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Abstract

. 2 LONGITUDINAL COUPLING
By means of ajeneral theory we examine the Sands and IMPEDANCE BELOW CUTOFF

Rees method of measurement of the longitudinal coupling B
impedance between particle beamand the vacuum A point chargeg moving, with velocityv =zci,, alongz
chambercomponents. We discuss the validiignits of —axis of a conducting beam pipe rafdiusb has acurrent
the method in relation to tharesence ofhe centralwire —density spectrum given by:

which simulates the beam.

Tt or) Fikez
JE(F zw) = xqg =L e 3
1 INTRODUCTION qfzw) =207, e ®)
The longitudinal couplingimpedance (LCI) of an and produces electromagnetic fieldi‘g and H; on the
ultrarelativistic point chargey, travelling on a beam pipe pipe walls given by:
axis, is defined as:
LIt 0z welko? - a4 iz
Z(w)=-= [ Ex(r=0zw)e Ydz (1) =(r=b,¢,zw) = Zy——e %, @
4 _ s 2mb
where E, is the Fourier transform of the longitudinal H;—f(r :b,¢,z;w)=iirbe¢1kozi“¢ ()
2

electric field on the pipe axis ang = w/c. Theimpedance

is often measured by means of the transmission Scattenvitgre Z, is the characteristic impedance of the vacuum.
(S) parameter ofthe device. This method hasbeen [Letthe beam pipe have an apertgteon theconducting
proposed in 70's on the ground of intuitive considerationggl| which in general can couple to an external structure.
The basiddea is that the relativistic bearfields in the IS’\X using the Schelkunoff's Fiel&quivalencePrinciple,

vacuum chamber can be simulated by means of a T i ¢ f valent eticent
wave propagating thanks to tpeesence of a centralire vye may consider a system of equivalent magreelreents

[1,2,3]. Several formulae have been proposed to expreds On the aperture surfac . The electromagnetifields
the LCI as function of the transmission S-parameter. Th#o the waveguide can be written as:

first in order of time is the soalledrelation of Sands and

Re(_as ;uggested for the estimate Zgfo) when thewire E= E(;f + Eq H= HJ +Hg (6)
radius is very small [4]:

where E, and H, arethe fields scattered bythe aperture,

Z(e0) = DsleE F- 52D1U o i.e., thefields radiated bythe surface currentsj,, inside
(@) = 2R —mer ) ,
0 S 0 the pipe.

In order to calculate the LCI as function of thegnetic
currents J,. [8,9] wecan apply the Lorentz Reciprocity
Theorem relating the field§,;,H; to thefields Eg,H, of
the unperturbedstructure.Below the cutofffrequency, for
an infinite pipe, we get [10] :

Sy' is the transmissiorparameter ofthe component
under test [T~ the parameter of a portion ahperturbed
coaxial line of the same length amy is thecharacteristic
impedance of the transmission line.

An improved relation valid for a singldumped

impedancehas beemprovided by Hahn and Pedersen [5] +o0

where ST~ at the denominator of (2) has beeeplaced _1 J‘Esz(r =0,2)el%dz = _izﬂ‘ Hq‘ [0S (7)
q q
—00 SA

by SP'T. Other expressions have been proposed for
distributed impedance$6,7] for which the Hahn and ) o
Pedersen formula breaks down. which recalling the definition (1) becomes:
Aim of this paper is to give a more rigorous proof of the
relation (2) when the wirﬁadigs approachezero. All the Z(w) = 1 J'J"]Mejkozds ®)
resultshave been obtainedsing only the Schelkunoff's 2rmb S
Field EquivalencePrinciple andthe Lorentz Reciprocity
Theorem.
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3 BEAM SIMULATED BY A WIRE

We assume, now, that in the same pipepafectly
conducting wire of radiua is strechedilong thez axis.

The beam pipe smodified becomes dransmission line.
In this new configuration, weonsider a generator which

excites a TEM waveE;", H;* reproducing the fieldg;, H;

of the chargein the unperturbed waveguide. We have,

then:
+_ 9%

Eq o e o7 Hy' = )

Calling, now, E} the electric field on the aperture adgl

A k7
271re 's

the equivalent magnetic surface currents, we have that:

Jis =iy X Ep (10)

The electromagnetic fielthside the coaxial lineean be

expressed by the relations:
E =6 +E

H' = Hg" +Hy (11)

where E, and H; are the fields scattered by the aperture.

