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Abstract

This thesis presents a study into the CMS tracker analogue front-end amplifier
readout chip (APV), which during the period of the study was fabricated in three
different VLSI technologies. The early versions were fabricated in a total dose radiation
hardened Harris 1.2um process. Later it was transferred to a DMILL 0.8um process and
the latest version is in a 0.25um technology. Part of this thesis describes a test system
which was designed to thoroughly test APV chips on the silicon wafer and produce a
comprehensive data set for each chip to enable confident selection of good chips. The
main study is on the effects that large dose radiation environments can cause in the
individual parts of the chip. With the chips fabricated in different technologies it was
possible to make some comparisons of the magnitude of the effects between the Harris
and the 0.25um technologies, but most of the work was aimed towards understgnding
the effects within the 0.25um technology. Single Event Upset (SEU) was the main
consideration behind the experimental and simulation work. The study had two main
goals: the first was to investigate how SEU would affect the operation of the CMS
detector in the expected high radiation environment of the Large Hadron Collider
(LHC). The second goal was to look at SEU ffom a more academic viewpoint, enabling
a full understanding of how it is caused and what factors affect its magnitude.
Simulations were performed in order to reconstruct the conditions brought about by
highly ionising particles striking certain parts of the sensitive circuits, along with careful
consideration of the mechanisms behind the effect such as: ionised charge collection
within the semiconductor parts of the chip, how this charge deposition affects the circuit
and how the effects manifest themselves within larger devices. A good set of results
was collected from specially designed experiments, from which a confirmation of the

theoretical effect was produced.
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The subject of physics has spread throughout the realms of nature and now virtually
encompasses the foundations of all aspects of science. One complex realm of the
modern world is that of electronic systems and their interaction with their surroundings.
In fact if it were not for our understanding of electronics we would be unable to probe
deep into the subatomic heart of the natural world. Experimental physics now relies
heavily upon our ability to create and understand complicated electronic systems that
are capable of high-speed interactions with the carefully manipulated world surrounding

them.

The area of physics that describes the interactions between the fundamental particles
and forces of nature has undergone a great deal of evolution during the past 100 years.
The study of fundamental particles and their interactions is the underlying driving force
behind high-energy physics experiments. It is presently believed that the basic building
blocks of matter are contained within two families of particles (the leptons and quarks),
and four fundamental forces (the electromagnetic, weak nuclear, strong nuclear and
gravitational). From the point of view of high-energy physics, gravity is ignored since it
is many orders of magnitude weaker than the other forces. The Standard Model is a
marriage of theories, based on gauge group symmetries, which describe the interactions
of particles via the electromagnetic, weak nuclear and strong nuclear forces.
Unification of the electromagnetic and the weak nuclear forces has been achieved

within the standard model, but gravitation has not yet been encompassed.

The lepton family of particles contains six members, which are grouped into three
pairs of particles with charges -1 and 0. The uncharged members, called neutrinos, until
recently were believed to either have no mass at all or extremely small masses. Recent
findings suggest that they do have a mass but this is still a point for conjecture. The
charged members have well defined masses. Leptons interact by means of the

electromagnetic and weak nuclear forces.
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Introduction

There are also six quarks that can be grouped similarly into three generations of
pairs; their existence has been inferred from the behaviour of quark-antiquark pairs
(mesons) and quark triplets (baryons). Particles composed of quarks carry integer
charge and are collectively known as hadrons. Quarks interact by means of the weak
nuclear, electromagnetic and strong nuclear forces; their coupling via the strong force

distinguishes them from leptons.

