have CP violating phases, the decay of Ñ1

produces a lepton-number asymmetry ε1 given by [22, 5]

ε1 ≃ 1 × 10−10(M1/106 GeV)(mν3
/0.05 eV)δeff . (8)

Here, δeff is an effective CP violating phase. This lepton asymmetry is converted into a
combined baryon and lepton asymmetry through non-perturbative electroweak sphaleron
effects. A crucial observation of ref. [5] is that the final baryon asymmetry is determined
by the reheating temperature, TN1

, of the Ñ1 decay once it dominates the energy density
of the early universe. The net baryon to entropy ratio is given by [5]

nB/s ≃ (8/23)(3/4)ε1(TN1
/M1) ≃ 0.3 × 10−10(TN1

/106 GeV)(mν3
/0.05 eV)δeff , (9)

where nB and s are baryon-number and entropy densities, respectively. The observed
baryon asymmetry nB/s ≃ (0.4 − 1) × 10−10 is obtained by taking TN1

≃ 2 × 106 GeV
for δeff ≃ 1. On the other hand, the reheating temperature TN1

due to Ñ1 decay is given
by T 2

N1
≃ ΓN1

MP , where the decay rate ΓN1
is

ΓN1
≃ (3/4π)λ2

N,i1M1. (10)

We see that the desired reheating temperature TN1
≃ 2× 106 GeV is obtained for m1l =

11, where we have used Eqs. (5) and (7). Notice that the rhd neutrino mass M1 ≃ 3 ×
106 GeV > TN1

, and hence the out-of-equilibrium condition for Ñ1 decay is automatically
satisfied.

Let us now discuss the condition for the Ñ1 domination in the early universe. Since
the initial value of |Ñ1| ≃ 1017 GeV, the energy density of the coherent Ñ1 oscillation,
at the start of this oscillation, is a minor component of the total density. However, if
the Ñ1 lifetime is sufficiently longer than that of the inflaton, it can dominate the early
universe since the energy density of the radiation resulting from the inflaton decay dilutes
faster than the energy density of the coherent oscillation. Thus, the condition for the Ñ1

domination is translated to an upper limit on the inflaton lifetime for a given Ñ1 lifetime.
Written in terms of the post-inflationary reheating temperature, TR, this condition is

TR > 3TN1
(MP /|Ñ1|)2 ≃ 2 × 109 GeV , (11)

which is easily satisfied in a variety of inflationary models.

The post-inflationary reheating temperature must also satisfy an upper bound so
as to avoid the over-production of gravitinos. In the standard cosmology (without Ñ1

domination) the upper bound is determined to be TR < 1010 GeV for a gravitino mass ∼
1 TeV [23] (for a recent analysis see also [24]), giving a stringent restriction on inflationary
models.

However, with Ñ -dominated cosmology, only a weaker constraint applies. The reason
for this is that Ñ1 decay reheats the universe once more, and the associated entropy pro-
duction dilutes substantially the density of earlier-produced gravitinos. In detail, start
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from a situation where TR is at its lower bound given by Eq. (11) and raise the reheat-
ing temperature gradually. While the post-inflationary gravitino production increases
proportionally to TR, the subsequent Ñ1 decay introduces the dilution factor

1/∆ ≃ 3TN1
/TR(MP/|Ñ1|)2 , (12)

which precisely compensates the previous effect. Thus, the number density of gravitinos
is determined by an effective reheating temperature TR,eff instead of the original TR.
This effective temperature is given by

TR,eff = 1/∆ × TR = 3TN1
(MP/|Ñ1|)2 ≃ 2 × 109 GeV. (13)

However, if the reheating temperature rises above TR ≃ 1012 GeV, the situation changes
because now reheating takes place before Ñ1 oscillations start. While the initial gravitino
production continues to grow with TR, the dilution factor remains constant, giving

TR,eff = 1/∆ × TR = 3TN1
(MP /|Ñ1|)2(TR/1012 GeV) ≃ 2 × 109 GeV(TR/1012 GeV).

(14)

Applying the analysis of Ref. [23], we see that a gravitino of mass of order 1 TeV
is consistent with a significantly extended range of post-inflationary reheating tempera-
tures, TR < 1013 GeV. Putting this upper bound together with our earlier lower bound
from Ñ domination leads to an allowed range, 2 × 109 GeV < TR < 1013 GeV, for suc-
cessful sneutrino-dominated leptogenesis.

4 Conclusions

In summary, we have presented a higher-dimensional scenario, well motivated from a
particle-physics perspective, in which cosmological heavy sneutrino domination occurs
naturally and low-scale leptogenesis is responsible for the observed baryon asymmetry of
the universe. The entropy produced in the decay of the Ñ condensate dilutes unwanted
relics from the period of reheating, alleviating in particular the danger of gravitino over-
production.

We briefly comment on density perturbations in this scenario. The dominant density
perturbation can originate from the fluctuations of Ñ during inflation [25]. The deviation
of the spectrum from scale invariance depends upon m2

eff/H2

inf , where m2

eff is the effective
(mass)2 discussed at the beginning of Sect. 3. Scale invariance thus requires the dimen-
sionless Kähler potential couplings between N and the inflaton to be slightly suppressed.
Moreover, as in our scenario Ñ decay is the origin of baryon number asymmetry and
dark matter, we necessarily have adiabatic perturbation dominance [26].

Thus, the role of the inflaton is reduced to providing a period of exponential expan-
sion while its two main dynamical effects, the production of density perturbations and
the reheating of the universe, are taken over by the heavy sneutrino. In fact, the pres-
ence of the inflaton mainly has a constraining effect – it has to decay sufficiently early
to allow for heavy sneutrino domination and sufficiently late not to produce an excess of
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gravitinos. Thus, one might also wonder whether it is possible to get rid of the inflaton
altogether. One obvious possibility would be to assume a sneutrino potential with a flat
region away from the origin, so that a sufficiently long inflationary period driven by the
sneutrino condensate is realized. It would be a very interesting and challenging task to
understand the origin of such an unusual sneutrino potential.

Finally, we discuss a less radical way of avoiding the constraints associated with the
decay of the inflaton entirely. If the inflaton potential is such that, in the true vacuum, the
inflaton is massless, its energy density during the oscillation period decays faster4 than
that of Ñ , which varies with the scale factor R as R−3. Thus, the desired Ñ domination
is always obtained. The masslessness of the inflaton is technically natural since we do
not require any non-gravitational coupling of the inflaton to the matter sector. It would
be interesting to write down and analyse a well-motivated and complete inflation model
with a potential that leads to such a ‘harmless’ late time behaviour of the inflaton.
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is supported in part by Grant-in-Aid for Scientific Research (S)14102004.
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