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Is it possible to recover information from the black-hole radiation?
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In the framework of communication theory, we analyze the gedanken experiment in which beams
of quanta bearing information are flashed toward a black hole. We show that stimulated emission at
the horizon provides a correlation between incoming and outgoing radiations consisting of bosons.
For fermions, the mechanism responsible for the correlation is the Fermi exclusion principle. Each
one of these mechanisms is responsible for the partial transfer of the information originally coded in
the incoming beam to the black-hole radiation. We show that this process is very efficient whenever
stimulated emission overpowers spontaneous emission (bosons). Thus, black holes are not “ultimate

waste baskets of information.”

PACS number(s): 05.30.Ch, 04.20.Cv, 97.60.Lf
I. INTRODUCTION

In the wake of Hawking’s seminal paper in which he
proved that black holes radiate with a (distorted) black-
body spectrum [1], a fundamental question touching the
basis of quantum mechanics emerged.

The transmission of information by means of black-
body radiation is thermodynamically forbidden. There-
fore, it is widely believed that all information stored in a
physical system is inexorably lost as it crosses the black-
hole event horizon because, so it seems, it cannot be re-
covered from the black-hole radiation. Accordingly, as
a black hole evaporates completely pure states could be
converted into mixed ones (thermal radiation), threat-
ening the very fundamentals of quantum mechanics that
predict unitary evolution of quantum states.

There are many approaches to the problem. Hawking
[1,2] advocates that all information regarding the black-
hole past history is lost forever and that quantum me-
chanics has to be reformulated to accommodate this fact.
Others believe that this information remains stored in-
side a black hole until the last moments of evaporation.
Then either (i) the black hole stabilizes at some radius
of the order of Planck’s length and all the information
in question is retained in its interior [3] or (ii) all this
information is instantaneously liberated to the environ-
ment [4-6]. However, any of these scenarios requires a
huge amount of information to be confined within a tiny
region of space-time, something against our intuition and
in conflict with the entropy bound formulated some years
ago by Bekenstein [7,8]. Another group believes that the
resolution of the paradox lies in the physics of super-
strings: black holes are assumed to have some quantum
W hair that, in principle, could be detected via Bohm-
Aharonov experiments [9-11]. A more conservative stand
was taken by 't Hooft [12,13] who suggested that the in-
formation in question leaks from a black hole by some yet
unknown mechanism that correlates the outgoing and in-
coming radiations. In this direction, Bekenstein [14] very
recently explored the fact that the coefficient of trans-
mission through the potential barrier that surrounds a
black hole is not unity (Hawking’s radiation is not exactly
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blackbody), to show that there is enough room from a
thermodynamical point of view for the black hole to leak
all the information it stored along its past history.

Our aim in this paper is by far less ambitious than the
scope of the involved paradox. Here, we shall consider
the gedanken experiment where information is coded in
beams of quanta (very much as is done inside optical
fibers used for telephonic communication), which are
then flashed toward the black hole. Common wisdom
asserts that as the beam crosses the horizon all the in-
formation it bore is lost forever. However, this neglects a
fundamental aspect of black-hole radiance: the approach
of the incoming beam at the horizon is followed by the
stimulated emission of other quanta. In the framework
of communication theory we shall prove that, thanks to
this stimulated emission, information coded in an incom-
ing beam consisting of bosons is partially transferred
to the outgoing radiation and that this process is very
efficient for all modes satisfying Aiw << Ty, provided
that the mean number of quanta in the incoming beam
A, >> 1, because stimulated emission then overpowers
spontaneous emission. Under these conditions most of
the information originally coded in the ingoing beam can
be recovered from the outgoing flux. In the case of a beam
consisting of fermions, the exclusion principle provides
the mechanism responsible for a similar correlation.

II. THE ROLE OF STIMULATED EMISSION

An isolated black hole emits (spontaneously) bosons
with a spectrum

r
"Eeor (1)
where = hw/Tgy and I' is the coefficient of trans-
mission through the potential barrier that surrounds the
black hole [1], a function of black-hole and field-mode
parameters which cannot be cast in a closed form. For
this reason, it became a widespread practice toset I' = 1
while discussing black-hole radiance, mainly because it is
believed that the essence of the effect is captured by the
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thermal factor of this expression alone.