Quantum Electrodynamics (QED) is the quantum theory of electromagnetism. It is
through the application of this theory that one can predict the interaction of charged
particles. QED postulates that the electromagnetic force is carried by a massless
particle with unit spin called the photon. The main attribute of the equations of QED is
their invariance under certain transformations of the electromagnetic field known as
gauge transformations[1.1]. The unification of the electromagnetic and weak nuclear
forces is achieved within Electroweak theory and requires the existence of three more
force carriers (denoted the W* W™ and Z° bosons). The weak nuclear force has a short
range, this fact gives rise to the requirement for the bosons to be massive; experiments
have shown that their masses are large (80.2 GeV/c” for the W bosons and 91.2 GeV/c?
for the Z boson). However, for the theory to exhibit gauge symmetry the force carriers
must be massless. This apparent contradiction can be resolved by postulating the
existence of the so-called Higgs field, mediated by the Higgs boson. The interaction of
the Higgs field with the weak nuclear bosons allows them to acquire mass at low
energies through the mechanism of spontaneous symmetry breaking. The search for
this Higgs boson is the main purpose of the CMS detector and to gather new
experimental evidence in the TeV energy regime, which has been, as yet, un-

investigated.

Quantum Chromodynamics (QCD) is the theory of the strong force. Like QED itis a
gauge invariant quantum field theory and contains eight mediating unit spin particles
called gluons. Each quark carries one of six varieties of "colour" charge (red, green,
blue, anti-red, anti-green and anti-blue), which the gluons couple to. The gluons also
carry colour and thus interact among themselves, restricting the range of the strong

force to sub-nuclear distances[1.1].
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The Road to Electronics in High Energy Physics

The role of electronics in High Energy Physics is vastly important. It is quite clear
that without the powerful tools that we can create using modern electronics, we would
stand no chance of making any of the experimental measurements we need in order to
probe deeper into the nature of particles and forces. Today we rely so heavily on
electronic detectors and computer systems to perform the particle detection and data
analysis that it is easy to forget just how recently the development of electronics and

microelectronics took place.

In 1904 JJ Thomson was struggling to explain how the atom might be made up of
electrons embedded in a positively charged sphere, the nature of which was a mystery.
During these times it was the role of chemistry to give insight into the nature of
elements and the structure of matter, but it was still mainly guesswork. At this time
detecting individual charged particles was achieved by means of special screens made
of substances such as ZnS, which produced a flash of light when struck by a charged

particle.

One of the first real breakthroughs on the road to particle physics and understanding
the structure of the atom was made in 1909 by Ernest Rutherford, when he discovered
the nucleus by firing alpha particles at a gold foil and measuring the scattering angle.
Expecting a distribution of small angles, he was surprised to find that very occasionally
an alpha-particle would be scattered through more than 90°. He postulated that this
implied the existence of a very small extremely dense object within the atom, the
nucleus. For this experiment Rutherford used no electronic equipment, employing a
ZnP screen and visually detecting the flashes of incident particles. Tools like this were
important in the search for an understanding of the structure of matter, but the
possibility of making an experiment that could track the path of individual particles
during collision experiments had not even been considered. It was years until the first

electronic equipment appeared in the particle detection world.
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The Road to Electronics in High Energy Physics

The first effective experimental apparatus that was capable of detecting individual
charged particles and tracking their path was the bubble chamber. This worked without
electronics and was extremely effective at tracking particles during collision
experiments. High energy physics experiments were dominated by the use of bubble
chambers between 1950 and 1970. They were typically made from a large vessel, a
meter or two in diameter, filled with superheated liquid hydrogen. Kinetic energy from
a passing charged particle would be transferred to the hydrogen causing it to boil and
produce tracks of bubbles. After a short time to allow the bubbles to expand, ~ 10 ms,
the chamber was photographed from several directions enabling a 3-D reconstruction of
the tracks. Unfortunately this system was slow to reset. After one event it would take
about 1s for the bubbles to be removed by increasing the pressure. So it took a long
time to gather enough statistics of one type of collision/decay event before it was
possible to make a good measurement of the cross-section. To add to this was the
problem of scanning the photographic films to look for interesting events. This was a

very time consuming task, with specially employed scanners to do the job.

