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We predict the Z0 transverse momentum distribution from proton-proton and nuclear collisions
at the LHC. After demonstrating that higher-twist nuclear effects are very small, we propose Z0

production as a precision test for leading-twist pQCD in the TeV energy region. We also point out
that shadowing may result in unexpected phenomenology at the LHC.

The physics plans for the Large Hadron Collider (LHC)
at CERN, which is going to be the highest-energy accel-
erator on Earth, include a heavy-ion program. Quantum
Chromodynamics (QCD) for both hadronic and nuclear
collision will enter a new era at the LHC, where we hope
to discover new physics. However, “standard physics”
needs to be tested in the new, high-energy regime.

At LHC energies, perturbative QCD (pQCD) provides
a powerful calculational tool [1]. Clearly, an understand-
ing of pQCD at the hadronic collision level is a pre-
requisite for the discussion of particle production in nu-
clear collisions. Enhanced power corrections from mul-
tiple scattering in both the initial and final states, not
to mention potential new physics from the quark-gluon
plasma (QGP), make pQCD predictions for nuclear col-
lisions more difficult than for hadronic collisions.

The testing of pQCD in nuclear collisions at the LHC
requires “clean processes”, where pQCD works well on
the hadron level. One of the important recent advances
in pQCD theory is a reorganization of perturbative cor-
rections (folding selected logarithmic contributions at all
orders into exact low-order calculations), which is be-
ginning to provide practical applications [2]. The soft-
gluon resummation for the inclusive production of color-
less massive states [3–5] may be the best understood and
best tested among these resummation techniques. For
the transverse momentum distribution of heavy bosons of
mass M , when pT � M , the pT distribution calculated
order-by-order in αs in conventional fixed-order pertur-
bation theory receives a large logarithm, ln(M2/p2

T ), at
every power of αs, even in the leading order in αs. There-
fore, at sufficiently small pT , the convergence of the con-
ventional perturbative expansion in powers of αs is im-
paired, and the logarithms must be resummed.

The heavy-ion program at the LHC will make it possi-
ble to observe the full pT spectra of heavy vector bosons
in nuclear collisions and will provide a testing ground for
resummation theory in nuclear collisions. In the present
paper, we focus on Z0 production [6,7]. Based on LHC
design luminosities [8], we estimate that a month of run-
ning will provide ∼ 4 ∗ 105 Z0 events in a proton-proton
(pp) collision, and ∼ 8 ∗ 102 Z0 events in a Pb+Pb col-
lision in a pT interval of 0.5 GeV in the peak regions
of the corresponding spectra. Due to the large mass of
the Z0, and no final state rescattering in its production,

nuclear effects from final state interactions are expected
to be small. We will show that the power corrections
enhanced by initial state rescattering also remain small.
Thus, leading twist pQCD should work well here. The
only important nuclear effect left is the nuclear modifica-
tion of parton distribution functions (shadowing). There-
fore, Z0 production could provide a bench mark test for
pQCD at the LHC in both pp and nuclear collisions.

Resummation of the large logarithms in QCD can be
carried out either in pT -space directly [9], or in the so-
called “impact parameter”, b̃-space, which is a Fourier
conjugate of the pT -space. Using the renormalization
group equation technique, Collins and Soper improved
the b̃-space resummation to resum all logarithms as sin-
gular as lnm(M2/p2

T )/p2
T with m ≥ 0, when pT → 0 [3].

Collins, Soper, and Sterman (CSS) derived a formalism
for the transverse momentum distribution of vector bo-
son production in hadronic collisions [4]. In the CSS for-
malism, non-perturbative input is needed for the large
b̃ region. The dependence of the pQCD results on the
non-perturbative input is not weak if the original extrap-
olation proposed by CSS is used. Recently, a new ex-
trapolation scheme was proposed, based on solving the
renormalization group equation including power correc-
tions [5]. Using the new extrapolation formula, the de-
pendence of the pQCD results on the non-perturbative
input was significantly reduced. The results agree with
Tevatron CDF [10] and D0 [11] data very well in the en-
tire pT interval from pT

<∼ 1 GeV to pT as large as the
the vector mass.

For vector boson (V ) production in a hadron collision
hA + hB, the CSS resummation formalism yields [4]:

dσ(hA + hB → V + X)
dM2 dy dp2

T

=
1

(2π)2

∫
d2b̃ ei~pT ·~̃b

W̃ (b̃, M, xA, xB) + Y (pT , M, xA, xB) , (1)

where xA = ey M/
√

s and xB = e−y M/
√

s, with rapid-
ity y and collision energy

√
s. In Eq. (1), the W̃ term

dominates the pT distributions when pT � M , and the
Y term gives corrections that are negligible for small pT ,
but become important when pT ∼M .

