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Abstract

We describe a new, improved longitudinal space-charge
electric field calculation for particle beams with periodic
modulation of the charge density. Whereas the usual
method assumes long bunches with constant transverse
cross-section, the new algorithm applies to long or short
bunches with arbitrary binomial transverse distribution and
incorporates dynamical corrections to the usual static ap-
proximation. The algorithm has been coded in Fortran
and been made an option of the particle tracking program
LONG1D. Based on tracking studies, it is concluded that
these improvements to the physics model are most impor-
tant for short bunches with high synchrotron frequency and
high-order longitudinal multipole content.

1 INTRODUCTION

When simulating[6, 7] the longitudinal dynamics of a
charged particle beam, it is customary to adopt a one-
dimensional model that ignores the transverse coordinates
and where each macro-particle is considered as a transverse
slice or disc. The internal forces due to mutual Coulombic
repulsion of like charges are called ‘space-charge’. It is
a common procedure to model longitudinal ‘space charge’
by forming the spatial derivative of the longitudinal charge
density[4]. When this density is represented by a Fourier
series, taking the derivative becomes particularly simple:
each harmonic component is multiplied by its correspond-
ing wave number (i.e. spatial frequency). This practice
involves three assumptions:

• the beam bunches are long compared with the vacuum
pipe cross-sectional radius

• the beam cross-section has constant charge density
• the field can be obtained (in the beam frame) from

electrostatics.

1.1 Long bunches

The first assumption allows one to adopt a two-dimensional
model for calculation of the transverse electric fields based
on line charges (i.e. infinitely long filaments). This prac-
tice is inevitably dubious at the head and tail of the bunch.
If one considers a moving point charge, with relativistic
energyγm0c

2, the longitudinal electric field is reduced by
1/γ2 and the field lines are ‘compressed’ into a transverse
toroid that is coaxial with the motion. Hence it is clear
that the assumption of line charges is best fulfilled by ultra-
relativistic particles; but this is also the regime where lon-
gitudinal space charge is least important.

More realistic models that do not assume long bunches
are available and have been used in computer simulations

– but not widely so. The simplest such model is that of
Morton[1] (see also Refs.[3, 5]) in which the geometric fac-
tor g0 is made to roll off with increasing spatial frequency.
A more elaborate model is that of Lebedev[2], and we shall
follow a similar procedure below.

1.2 Beam cross section

The field distribution depends on the transverse charge den-
sity distribution. It is also influenced by the proximity of
the vacuum pipe which is taken to be a perfectly conduct-
ing cylindrical wall concentric with the beam. Further, the
longitudinal electric field varies over the beam cross sec-
tion and must be ensemble-averaged (transversally) so as
to obtain values that are representative. All of these ef-
fects taken together are usually rolled into a single geomet-
ric factor g0. For example, for a uniform beam of radius
a inside a pipe of radiusb the on-axis geometric factor is
g0 = 1 + 2 ln(b/a) and the ensemble-average geometric
factor isg0 = 0.5 + 2 ln(b/a). These issues of transverse
charge distribution and ensemble averaging have been ad-
dressed by Baartman[8], and will be pursued below.

1.3 Dynamics versus statics

Starting from the wave equation one may find an exact
expression for the space-charge force in the frequency
domain. Using this solution in a time-domain particle-
tracking program leads to the following contradiction: the
fields at each time step are calculated assuming the charge
distribution is static and in equilibrium; however we also
expect the beam distribution to be changing turn-by-turn
in the synchrotron, or else there is little point performing
a simulation. This contradiction is usually dismissed be-
cause “the effect is small”; the error incurred in the field
estimate is of order the change in the beam distribution
multiplied by the pipe radius and divided by the longitu-
dinal distance moved in the time step. However, for ma-
chines with high synchrotron frequency and longitudinal
distributions with significant high-order multipole content,
changes in the distribution could be large. Moreover, at a
fundamental philosophical level it is unsettling in a dynam-
ical problem to use fields calculated for a statics problem.

2 NEW SPACE-CHARGE ALGORITHM

2.1 Field calculation

Let the electric field strength vector beE, the charge den-
sity per unit volume beρ. Suppose that the beam acceler-
ates slowly. Lets = ct wherec is the speed of light andt
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is the time coordinate. Lete be a unit vector and‖ denote
the longitudinal axis. The electric field obeys the equation:[∇2 − ∂2/∂s2

]
E = (1/ε0)

[
e‖β‖∂/∂s + ∇]

ρ . (1)

Let r andz be the radial and longitudinal coordinates re-
spectively, andi =

√−1. Under the assumption that
the charge distribution is longitudinally periodic and cylin-
drically symmetric, we may expand charge and field in
Fourier series that contain a radial dependence for the co-
efficients:

ρ = σ(r)
∑

k

λk(s)eik(z−βs)ν , E =
∑

k

Ek(r, s)eik(z−βs)ν .

(2)
Here k is the integer wave number andν = h/Rs is
the ratio of harmonic numberh to the synchronous or-
bit radiusRs. Under the assumption that modulation fre-
quencies are much smaller than the carrier frequencies,
ωk = k × (νβ‖c), we may approximate the temporal field
derivative as

∂2

∂s2
E ≈

∑
k

−
[
(kβν)2Ek + 2i(kβν)

∂

∂s
Ek

]
eik(z−βs)ν .