At this time the first computers were just being developed. They were not very
powerful in comparison to modern day computers, and the size of a large room, which
made them quite impractical to begin with. Over the next few years, electronic systems
began to appear within the detectors themselves. Systems were developed in which
film was used to record the data, and coincidence monitors (normally two scintilators
combined in a logical AND that could be used to trigger spark chambers or the
photography of bubble chambers) were used to trigger on interesting particles.
Following this, position sensitive ionising chambers were developed by placing many
anode wires between two cathode plates. Electrons were released by the ionising
particle and then drifted towards the anode wire where they avalanched in the high field
region near the wire, amplifying the signal. The signal, in the form of a transient
current, could be detected and read out from each wire, by very simple electronic
circuits, which would measure the current, in order to detect the position of the particle.
Heavier ions that were also produced during the process drifted towards the cathodes,
producing a larger signal over a longer time period. Both of these signals-were used in

order to reconstruct the tracks with a resolution as precise as 200um.

In 1974 the J/'¥ meson was discovered. This was one of the discoveries that began

to transform high energy physics. This meson did not contain any of the previously
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discovered quarks (up, down and strange), but a quark-antiquark pair of a new heavier
quark, charm. Over the next few years the community began to search for other
mesons, which were expected after the discovery of the charm quark. These other
mesons were likely to have shorter lifetimes, of the order of 10"'%s. This meant that the
spatial resolution of the detectors had to be even better than 100um. At this time
resolutions of this order were possible in bubble chambers and emulsions, but because
of the low data taking rate and extremely slow analysis method, it was very impractical
to make many measurements of these rare events. At this point in the seventies, high
energy physicists began to research new ways of achieving better special resolution and
faster readout and analysis methods. Semiconductors had long since been discovered
and were already being used as high precision energy measuring devices in other areas
of physics. Soon after research and development had started on finding new ways of
tracking particles the silicon microstrip detector was born. The modern versions
typically consist of many long parallel p-n junction diodes spaced at a pitch of about
50um, on a large area silicon wafer. By reverse biasing the diodes, a strong electric
field is produced within the device, which quickly sweeps away electron hole pairs that
are produced by an ionising particle. The problem with silicon microstrips is that,
unlike ionising gas chambers, they do not intrinsically amplify their own signal,
therefore it is necessary to design dense amplifier circuits to amplify the signals and
transmit them for analysis. Later these circuits were reduced in size and became
application specific integrated circuits (ASICs). Such ASICs must be placed right next
to the silicon microstrips in order to preserve as much signal as possible. By now
computers were beginning to become more practical, although still very cumbersome by
today’s standards, and very quickly the high energy community adopted them to

perform analysis of the data from the new breed of experiments that were emerging.

With readout electronics now inside the experiment it has become increasingly
important to keep their size to a minimum in order to reduce the material inside the
detector thus improving the detection efficiency. This is important, as the modern

experiments are getting larger.

At current e'e” colliders such as LEP the environment in which the tracker
electronics must operate is moderately hostile, with a total radiation dose, over the
lifetime of the experiment, of a few tens of krads. It does not pose a threat to the

operation of the readout electronics, which have been fabricated in technologies known
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to be tolerant to this magnitude of integrated radiation. However, at the Large Hadron
Collider (LHC), the p-p collider under construction at CERN, the radiation environment
is far more hostile. One of the proposed experiments, to be built at LHC, is the
Compact Muon Solenoid (CMS)[1.2]. In the case of CMS the total dose of ionising
radiation that the inner layers of the tracker will be exposed to is as high as 10 Mrads,
and a neutron fluence of ~ 3x10" cm'z, over its 10 year lifetime. Not only does this
raise concerns about total dose radiation tolerance of the proposed silicon microstrips
and readout electronics, but the high particle flux, up to 10’ cm™s™ in the inner layers,
has introduced questions about transient radiation effects or so-called Single Event

Effects (SEEs).