The function W̃ (b̃, M, xA, xB) can be calculated per-
turbatively for small b̃, but an extrapolation to the large b̃
region requiring nonperturbative input is necessary in or-
der to complete the Fourier transform in Eq. (1). In oder
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to improve the situation, a new form was proposed [5]
by solving the renormalization equation including power
corrections. In the new formalism, W̃ (b̃, M, xA, xB) =
W̃ pert(b̃, M, xA, xB), when b̃ ≤ b̃max, with

W̃ pert(b̃, M, xA, xB) = eS(b̃,M) w̃(b̃, c/b̃, xA, xB) , (2)

where all large logarithms from ln(1/b̃2) to ln(M2) have
been completely resummed into the exponential factor
S(b̃, M), and c is a constant of order unity [4].

W̃ (b̃, M, xA, xB) = W̃ pert(b̃max)FNP (b̃; b̃max) , (3)

where the nonperturbative function FNP is given by

FNP = exp
{− ln(M2b̃2

max/c2)
[
g1

(
(b̃2)α − (b̃2

max)α
)

+g2

(
b̃2 − b̃2

max

)]
− ḡ2

(
b̃2 − b̃2

max

)}
. (4)

In Eq.(3) b̃max is a parameter to separate the perturba-
tively calculated part from the non-perturbative input.
Unlike in the original CSS formalism, W̃ (b̃, M, xA, xB)
is not altered when b̃ < b̃max, and is independent of
the nonperturbative parameters. In addition, the b̃-
dependence in Eq. (4) is separated according to differ-
ent physics origins. The (b̃2)α-dependence mimics the
summation of the perturbatively calculable leading power
contributions to the renormalization group equations to
all orders in the running coupling constant αs(µ). The b̃2-
dependence of the g2 term is a direct consequence of dy-
namical power corrections to the renormalization group
equations and has an explicit dependence on M . The ḡ2

term represents the effect of the non-vanishing intrinsic
parton transverse momentum.

A remarkable feature of the b̃-space resummation
formalism is that the resummed exponential factor
exp[S(b̃, M)] suppresses the b̃-integral when b̃ is larger
than 1/M . Therefore, it can be shown using the saddle
point method that, for a large enough M , QCD pertur-
bation theory is valid even at pT = 0 [12,4]. As discussed
in Ref.s [5,13], the value of the saddle point strongly de-
pends on the collision energy

√
s, in addition to its well-

known M2 dependence. Because of the steep evolution of
parton distributions at small x, the

√
s dependence of W̃

in Eq. (1) significantly decreases the value of the saddle
point and improves the predictive power of the b̃-space
resummation formalism at collider energies, in particular
at the LHC.

In Z0 production, since final state interactions are
negligible, power correction can arise only from initial
state multiple scattering. Power corrections directly to
the physical observables are proportional to powers of
ΛQCD/Q (Q being the physical large scale). These cor-
rections are small for Z0 production as a result of the
large mass of the Z0. Power corrections to the evolution
of the renormalization group equations are proportional
to powers of ΛQCD/µ, with evolution scale µ. There-
fore, physical observables carry the effect of the latter

type power corrections for all µ[Q0, Q], with the bound-
ary condition at the scale Q0. Even with large mass, Z0

can still carry a large effect of these power corrections.

Equations (3) and (4) represent the most general form
of W̃ , and thus (apart from isospin and shadowing effects,
which will be discussed later), the only way nuclear modi-
fications associated with scale evolution enter the W̃ term
is through the coefficient g2. (Since the ḡ2 term of Eq. (4)
is related to the partons’ intrinsic transverse momentum,
it should not have a strong nuclear dependence.)

The parameters g1 and α of Eq. (4) are fixed by the
requirement of continuity of the function W̃ (b̃) and its
derivative at b̃ = b̃max. (The results are insensitive to
changes of b̃max in the interval 0.3 GeV−1 <∼ b̃max

<∼
0.7 GeV−1. We use b̃max = 0.5 GeV−1.) The value
of g2 and ḡ2 can be obtained by fitting the low-energy
Drell-Yan data. These data can be fitted with about
equal precision if the values ḡ2 = 0.25 ± 0.05 GeV2 and
g2 = 0.01±0.005 GeV2 are taken. As the b̃ dependence of
the g2 and ḡ2 terms in Eq. (4) is identical, it is convenient
to combine these terms and define

G2 = ln(
M2b̃2

max

c2
)g2 + ḡ2 . (5)

Using the values of the parameters listed above, we get
G2 = 0.33 ± 0.07 GeV2 for Z0 production in pp colli-
sions. The parameter G2 can be considered the only free
parameter in the non-perturbative input in Eq. (4), aris-
ing from the power corrections in the renormalization
group equations. An impression about the importance of
power corrections can be obtained by comparing results
with the above value of G2 to those with power correc-
tions turned off (G2 = 0). We therefore define the ratio

RG2(pT ) ≡ dσ(G2)(pT )
dpT

/
dσ(pT )

dpT
. (6)

The cross sections in the above equation and in the re-
sults presented in this paper have been integrated over ra-
pidity (−2.4 ≤ y ≤ 2.4) and invariant mass squared. For
the parton distribution functions, we use the CTEQ5M
set [14] in the present work.

