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NEW LONGITUDINAL SPACE CHARGE ALGORITHM

Shane Koscielniak, TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada

Abstract — but not widely so. The simplest such model is that of

Morton[1] (see also Refs.[3, 5]) in which the geometric fac-

We describe a new, improved longitudinal space-charqer is made to roll off with increasin tial fr N
electric field calculation for particle beams with periodic0 9o 1S made 1o rofl 0 creasing spatial lrequency.

modulation of the charge density. Whereas the usuA1 more elaborate model is that of Lebedev[2], and we shall
method assumes long bunches with constant transvefgézlowas'm'lar procedure below.

cross-section, the new algorithm applies to long or short )

bunches with arbitrary binomial transverse distribution and-2 Beam cross section

incorporates dynamical corrections to the usual static agg fie|q distribution depends on the transverse charge den-
proximation. The algorithm has been coded in Fortragy, gistribution. It is also influenced by the proximity of
and been made an option of the particle tracking Prografla vacuum pipe which is taken to be a perfectly conduct-

LhONG,lD' Based on tra(:r]kinghstqdies, it isl concluded thgf,; cvlindrical wall concentric with the beam. Further, the
these improvements to the physics model are most impQqgy, git dinal electric field varies over the beam cross sec-

tant for short bunches with high synchrotron frequency a n and must be ensemble-averaged (transversally) so as

high-order longitudinal multipole content. to obtain values that are representative. All of these ef-
fects taken together are usually rolled into a single geomet-

1 INTRODUCTION ric factor go. For example, for a uniform beam of radius

When simulating[6, 7] the longitudinal dynamics of a® inside a pipe of radius the on-axis geometric factor is
fg = 1+ 2In(b/a) and the ensemble-average geometric

charged particle beam, it is customary to adopt a on tori 05 4 21n(b Th : i
dimensional model that ignores the transverse coordinat@tor 18go = 0.0 =+ n(b/a). These issues of transverse

and where each macro-particle is considered as atransve?ggrge distribution and ensemple averaging have been ad-
slice or disc. The internal forces due to mutual CoulombigrESSEd by Baartman(8], and will be pursued below.
repulsion of like charges are called ‘space-charge’. It is ) )

a common procedure to model longitudinal ‘space chargd.3 Dynamics versus statics

by forming the spatial derivative of the longitudinal Charg.eStarting from the wave equation one may find an exact

der?3|ty[4]..When thls_dehsny IS represent(_ad by a F.Ou”eé_xpression for the space-charge force in the frequency
Senes, takmg the derlvatlve_ becom?s partl_cularly simpl omain. Using this solution in a time-domain patrticle-
?aCh harmonic component IS multiplied by its correspon racking program leads to the following contradiction: the
Ing wave number (i.e. 'sp§t|al frequency). This praCtIC'fn’lelds at each time step are calculated assuming the charge
involves three assumptions: distribution is static and in equilibrium; however we also
e the beam bunches are long compared with the vacuu@pect the beam distribution to be changing turn-by-turn
pipe cross-sectional radius in the synchrotron, or else there is little point performing
e the beam cross-section has constant Charge densitya simulation. This contradiction is usually dismissed be-
e the field can be obtained (in the beam frame) frongause “the effect is small”; the error incurred in the field

electrostatics. estimate is of order the change in the beam distribution
multiplied by the pipe radius and divided by the longitu-
1.1 Long bunches dinal distance moved in the time step. However, for ma-

. . ) _chines with high synchrotron frequency and longitudinal
The first assumption allows one to adopt a two-dimensionglsributions with significant high-order multipole content,

model for calculation of the transverse electric fields baseghanges in the distribution could be large. Moreover, at a
on line charges (i.e. infinitely long filaments). This pracfyndamental philosophical level it is unsettiing in a dynam-

tice is inevitably dubious at the head and tail of the bunCliea) problem to use fields calculated for a statics problem.
If one considers a moving point charge, with relativistic

energyymoc?, the longitudinal electric field is reduced by

1/~? and the field lines are ‘compressed’ into a transverse,

toroid that is coaxial with the motion. Hence it is clear 2 NEW SPACE-CHARGE ALGORITHM

that t.h.e gssum.ptlorT of Ilne_charges is best f_ulfllled by ultraz_l Field calculation

relativistic particles; but this is also the regime where lon-

gitudinal space charge is least important. Let the electric field strength vector % the charge den-
More realistic models that do not assume long bunchesity per unit volume be. Suppose that the beam acceler-

are available and have been used in computer simulatioates slowly. Lets = ¢t wherec is the speed of light and
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is the time coordinate. Let be a unit vector anl denote To find the effective longitudinal field for a one-
the longitudinal axis. The electric field obeys the equatiordimensional particle simulation, we must ensemble aver-
age over the transverse distribution; and this leads to
[V2 - 82/0s%| E = (1/e0) [ey310/0s + V] p. (1) 9

Letr and > be the radial and longitudinal coordinates re- (E.)(z,s) = » e " a,,(s)B(u, aa) . (10)
spectively, andi = /—1. Under the assumption that k j

the charge distribution is longitudinally periodic and cylin-

drically symmetric, we may expand charge and field in If the charge density does not change then we may find
Fourier series that contain a radial dependence for the can explicit expression for the complex coefficiemts; and
efficients: the static field is given byE.)(z, s) =

p=0(r)Y_N(s)e™E I B =Y BN s)e Oy S oo g i B o)