Since the introduction of CMOS (Complementary Metal Oxide Semiconductor)
technology, electronics components have been continuously reducing in size. Although
this has enabled more sophisticated ASICs, with advanced on board signal processing,
and faster readout data rates, it has also introduced a potential new susceptibility to
SEEs. The main focus of this thesis is a new generation of ASICs, the APV front-end
readout chip, which has been designed specifically for the CMS tracker. Chapter 1
describes the design and operation of the APV and its constituent transistors. Research
into the vulnerability of the APV to SEEs, in particular Single Event upset (SEU),
formed a large part of the work for this thesis. Chapter 3 describes in detail the
radiation effects which occur in microelectronics, explaining the origin of SEU and in
particular the effects on the APV chip. Chapter 4 shows results from experiments that
were performed to establish the sensitivity of the APV radiation, both total dose and

SEEs, and investigates how this will affect the operation of CMS.

The CMS tracker has been designed to contain ~ 10 million channels. Each APV
chip will read out 128 channels, hence ~ 100,000 APV chips will be required in the final
system. Before these chips can be assembled, along with the microstrips, into the
detector, they must be qualified. This means every chip must undergo a thorough test
procedure, following which only chips passing the screening will be used in the
detector. In order to test such a large number of chips, it is necessary to test them while
they are still on the uncut wafer, each wafer holding approximately 400 APVs. This
requires a sophisticated testing apparatus, capable of probing chips on the wafer and
running an exhaustive set of tests on each. This system has been under development at

Imperial College since 1996, and it is described in detail in chapter 2 of this thesis.
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The work which I have contributed consists of the design and implementation of the
APV testing and corresponding data analysis, design of experiments for the SEU
testing, analysis of SEU data, simulation of SEU in the APV25, theory of SEU upset
modes and heavy ion cross-section curve, and some of the transistor measurements.
Other work contributed by colleagues in the group was some analysis of APV test data
by Lih-King Lim, total dose radiation testing of transistors by Mark Raymond, Etam

Noah and Irving Din Doyal.

Although there is a lot of research continuing into new particle detectors and front-
end readout, these systems have only been developed as a vehicle to improve our
understanding of the fundamentals of particle properties and interactions. Chapter 1
begins with a brief description of CMS and the specific way it has been designed in

order to optimise its potential for discovering new and exciting physics.
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The next generation of High Energy Physics experiments will begin with the
completion of the new Large Hadron Collider (LHC) to be built at CERN, Geneva,
Switzerland. The LHC has been designed to enable us to probe even deeper into the
unknown, with an increased centre of mass energy for proton-proton collisions of up to
15.4 TeV. Two counter rotating bunches of protons will be accelerated around a 27 km
ring at CERN with a bunch crossing frequency of 40 MHz. At this frequency the proton
bunches will cross at 25 nanosecond intervals, achieving a peak luminosity of 1.7 x 10*
cm?s”.  Completion of the LHC is due in the year 2005 when it will commence
operation at a lower luminosity of about 10 cm™s™, building up to full luminosity over
a period of a few years. This period will be utilized for low luminosity physics such as
B-physics and CP-violation studies among others[1.3]. The Compact Muon Solenoid
(CMS) is one of the principal LHC experiments which have been designed to take
advantage of the new physics possibilities offered by the LHC. Its design has been
optimised to find and characterise the Higgs Boson in the mass range 90 GeV to 1 TeV.
At the required 40 MHz operating frequency and during high luminosity running the
central tracking regions of CMS will be operating in an extremely severe radiation
environment. Over a ten-year running period the deposited energy will be around 10
Mrads. This provides the challenge of designing detectors and readout electronics that
are not only fast enough to operate at this speed but capable of withstanding this sort of

damaging radiation.