This practice gives the misleading impression that
black holes are inert to incoming radiation. But they are
not. Suppose that a black hole is impinged by n quanta.
Then, the mean number of quanta in the outgoing flux is
composed of spontaneous emission [Eq. (1)] and a frac-
tion (1 —I') of the original beam. For incoming thermal
radiation at temperature T [15,16],

r 1-T
ec—1 ev—-1’ )
where y = hw/T. On the other hand, the conditional
probability p(m|n) that the black hole returns m quanta

given that n are incident (in a given mode) is defined via
the equation

n =

po(m) = Zp(min)pz(n) ) (3)
n=0

where p;(n) and po(m) are the probabilities that n quanta
are incident and m emitted, respectively. This condi-
tional probability can be extracted from the above two
equations using maxentropy techniques [15,16):

(ez _ 1)enzrm+n

p(m|n) = (s — 14+ D)l
mﬁn(m,n)
(m +n —k)! &
X ;) Rn—R(m =R
(4)
X = 21;2F(coshx -1)-—1.

Similar results were also produced by field theoretic cal-
culations [17]. Although this conditional probability is a
quite complicated distribution, Bekenstein [16] disentan-
gled it into distributions corresponding to three different
processes, namely, elastic scattering, spontaneous, and
stimulated emissions:

min(m,’n)

pmin) = D PecalkIN)Pponcrosim(m — kln).  (5)
k=0

In this convolution, the first factor stands for the prob-
ability that n — k quanta are absorbed while k are scat-
tered:

i) = (1) T340 =T, ©)
where
T
Po=7—= )

and 1 — I'y stand, respectively, for the absorption and
(elastic) scattering probabilities of one quantum. The bi-
nomial factor takes care of the correct statistics for many
bosons.

The second factor in the convolution
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where v is implicitly given by

r 1
-1 e -1’ ®)

represents spontaneous and stimulated emission as shown
by evaluation of the mean number of returned quanta for
a fixed number k of incoming ones:

1
—(k+1).

mspont-i—snm = Zpapont+stlm(mlk)m =
m

ey
(10)

Whenever stimulated emission takes place, we expect
a black hole to behave very much like a laser, producing
amplification of the incoming beam (signal) with negligi-
ble degradation of the information it originally bore.

In what follows, we shall analyze this question in the
context of communication theory [18,19]. Assume that
the actual state |n) the incoming field mode is in is not
known a priori, only its occurrence probability p;(n).
The amount of ignorance concerning the signal’s actual
state is Shannon’s entropy [20]:

H;=-k Y pi(n)np(n). (11)

The constant k fixes the units of information: for k =
1/1In2 it is measured in bits, etc. Upon detection of the
signal an observer picks up one from all possible states,
gaining an amount of information equal to Shannon’s en-
tropy.

From the point of view of communication theory, a
black hole acts as a source of noise, jamming the informa-
tion borne by the original signal. In the presence of this
noise, the outgoing radiation is associated with a larger
entropy than is the incoming radiation, because this noise
introduces a further measure of uncertainty in the signal.
Nonetheless, this larger entropy does not correspond to a
larger amount of useful information, i.e., the one that, in
principle, could be recovered at the output. Thus, after
reaching the horizon, H; no longer represents the infor-
mation borne by the signal because this has since been
adulterated by noise. The procedure for dealing with
this situation was outlined by Shannon [21] who noted
that H;,, the conditional entropy of the input when the
output is known:

Hy,=->_ p(m|n)pi(n) In [p—'_—(n;tgz;(n)]

(12)
must represent the extra uncertainty introduced by the
noise, which hinders reconstruction of the initial signal
when the output is known. Thus, he interpreted

H,uw=H; — Hilo (13)

to be the useful information, meaning the one which we
could, in principle, recover from the output signal, even
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in the face of noise. Thus, H,,.. represents the infor-
mational content of the outgoing radiation. We can also
regard

H,j; =~ p(min)pi(n) lnp(mn)

n,m

(14)

as the uncertainty in the output for a given input, as
the effect of the noise. By means of Jannes identity, it is
trivial to show that H,..., can be alternatively expressed
in terms of p,(m):

Huseful = HO - Ho|i . (15)