’ ’ @ % — (07/2) 72 (a;0)[(a;7)? + (k)]
Here k is the integer wave number and = h/R; is (11)
the ratio of harmonic numbek to the synchronous or- For the casér < va; andp = 0 this expression leads
bit radiusR;. Under the assumption that modulation freto field values identical with the simple theory involving
guencies are much smaller than the carrier frequencies,= (1/2) 4+ 21n(b/a).
wr = k x (vp)c), we may approximate the temporal field
derivative as

2.2 Discretization

) ,
~ 2k . k| _ik(z—pBs)v . .. .
@E c LT [(kﬁy) E" + ZZ(WV)@E HETI it the line charge coefficients* are time dependent then
k 3) Egn. (7) must be solved numerically using a suitable
We substitute expressions (2, 3) into the wave equation ?heme that discretizes the time steps and replaces the
. : I erivatives by finite difference representations. In the com-
obtain a relation for each Fourier component puter program LONG1D[9] we have chosen a scheme that

(V3 — (kv)?/v*] E¥ + 2i(kvB)(EL) is consistent with the leap-frog algorithm for integrating
o (r) particle motion under space charge and also does not re-
= [i(k)XF /42 + B (AF)] (4)  quire any more evaluations af than does a naive scheme

assuming static fields. Essentially, the field coefficients are
where the superfix primg) denotes partial derivative w.r.t. propagated from old to new values by using the replace-
sandV? is the transverse part of the Laplacian operator.ments:

Let us suppose the transverse charge distribution of ra-

diusa is given by the (unity-normalized) binomial form 2ak; = aps’ +apd (12)
new old
o(r) = [1 — (r/a)?#2(u + 1) /a? . (5) Asay; = apg” — agj (13)
k k k
Because there is no transverse multipole content, we ex- 2}? , = Azew * Azld (14)
pand each of the field coefficients in terms of the zeroth As(A*)" = Ajew — Aola (15)

order Bessel function basis: . . )
in Equation (7) withAs = cAt . In such a scheme one

E¥(r,s) = Z ak;(s)Jo(ayr) - (6) needs a “start-up procedure” and the simplest is to assume
j that\*_, = A, before the first time step.
To fulfil the boundary condition of a conducting wall at
r = b we takeJy(a;b) = 0 are consecutive zeros of the 3 EXAMPLES AND TESTING

Bessel function. To find the time-dependent coefficients

ar; we make use of the orthogonality relation[11] betweems an initial test of these formulae, we took a bunch in a

Bessel functions, leading to machine with parameters similar to the original PS Booster
9 9 N fr2 9 o , at 50 MeV. We took line densitk(¢) = [1 — (¢/L)?]?

(0/2) T3 () {[=a — (kv /7)lar; + 2ilkvF)aj; } with ¢ = vz andL = 1 radian and transverse parameters

= (1/e0)[ikv A" + Bj(\*)|B(p, 5a) (7) 1 =0, a = 6 cmin a pipe of radius = 10 cm.

where the function

Blus) = (u+ 112040 11 (2)/204D . (@) 3.1 Short bunches
Under the assumption of statics, the field distribution was
calculated according to equations (7) and (10) for harmonic
E.(r,z,s) = Z ek (z—Bs)v Zakzj(S)Jo(ajr) . (9) humbersh =5 gndh = 500 and' bunch Iengths 10m and

A ; 10 cm, respectively. The result is sketched in Figure 1.

The longitudinal electric field is given by
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015 space-charge time steps) with and without the dynamical
correction. The 450 MeV A-ring hags, = 34 m and

bunch shape

5 0107 i h = 45. Tracking of5 x 10* macro-particles showed en-
=) semble characteristics for the two cases to differ by only
5 0.057 1-to-2 parts inl0%.
5 0007 4 CONCLUSION
© / : . -
~0.05 \ / - We have described a new, improved longitudinal space-
\ //@ @ h=5 charge electric field calculation[10] for particle beams with
010 ‘ ‘ — : : : periodic modulation of the charge density. The algorithm
—20 =15 =1b =05 00 05 10 s 20 has the following features:

RF Phase @ h (radian)
correct for short or long bunches

general binomial transverse density distribution
transverse ensemble averaging

field is solution of electrodynamics problem with time
varying longitudinal charge density.

Figure 1: Comparison ofF,) for long (b = 5) and short
(h = 500) bunch lengths.

3.2 Statics versus dynamics
. . ... The algorithm has been coded in Fortran and been made an
In order to see the dynamical correction to the static fle|8

L . s tion of the particle tracking program LONGA1D. In early
approximation, the bunch was displaced 0.1 radian du”n[d)als, with accumulator and booster-type ring parameters,

a tlr_ne .step of one tl.Jm (so as o |m|t§\te part qf a deOI?ne dynamical corrections seem to be of little importance
oscillation) and the field calculated with and without thefor dipole and quadrupole mode oscillations

correction. The relative fractional error incurred by ignor-

ing dynamical effects is presented as a mountain range plot , 012+ ‘ ‘ ‘ ‘ ‘
in Figure 2. It is clear that the errors are worst at the head £ 0.10 - A |
and tail of the bunch, and this is confirmed in the transverse g ’
ensemble-average, Figure 3, with peak errors of about 10% < 5 | H i
in narrow regions. However, these are the regions with £ H
fewest particles and so there is probably little impact on = 0.06 U‘ -
. . . . [

the beam dynamics of dipole oscillations. = I H

0.04 H H -
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Figure 3: Comparison of relative fractional difference of
(E,)(z) computed with and without dynamical corrections.

relative difference
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