The CMS (Compact Muon Solenoid) detector has been designed to search for the
Higgs boson in the mass range 100 GeV to 1 TeV by identifying and rﬁeasuring the
momentum and energies of its decay products. The mass range up to 100 GeV and just

beyond has been covered by existing experiments at CERN.
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The LHC Radiation Environment

The Standard Model predicts that some of the principal decay products of the Higgs
will be electrons, muons and photons; thus the CMS design has been optimised for the
detection and measurement of these particles over a large energy range at high
luminosity. The design is also well suited to studying CP violation effects in the B-
meson system and for studying the physics of the top quark. In addition to being
operated as a proton-proton collider, the LHC will be used to collide heavy ions at a
centre of mass energy of 5.5 TeV per nucleon pair, thus enabling CMS to be used to

study the physics of quark gluon plasmas[1.1].

CMS is made up of many equally important sections[1.4], not all of which there is
need to discuss in this thesis. The main focus of attention is the Tracker, which will
consist of a central silicon pixel section surrounded by a silicon microstrip section. The
high radiation environment of the tracker, coupled with requirements for greater
resolution in the tracking of the collision products, has resulted in extremely demanding
design requirements for both the individual detectors and the readout electronics. To
achieve a sufficient resolution, the granularity of the tracker has to be such that the total
number of channels is approximately 12 million. Coping with such a vast amount of
data at high speed is no mean feat and the required radiation tolerance compounds the

problem further.

The LHC will be situated in the LEP tunnel at CERN, and the detectors will sit in
custom designed experimental halls at various points around the ring. Protons will be
collided with a nominal centre of mass energy of {s- = 14 TeV. Even though the total
cross section for p-p interaction increases with energy, the cross section for an
individual process reduces as 1/E%, and therefore high luminosity is required for high
statistics of interesting interactions. An integrated luminosity of up to 105 pb-! per year

is anticipated[1.5].

1.1 The LHC Radiation Environment

In an experiment such as CMS it is essential to consider the hostile radiation
environment produced under operation at high luminosity. Extensive simulations show
that the dose due to ionizing particles and photons is almosf independent of detector
geometry and detector material, but scales with rapidity and distance from the

interaction point. Low energy charged particles curling inside the magnetic field
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increase the dose in the inner tracker, as do secondary interactions in the tracker
material and the beam pipe. It has been shown [1.6][1.7] that close to the vertex, the
particle flux is dominated by low energy pions. Figure 1.1[1.8] shows the total dose,
and neutron and charged hadron fluxes within the tracker. It can be seen that the
ionizing radiation dose varies from 9 Mrad per year at r = 7.5 cm to 0.1 Mrad per year at
r = 100 cm, with a dose of about 3 Mrad per year at r = 20 cm. The neutron flux varies
by about an order of magnitude inside the tracking cavity, which extends to a radius of
120cm, with a typical value of 10" cm2 per year, and the charged hadron flux
decreases from 2.5 x 10" cm2 per year at r = 7.5 cm to 10'% cm2 per year atr = 1 m.
To a first approximation, the particle flux varies with the inverse square of the distance

from the interaction point, as does the dose rate.
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Figure 1.1 Radiation levels at selected radii in the CMS Tracker region. All values
correspond to an integrated luminosity of 5x10° pb”. The error bars indicate only the
statistics of the simulations. The neutron fluences include only the part of the spectrum
above 100 keV.

1.2 The CMS Experiment

The CMS collaboration have decided to build a detector based on a solenoid magnet
with a compact design, therefore a high magnetic field is necessary. This is good
because the field is parallel to the beam, therefore the bending of the muovn tracks is in
the transverse plane and, since the vertex will be known to within 20 um, triggers can
be based on pointing to the vertex. The momentum measurement in a solenoid starts at

R=0, therefore there is little energy loss of the interaction products prior to their
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momentum measurement and the design is compact. However, this means that the high
precision measurements must be made in the area of the detector with the highest
occupancy, which requires high granularity and puts tough demands on the detector
design. High precision measurements must also be made within the muon chambers,
unlike with a torroidal magnet, which also has the advantage that the momentum
measurements are made at a larger radius and hence lower occupancy, putting less
stringent demands on the tracking detector design. On the other hand a wide range of

experience exists in the high energy physics community of working with solenoids.