Now, we wish to code information in the incoming
beam in the most efficient way in order to optimize its
transfer. In other words, we wish to maximize H,,.;,
with respect to either p;(n) or p,(m). The variation of

this quantity for a fixed mean number of quanta gives
(22]

pa(m) — e—[a+ﬂm+B(m)] , (16)

where the “chemical potential” B(m) depends on the
conditional probability through the equation

> B(m)p(m|n) = = p(m|n) Inp(m|n).  (17)

Inserting Eq. (16) into Eq. (15) we obtain the amount of
information that can be transmitted in the presence of

noise in the optimal regime:
Tnax = a + Bm. (18)

In the above, a and 3 should be determined by normal-
ization and mean number of quanta conditions. Namely,

a=In Z e~ [Am+B(m)] (19)
m
and
_ Oa

Shannon proved the important result that the optimal
regime for information transfer can always be achieved in
practice by means of an efficient coding of the message,
but that it can never be exceeded: any information we
try to send in excess of H,,., will be washed out by noise
21].

[ \]Ve are now in a position to calculate the amount of
information borne by the outgoing radiation in the op-
timal regime. Before doing so, it is worth recalling that
the geometry becomes transparent (I' — 1) for very large
frequency modes. In this limit, X — —1 and the sum in
Eq. (4) is unity. Thus, the outgoing radiation is purely
thermal:

p(m|n) — (L —e™%)e™™*. (21)

Notice that since the conditional probability is indepen-
dent of n, p,(m) — p(m|n). Inspecting Eq. (12) we see
that in this limit H;, — H; and consequently H..cy — 0.
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This result could be foreseen from thermodynamical con-
siderations because the second law of thermodynamics
forbids thermal radiation to convey any information.

In order to render these calculations feasible, we will
have to resort to a simplification of the problem by set-
ting I'o = 1, which corresponds to omitting scattering
processes. In other words, we assume that all incoming
quanta are absorbed by the black hole. Accordingly, in
so doing we shall be setting a lower bound on the amount
of information that could be borne by the outgoing ra-
diation, which we hope will be very close to its actual
value. With this simplification, the relation between z
and - becomes very simple:

v=In(e” +1). (22)
Thus, our task now is to solve Eq. (17) for the distribu-
tion (8). This calculation is shown in the Appendix and
the result is

Bem) = -1 3 (541

k=m
k
xS F(n+1)(-1)" (:) . (23)

n=0
where
F(n)= - §::0 (m: n) e " Inp(mn). (24)

Calculating F(n) entails a summation of the logarithm
of a binomial [see Eq. (8)], a task that we were not able
to accomplish analytically. Since the logarithm of a bi-
nomial, regarded as a function of its lower argument, is
very close to a parabola (see Fig. 1) we adopted the ap-
proximation

In (m + ") ~ 41n2"" (25)
n m+n

and carried out the summation detailed in the Appendix.

The final result for F(n) is

Y —(1—-e")In(l —e77)
(1 — e—’Y)n+2

F(n) ~ (n+ 1)L

4In2)e™
—n(—l(—_'—e:?y—)'ﬁjrl-. (26)
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FIG. 1. Approximating f(n) = In (T{l‘) by a parabola.
Here, m = 100.
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Inserting back this result into Eq. (23) we obtain, for
B(m),

B(m) =~ um + v, (27)
where

p=7—(e"-1)In(l—e™)—4In2(1 —e™)

and (28)

v=(4ln2)e™".
Fixing a and 8 through Egs. (19) and (20) in terms of
m one obtains

m+1
—v—ru. (29
= ) v—mu. (29)

I...(z) ~In(m+1) +mln (

Recalling the definitions of x4 and v [Eq. (28)]; the rela-
tion between the mean numbers of incoming and outgo-
ing quanta [Eq. (10)]; and the relation between v and x
[Eq. (22)], we plotted I, against z for ## = 1, 10, 20, 100
(see Fig. 2). The horizontal line represents the informa-
tion originally coded in the incoming wave. Notice that
for 7 sufficiently large, I,.., develops an unphysical neg-
ative tail, which must be a consequence of our (crude)
strategy of approximating the logarithm of a binomial
by a parabola. At any rate, there are features that are
likely to be universal. First, for high-frequency modes
z >> 1, I,.. — 0, because in this limit thermal radia-
tion overpowers stimulated emission (I' — 1). The other
feature is that as the mean number of incoming quanta 7
grows, less and less information is degraded for all modes
z << 1. This makes the case for the following picture:
whenever stimulated emission overpowers thermal radi-
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coded in the incoming one.