Below the cutofffrequency ofthe coaxial linemode
TE;;, thefields E; and H; at a sufficientdistance from

the aperture can be represented imeans of the TEM
components only:

+ .
O ik
of

+Jka

=2 (12)

In order to calculate the coefficients” and o~ we apply

the Lorentz Reciprocity Theorem to the volume V

(fig.1), getting:
+ _
a-=F———
4mbin

otikoz
EbD J’ ds (13)

Ek

We observethat the TEM components of théelds
scattered by the aperture vanish as the veidiusa tends
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Figure 1. Geometry of the structure.

Regarding the coaxial structure as a two-port network,

is possible to express thight-hand side othe equation
(16) by means of the circuitplarameters ofuch device.
In fact, if the output line igerminated in a matchddad
and onthe inputside weput ageneratormatched to the
line, such as to produce the incident wavevided by(9),
the transmission parameter of the S-matrix is given by:

_ (qZO/z_"*,‘f) ooz
qZe 4 27t

.
a” Ui

B wzerzn

(16)

puT _ Vo |
S1 v

Vs =0

wherel =z, -z .
For a portion of unperturbed coaxial line of lengtiwe
have:

S =eld 17)
Then, using (16) and (18), we obtain:
REF _ DUT 0
20)=-2 R R ) (19
Zo2m 70 S 0

4 IMPEDANCE FOR A SMALL BUT
FINITE RADIUS OF THE WIRE

Our aim is now toaccount for theeffect of the central

to zero. Furthermore the eigenfunctions of the coaxial li@nductor with a small but finite radius.

approachthe cylindrical waveguide modes foml - 0,
therefore the surface currents);, tend tothe J,. Thus

we can express the longitudinal coupling impedance:

. 1 -
lim Z(cw) = —— ([ J%s e/ 0%ds 14
all”ﬂo (w) 2mb£{ msg € (14)

Multiplying and dividing the right-hand side othe above
equation bythe quantity 2Z,In(b/a) it is readily found
that:

1 - Roa
—= ([ Iy PdS = 20— 15
2me;{ msp© GZo/21 (19

Applying twice the Reciprocity Theorem in relation to

the volumes V, and V; (fig.1), with the equivalent
currents (—Js,~Jie) iN Vo and (Jig, J) iV as fields
sources, and using tHields given by egs.(8)and (11) we
get the equations:

O

Z(w)+ 2" (w) =q—125]'(|§'* x H+E x H'*)Ed:lé

[l
-[[H 0 dS—- I Hqg mi,;’{sdsg (19)
S
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AL 3 .dS+ [[H. [7-dS=— (i, x H [E.dS (20
g s “ms +J'S{ s Wms glrx s EgdS (20) SZRlEF—SZDlUT Doz, 2msa* O

AT Bo e H

(26)

where Z'(w) is theimpedance in presence tife wire and
Sy is the whole wire surface. which becomes similar to the HalandPedersen formula

For very small wire radius, we may putforasmall radius.

E(r=a¢,2)=E(r=027 and, assuming the aperture 5 COMPARISON WITH
smaller than the wavelenght, the equations @) (20) EXPERIMENTAL DATA
give:

7" (W)Z(w) _ 1 e We haveperformgdme_as_uremepts wi_th the coaxialre
TR q_Z.U(E xH+ExH )dS method on a device similar to fig.1 with fonarrowslots
Sy as aperture [10]. The results are showriign2, where the
(21) curves corresponding to: a) ref. [4]; b) ref. [5]; c) eq. (23);

, . d) eq.(25). We notice thathereare novisible difference
In this expression theerturbedterms are unknown and panveen a) and c), and b) and d).

depend orthe wire thickness. Assuming that femall
radius, there is a little difference between pleeturbed and

Z(w)+2" (w) -

unperturbed fields, we will consider two perturbative 70
) Z, (Ohm)
approaches: 60
4.1 Substitution(E, H) - (E',H") 50
We obtain: 40
2 O Z' 2 O
2@) = — 20 () - EO G (o) 30
4R - |z E 2R g 20 b
which can be expressed byeans of the transmissids 10 ; ,,,,,,,,,,,,,,
parameters: E
2|:30 0 M
2w = REF _ <DUT|? H E
1_‘52,1 21 ‘ _101.14 1.15 116 117 1.18 1.19
REF _ oDUT Fenz)
ESZEI L S “SQRlEF _SZDlUTZE (23) Figure 2: Real part ofmpedance calculatedsing the
| SflEF ' ' ] expressions given by: a)ref. [4]; b)« ref. [5]; ¢)+ eq.
(23); d)e eq. (25).
We observe that when thire radiusa tends to zero the
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We observahat also this relatiotends to the Sands and[lo]
Rees formula when the wireadius approaches zero.
Neglecting the second order termthre squarebrackets, it

can be rewritten as:
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