The high field will give good momentum resolution for muons of high momentum (~
I TeV) up to n = 2.5 (Note that the polar angle of any point in the detector from the
interaction point, which can be represented in angular units of radians or degrees, can
also be represented by the quantity pseudo-rapidity, 1, which is defined by 1= -In
(tan(6/2)) ).

As has been shown, the CMS tracker must have a very good and redundant muon
system and the best possible ECAL system, without significant compromise of the
muon system. A high quality inner tracker is also desirable to supplement these systems.

Figure 1.2 shows the current design for the CMS detector [1.3].
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Figure 1.2 A three-dimensional view of the CMS detector.
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1.2.1 The Tracking System

The Tracker is mainly concerned with reconstructing the particle tracks to enable
measurement of their momentum. It is required to cover a large degree of rapidity and
- for high quality muon resolution it is necessary to be able to reconstruct high pr tracks
with an efficiency of greater than 95%, and high pr tracks within jets with an efficiency
of greater than 90% up to n = 2.6[1.3]. It must also be able to separate electrons and

photons by precise energy-momentum matching, and to isolate calorimeter showers.

The very centre of the tracker contains two layers of silicon pixels, which are placed
close to the beam pipe to optimise the pattern recognition capability. The outside of this
region is made up of silicon microstrip detectors. The overall requirement for high
resolution and a radial coverage of 1.3 m leads to a very large number of individual
readout channels (~107). It is the purpose of the front-end system to capture the data
from these channels and transmit any data, which may be of interest, to the receiver

module.

1.2.2 The Front End System

Careful consideration of the requirements of the system as a who]e' resulted in the
choice of an analogue, as opposed to an apparently much simpler binary system. It has
been shown that an analogue system can improve the resolution because of its ability to
detect charge sharing between adjacent strips and its immunity to common mode
noise[1.8], whereas a binary system has a considerably smaller volume of data to read
out; in a system with 1% occupancy, approximately 1 strip per 128 channel chip will be
hit, and typically 1 or 2 neighbouring strips would also be read out. A full address and
time stamp for neighbouring hits is not required, since that information can be inferred
from the central strip. Therefore only a flag of 4 bits needs to be sent, which means
neighbour hits contribute very little to the total data rate. The flag along with the
address of the central strip, which must be of 7-10 bits, and a timestamp of at least 10
bits leads to ~20 bits for each event. The analogue system however, reads out each
channel at the same speed as one binary bit (40 MHz), plus a 12-bit header, a total of
140 clock cycles, hence there is a big difference in the number of links for an analogue
and binary system. Although there is an increase in the amount data to transmit, there is
also a considerable gain in the amount of information about the event, making the

analogue system more luxurious but more expensive.
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In the central region of the detector there will be up to 10 Mrads (105 Gy) of
deposited energy over a period of ten years of high luminosity running. With this in
mind, it is important to monitor regularly the extent of the damage. Analogue data
provides a much better indicator of the state of the front-end electronics and detectors ,

enabling tuning of the system throughout its lifetime.

A schematic of the CMS tracker readout scheme is shown in Figure 1.3[1.8]. The
first stage of the system is the APV front end amplifier chip, the purpose of which is to
sample, amplify and store, for up to 4 us, the signals from their associated detectors.
Upon external triggering the APV transmits the corresponding data via an optical

analogue link to the receiver module.
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Figure 1.3 Diagram of the front-end readout

By transmitting the analogue data to the receiver module, one eliminates the need for
ADCs inside the tracker volume. External ADC’s can then be used which do not have
to be radiation hard, and can be chosen from a large number of commercially available

circuits making the system more cost effective.