Now, what happens if the incoming beam contained
fermions instead of bosons? At first thought we are led
to say that the information carried by fermions is com-
pletely washed out by the black hole because the mech-
anism, responsible for correlating incoming and outgo-
ing radiations, that worked for bosons, cannot take place
(the exclusion principle forbids stimulated emission of
fermions). Fortunately, this is not quite true.

III. THE ROLE OF THE EXCLUSION
PRINCIPLE

Suppose that a black hole spontaneously radiating
fermions with a (distorted) thermal distribution is hit by
a fermion, which is then scattered. In order to conform
to the exclusion principle, the black-hole response must
be to suppress its own radiation of a similar fermion,
leaving a definite imprint in the outgoing radiation. In
other words, the exclusion principle provides the mecha-
nism that correlates fermion incoming and outgoing ra-
diations. As we shall see, this mechanism will be respon-
sible for the partial transfer of the information stored in
the beam to the outgoing radiation.

The mean number of fermions in the outgoing radia-
tion is, as before, composed of the spontaneous emission
and of a fraction 1 —I" of the mean number of incoming
fermions:

r
et +1

= +(1-D)a. (30)

From this equation it is possible to read the conditional
probabilities [16]:

ation, the amount of information that can be recovered p(0j0) =1 — r
from the black-hole radiation is close to that originally er+1°
1 boson 7 10 bosons
2.5 6
2 5
1.5 4
3
1
2
0.5 1
1 2 3 4 5 1 2 3 4 5
20 bosons 100 bosons
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4
2 —5
1 2 —s T ] -10

FIG. 2. Inax(z) for i = 1,10,20, and 100. Information is measured in bits.
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T
p(UI0) = =,
T
p(0[1) =31
and
1) = - 4+(@-T 31
P = =11 ) - (31)

In order to find the optimal information transmission
regime we follow the same steps we took in the previ-
ous sections. First we have to solve Eq. (17) with the
above distribution. For fermions there are only two B’s:

B(o) — 221D ~bp(1[0)

T (32)
and
B(1) = bp(OIOI) = ;p(Oll) , (33)
where
a = —p(0/0) Inp(0|0) — p(1|0) In p(1|0) (34)
and
b= —p(0[1) Inp(0]1) — p(1]1) Inp(1]1). (35)

The optimal rate can be expressed in terms of these
B’s:

Inax = —[(1 = M) In(1 — m) + mInm] — B(0)

+[B(0) — B(1)] m. (36)
The unique piece missing is the transmission coefficient.
We borrowed the low-frequency limit of I' for a mass-
less fermion with [ = s from Page’s work on black-hole
emission rates [23],

Fz(%)z, <1,

and plotted the graphic of I,., for 7 =0.5and 0 < z <<
1 in Fig. 3. Since a fermion is a binary system par excel-

(37)

FIG. 3. Imax(x) for fermions # = 0.5. Information is mea-
sured in bits.
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lence, information is measured here in bits. Observe that
at £ = 1, the limit where Page’s approximation breaks
down, most of the information stored in the incoming
beam is transferred to the outgoing radiation.

IV. CONCLUDING REMARKS

In this paper we showed that, contrary to common wis-
dom, black holes are not “ultimate waste baskets of in-
formation.” When hit by radiation consisting of bosons,
the black-hole response consists of stimulated emission
of other quanta. For fermions the mechanism is entirely
different. In order to conform to the exclusion principle,
the black hole must suppress its own spontaneous emis-
sion of a fermion having the same quantum numbers as
the one it scattered. Both mechanisms provide a correla-
tion between outgoing and ingoing modes, which allows
information originally stored in the incoming radiation to
be partially transferred to the radiation emitted by the
black hole.

Unfortunately, this mechanism is not efficient enough
to resolve the black-hole information paradox because
thermal radiation overpowers stimulated emission of
bosons for the vast majority of modes. For fermions,
whenever > 1, the spontaneous emission is not af-
fected because all incoming quanta are absorbed (1 —
I') — 0. If we wish to solve the “black-hole informa-
tion paradox” from a conservative standpoint such as
't Hooft’s, we have to search for new mechanisms that
could account for a perfect correlation between incoming
and outgoing radiation.