(3)
We substitute expressions (2, 3) into the wave equation to
obtain a relation for each Fourier component[∇2

⊥ − (kν)2/γ2
]
Ek

z + 2i(kνβ)(Ek
z )′

=
σ(r)
ε0

[
i(kν)λk/γ2 + β‖(λk)′

]
, (4)

where the superfix prime(′) denotes partial derivative w.r.t.
s and∇2

⊥ is the transverse part of the Laplacian operator.
Let us suppose the transverse charge distribution of ra-

diusa is given by the (unity-normalized) binomial form

σ(r) = [1 − (r/a)2]µ2(µ + 1)/a2 . (5)

Because there is no transverse multipole content, we ex-
pand each of the field coefficients in terms of the zeroth
order Bessel function basis:

Ek
z (r, s) =

∑
j

akj(s)J0(αjr) . (6)

To fulfil the boundary condition of a conducting wall at
r = b we takeJ0(αjb) = 0 are consecutive zeros of the
Bessel function. To find the time-dependent coefficients
akj we make use of the orthogonality relation[11] between
Bessel functions, leading to

(b2/2)J2
1 (αjb)

{
[−α2

j − (kν/γ)2]akj + 2i(kνβ)a′
kj

}
= (1/ε0)[ikνλk + β‖(λk)′]B(µ, αja) (7)

where the function

B(µ, x) ≡ (µ + 1)!2(µ+1)Jµ+1(x)/x(µ+1) . (8)

The longitudinal electric field is given by

Ez(r, z, s) =
∑

k

eik(z−βs)ν
∑

j

akj(s)J0(αjr) . (9)

To find the effective longitudinal field for a one-
dimensional particle simulation, we must ensemble aver-
age over the transverse distribution; and this leads to

〈Ez〉(z, s) =
∑

k

eik(z−βs)ν
∑

j

akj(s)B(µ, αja) . (10)

If the charge density does not change then we may find
an explicit expression for the complex coefficientsakj ; and
the static field is given by〈Ez〉(z, s) =

1
ε0

∑
k

eik(z−βs)ν
∑

j

−ikνλkB2(µ, αja)
(b2/2)J2

1 (αjb)[(αjγ)2 + (kν)2]
.

(11)
For the casekν � γαj andµ = 0 this expression leads
to field values identical with the simple theory involving
g0 = (1/2) + 2 ln(b/a).

2.2 Discretization

If the line charge coefficientsλk are time dependent then
Eqn. (7) must be solved numerically using a suitable
scheme that discretizes the time steps and replaces the
derivatives by finite difference representations. In the com-
puter program LONG1D[9] we have chosen a scheme that
is consistent with the leap-frog algorithm for integrating
particle motion under space charge and also does not re-
quire any more evaluations ofλk than does a naive scheme
assuming static fields. Essentially, the field coefficients are
propagated from old to new values by using the replace-
ments:

2akj ⇒ anew
kj + aold

kj (12)

∆sa′
kj ⇒ anew

kj − aold
kj (13)

2λk ⇒ λk
new + λk

old (14)

∆s(λk)′ ⇒ λk
new − λk

old (15)

in Equation (7) with∆s = c∆t . In such a scheme one
needs a “start-up procedure” and the simplest is to assume
thatλk

new = λk
old before the first time step.

3 EXAMPLES AND TESTING

As an initial test of these formulae, we took a bunch in a
machine with parameters similar to the original PS Booster
at 50 MeV. We took line densityλ(φ) = [1 − (φ/L)2]3

with φ = νz andL = 1 radian and transverse parameters
µ = 0, a = 6 cm in a pipe of radiusb = 10 cm.

3.1 Short bunches

Under the assumption of statics, the field distribution was
calculated according to equations (7) and (10) for harmonic
numbersh = 5 andh = 500 and bunch lengths 10 m and
10 cm, respectively. The result is sketched in Figure 1.
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Figure 1: Comparison of〈Ez〉 for long (h = 5) and short
(h = 500) bunch lengths.

3.2 Statics versus dynamics

In order to see the dynamical correction to the static field
approximation, the bunch was displaced 0.1 radian during
a time step of one turn (so as to imitate part of a dipole
oscillation) and the field calculated with and without the
correction. The relative fractional error incurred by ignor-
ing dynamical effects is presented as a mountain range plot
in Figure 2. It is clear that the errors are worst at the head
and tail of the bunch, and this is confirmed in the transverse
ensemble-average, Figure 3, with peak errors of about 10%
in narrow regions. However, these are the regions with
fewest particles and so there is probably little impact on
the beam dynamics of dipole oscillations.

Figure 2: Comparison of relative fractional difference of
Ez(r, z), computed with and without dynamical correc-
tions to the static approximation, versus cylindrical coor-
dinatesr, z. Vertical scale runs from−0.02 to +0.24.

3.3 Particle tracking

As a final test, the new space-charge algorithm was in-
stalled in the computer program LONG1D[9]. The evo-
lution of a proton bunch in the TRIUMF KAON Accu-
mulator ring mis-matched so as to give both dipole and
quadrupole oscillations was tracked for 0.5 ms (about 4000

space-charge time steps) with and without the dynamical
correction. The 450 MeV A-ring hasRs = 34 m and
h = 45. Tracking of5 × 104 macro-particles showed en-
semble characteristics for the two cases to differ by only
1-to-2 parts in104.

4 CONCLUSION

We have described a new, improved longitudinal space-
charge electric field calculation[10] for particle beams with
periodic modulation of the charge density. The algorithm
has the following features:

• correct for short or long bunches
• general binomial transverse density distribution
• transverse ensemble averaging
• field is solution of electrodynamics problem with time

varying longitudinal charge density.

The algorithm has been coded in Fortran and been made an
option of the particle tracking program LONG1D. In early
trials, with accumulator and booster-type ring parameters,
the dynamical corrections seem to be of little importance
for dipole and quadrupole mode oscillations.

Figure 3: Comparison of relative fractional difference of
〈Ez〉(z) computed with and without dynamical corrections.
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