The identification of particles crossing the tracking layers must be performed with
good timing precision to enable the reconstruction of charged particle tracks, therefore it
is essential that charge pulse data can be linked to the exact bunch crossing from which
they originated. The signal from a minimum ionizing particle passing through a 300 um

silicon microstrip detector is approximately 25,000 electrons, over a period of 10 ns.
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This signal must be stored for up to 4 us until the triggering system decides whether the
data were of interest. Therefore the front-end chip must be capable of amplifying a
25,000 electrons signal, operating at the bunch crossing frequency of 40 MHz, storing
the analogue signal for up to 4 us and confining the signal to one bunch crossing. In
order to measure efficiently the low energy region of the energy deposition spectrum, it
must also not have a noise greater than 2000 electrons and be able to minimize the loss
of data due to many consecutive events. The overall power requirements, which are set
by a compromise between lower noise, higher costs and reduced cooling requirements,
mean that the chip must not draw more than 2 mW per channel. The simplest way to
confine the signal to one bunch crossing with low noise is with a very high-speed
amplifier, but this requires a large amount of power. An alternative, developed by the
RD20 collaboration [1.9], involves low noise slow amplification (a charge sensitive
preamplifier and shaper with 50 ns shaping time) followed by an analogue pipeline to
hold the data until a triggering decision has been made, with read out through an
analogue deconvolution filter[1.10] to restore the signal to one bunch crossing. The
product of this research is the APV (Analogue Pipeline Voltage mode) front-end
readout chip[1.11][1.12].

1.3 The APV readout chip

Research and development has been underway on the front-end readout chip since
1993, the culmination of this work has lead to the CMS collaboration adopting a readout
system based upon the APV chip series. The APV has gone through many iterations
leading up to the production of three 128 channel versions; beginning with the APV6 in
1997, fabricated in the Harris AVLSI-RA Bulk CMOS process [1.13], followed by the
APVM fabricated in the same process, but adapted to readout MSGCs (Micro-strip gas
chambers). Then at a similar time the APVD, fabricated in the DMILL (Durci Mixte su
Isolant Logico-Linéaire) process and finally the APV25 in 2000, fabricated in a
commercial 0.25um process[1.12]. The APV6, APVM and APVD have feature sizes of
approximately 1 pm, with the APV25 much smaller at 0.25 microns. The APV employs
MOSFET transistors (see section 1.4 ), which are more intrinsically radiation hard than
other types of transistor to bulk silicon damage because they are fabricated in a thin
layer on the surface of the chip. However, their degree of radiation tolerance is still

dependent on many factors (see section 3.2), which were carefully considered in the
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choice of technologies listed above. The work documented in this thesis is confined to

studies of the APV6 and the APV?25.

All three versions of the APV are essentially identical in operation, with the addition
of some improvements to the APV25. The APV25 consists of 128 channels, each made
up of a pulse amplifier and shaper, which feeds a 192 deep analogue pipeline capable of
storing input pulses for up to 4 us. The pipeline samples the output from the amplifier
at 25ns intervals, storing the values until they are either overwritten on the next pass, or
a level 1 trigger is received, when the data are marked for readout. On reading out the
marked pipeline locations, the data are retrieved and output via a 128:1 multiplexer, in
one of two modes: peak or deconvolution. Peak mode takes the value of the pipeline
location at the peak of the pulse; thus only pulses that are separated by many beam-
crossing intervals can be resolved efficiently. However, in deconvolution mode three
consecutive temporal samples are required by the deconvolution filter, which performs a
weighted sum on the data, enabling resolution of consecutive pulses. The pipeline can
have up to 32 events tagged for readout at any one time. The addresses of the data to be
read out are stored in a FIFO, following which the deconvolution filter, or analogue
pulse shape processor (APSP), reads the data from the pipeline as soon as the previous

event has been processed. Data taking and readout occur simultaneously.