From a technical point of view, the crude approxima-
tion adopted for the logarithm of the binomial has to be
overcome, as well as the negligence of scattering processes
by the geometry. From a more fundamental standpoint,
there also remains to be investigated the transmission of
information by means of superradiant modes. Since in
these modes outgoing and incoming radiations ought to
be perfectly correlated, no information is expected to be
degraded by the black hole there.

Recently two-dimensional dilatonic black holes became
objects of intense research [24] because they allow back-
reaction effects to be taken into account. Let us recall
that in two dimensions the coefficient I' = 1. Accord-
ing to our informational theoretic approach and the re-
cent work by Bekenstein [14], two-dimensional, in con-
trast with four-dimensional black holes, do behave as
perfect sinks of information. Thus, the physics of two-
and four-dimensional black holes are entirely different,
and it might well be possible that all technology learned
in two dimensions might be useless for the real case of
four-dimensional space-time.
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APPENDIX: THE INVERSE MATRIX OF A
BINOMIAL

Inserting the distribution (8) into the equation
for B(m) [Eq. (17)] and canceling an overall factor
(1 — e~ 7)"*! yields

ngo B(m)e= ™ (m N ”) = F(n), (A1)
where
Fmy=—3 (m: ") e MInp(min).  (A2)
m=0

Solving Eq. (A1) for B(m) is equivalent to the problem
of finding the inverse matrix of the binomial (infinite ma-
trix). Tc this end, let us multiply both sides of this equa-
J

Next, we multiply both sides by (z — 1)k,k = 0,1,..
lying outside the region |z| < 1:

N (")

tion by 2™, where |z| > 1 is a fiducial complex number
and sum over n. The result is

_ z \™! F(n)
;B(m)e ym (———z — 1) = Z ) (A3)
where we used the fact that
m+n n 2 m+1
Zn:( ! )z _(z_l) . (A4)

Our next step is to expand the left-hand side of Eq. (A3)

b B<’"’6‘”"‘(m+1)ﬁﬁ TS

n
mnim+1 n 2

(A5)

., and perform a contour integration for any closed path C

(A6)

- ¥ ro (D)o f

n,p<n

on the right-hand side (RHS) of this equation we have expanded the factor (1 — 2)* into powers of z. The contour
integrals of the left- and right-hand sides are, respectively, 2mié,, x+1 and 27¢6, p41. Thus,

3 B(m)e ™ ('::11) = Xn: (n k 1) (=1)k="+1F(n).

A further trick is needed to isolate B(m). Multiply both sides of our last result by y*+!

fiducial quantity, and sum over k (0 < k < m) to obtain

then apply the operator ?—+—1T (£ dm)(m+ )

; B(n)e 11 (:1) L+yrm=3"

As our last step, we take the limit y — —1 and obtain

which, after substituting n by n + 1, yields exactly Eq. (23) displayed in Sec. II.

Our next task is to evaluate

(A7)
, where |y| < 1 is a new
ZB('n)e_"("“) [(1 + y)n+1 _ 1] — Z ( k >yk(_1)k—n—1F(n) : (A8)
—~ — \n— 1
on both sides of this equation:
k k -n— -m
> ) () 0ty ). (49)
smem =3, 5, ) ()0 R (a10)
3 (A11)

F == 3 (" ) np(min).

m=0

This calculation entails a summation of the logarithm of a binomial, a task that we were not able to accomplish.

Thus, we resorted to the approximation

In (m+n> ~4In2 mn .
n m+n

(A12)
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Under this approximation,

F(n)~ — Z (m;—n) e~ ™ [—fym +(n+1)In(l—-e”)+4In2

After some trivial manipulation, this can be rewritten as

F(n)~ ~ [v% + (n+1)In(1 - e“”>] > (
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Performing all the sums, the derivative, and the integration, one obtains

mn
- ] . (A13)
m + n) Jm—
- n
+ (4In2)n [ne"" /oo dﬂz (m:n) e Alm+n) _ Z (m: n) e"’mjl . (A14)
Y m m
Y- (1—e ") In(l —e77) 4In2e™7 (A15)

F(n)~ (n+1)2%

(1—e7)nt2

- "(1 Ze )t
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