Control of the various chip operation modes and bias settings is achieved via a
standard 12C[1.14] serial bus link. The output stream consists of a digital header,
containing information about the status of the chip and also the pipeline location from
which the data were retrieved. Following this the analogue levels are retrieved from all

128 channels.
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Figure 1.4 Example data frame from APV25, a signal of 1 mip can

be seen

On the above scale one can see the digital header at about 4.4 ps, preceding the
analogue data. Before and after the frame one can see the tick marks, which are output
every 1.75 ps in time with the readout cycle of the APSP. Each APV has an address
that can be set, which enables the I°C bus to communicate separately with individual
chips. Another important feature is the internal calibration system. This creates an
input signal internally which can be stored in the pipeline and analysed in the output
stream. All 128 channels can be driven to enable testing of amplifier gain and pulse

shaping uniformity. This feature in particular is essential for the testing procedures

shown in Chapter 2.
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Figure 1.5 APV25-51 the latest version of the APV

Figure 1.5 shows that APV-S1. The chip area is dominated by the analogue cifcuits:
amplifier, shaper, pipeline, APSP and multiplexer. The four digital control circuit
blocks are situated along the bottom edge of the chip, as shown in Figure 1.5. From left
to right these are the bias registers, pipeline pointers, FIFO readout buffer and the

control logic.

1.4 MOSFET Transistors

In order to understand how the APV will behave under the conditions of CMS we
must understand how the component parts, the transistors, will behave. In order to do

this we must first understand how they operate.

The type of transistors used in both the analogue and digital circuits are Metal Oxide
Semiconductor Field Effect Transistors (MOSFET usually shortened to MOS). MOS
transistors are three terminal devices, which utilize a conducting channel between two
terminals, the source and drain. The third terminal, the gate, is used to modulate the
conductance of the channel. MOS transistors are classified by the type of carriers that
flow in the channel; an n-channel device is one in which the conducting carriers are
electrons and a p-channel device, holes. There is also an additional terminal, the bulk,
which connects to the substrate on which the transistor is fabricated. Varying the

voltage on this contact may affect the threshold behaviour. The drain, source and bulk
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contacts of the MOS transistor are not ohmic contacts since they are semiconductor to

metal junctions(usually Schottky diodes).

Figure 1.6 shows the cross-section of a simple NMOS and PMOS transistor.

Gate Gate

Bulk  Source i Bulk Source

N- substrate
N channel device P channel device

Figure 1.6 Cross-section through an ideal NMOS and PMOS transistor.

This is typically how they would be constructed on an n” substrate, with the PMOS
implanted directly into the substrate and the NMOS implanted into a p~ well, these are
usually called p-well processes. For more modern technologies such as the deep sub-
micron process, both N and PMOS are constructed on wells, which are implanted into

the substrate. These are called dual-well processes.

The fabrication process of such devices is long and complicated; detailed
explanations can be found in[1.15]. After all the doping, oxide growth and etching,
which goes into such a process, in reality the devices do not look quite so well defined
as in Figure 1.6. A scanning electron microscope picture of a cut-away cross-section of
an NMOS transistor is shown in Figure 1.7[1.16]. The n* diffusions are the light-grey
areas in the dark substrate. In the centre of the picture is the gate and to the left is a

metal contact to the n* diffusion.
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Figure 1.7 Scanning electron microscope photograph of the cross
section of an NMOS transistor.

1.4.1 MOSFET operation

The basic operation of a NMOS device can be described as follows. Begin by
considering a small voltage drop across the gate and the bulk (Figure 1.8). The gate
oxide is an insulator and allows the gate to act as a capacitor producing an electric field
between the gate and the bulk. This field drives holes at the surface of the bulk away
and gives rise to a depletion region at the surface. This combines with the natural

depletion regions of the source and drain implants.

Figure 1.8 NMOS transistor under initial bias conditions.

The depth of the depletion region in the channel is given by equation [1.1].
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