Figure 1 displays the differential cross sections and
the corresponding RG2 ratio (with the limiting values of
G2 = 0.26 GeV2 (dashed) and G2 = 0.40 GeV2 (solid))
for Z0 production as functions of pT at

√
s = 14 TeV.

The deviation of RG2 from unity decreases rapidly as
pT increases, and it is smaller than one percent for both√

s = 5.5 TeV (not shown) and
√

s = 14 TeV in pp col-
lisions, even when pT = 0. In other words, the effect of
power corrections is very small at the LHC for the whole
pT region.
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FIG. 1. (a) Cross section dσ/dpT for Z0 production in pp collisions at the LHC with
√

s = 14 TeV; (b) RG2 defined in
Eq. (6) with G2 = 0.26 GeV2 (dashed) and 0.40 GeV2 (solid).

In lack of nuclear effects on the hard collision, the pro-
duction of heavy vector bosons in nucleus-nucleus (AB)
collisions should scale, compared to the production in pp
collisions, as the number of hard collisions, AB. How-
ever, there are several additional nuclear effects on the
hard collision in a heavy-ion reaction. First of all, since
the parton distribution of neutrons is different from that
of the protons, the production cross section of heavy vec-
tor bosons in proton-neutron interactions differs from the
corresponding production cross section in pp collisions.
This difference is the source of the so-called isospin ef-
fects. At LHC, x ∼ 0.02, and the magnitude of the
isospin effects is about 2%. This is because when x is
in this range, the u− d asymmetry is very small [15].

The dynamical power corrections entering the parame-
ter g2 should be enhanced by the nuclear size, i.e. propor-
tional to A1/3. Taking into account the A-dependence,
we obtain G2 = 1.15± 0.35 GeV2 for Pb+Pb reactions.
We find that with this larger value of G2, the effects of
power corrections appear to be enhanced by a factor of
about three from pp to Pb+Pb collisions at the LHC.
Thus, even the enhanced power corrections remain un-
der 1% when 3 GeV <∼ pT

<∼ 80 GeV. This small effect is
taken into account in the following nuclear calculations.

Next we turn to the phenomenon of shadowing, ex-
pected to be a function of x, the scale µ, and of the posi-
tion in the nucleus. The latter dependence means that in
heavy-ion collisions, shadowing should be impact param-
eter (b) dependent. The parameterizations of shadowing
in the literature take into account some of these effects,
but no complete parameterization exists to date to our
knowledge. For example, the HIJING parameterization
includes impact parameter dependence, but does not deal
with the scale dependence [16,17]. On the other hand,
the EKS98 [18] and HKM [19] parameterizations have
a scale dependence, but do not consider impact parame-
ter dependence. (The latter parameterizations have been

compared recently [20].) In this paper we concentrate on
impact-parameter integrated results, where the effect of
the b-dependence of shadowing is relatively unimportant
[21], and we focus more attention on scale dependence.
We therefore use EKS98 shadowing [18] in this work.

To quantify the effect of shadowing, we define

Rsh(pT ) ≡ dσ(sh)(pT , ZA/A, ZB/B)
dpT

/
dσ(pT )

dpT
, (7)

where ZA and ZB are the atomic numbers and A and B
are the mass numbers of the colliding nuclei, and the cross
section dσ(pT , ZA/A, ZB/B)/dpT has been averaged over
AB, while dσ(pT )/dpT is the pp cross section. We have
seen above that shadowing remains to be the only signif-
icant effect responsible for nuclear modifications.
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FIG. 2. Cross section dσ(sh)(pT , ZA/A, ZB/B)/dpT for Z0 production
averaged over AB (solid line), compared to the proton-proton cross sectio

Figure 2 presents dσ(sh)(pT , ZA/A, ZB/B)/dpT (solid
line) compared to dσ(pT )/dpT in pp collisions (dashed)
for Z0 production at

√
s = 5.5 TeV. The insert, which

is a magnified view of the peak region of the cross sec-
tion on a logarithmic pT scale, emphasizes that the shape
of the distribution changes from pp collisions. Most im-
portantly, the peak moves form 3.7 GeV to 4.1 GeV.
This small shift may be difficult to detect experimen-
tally. However, the peak position plays an important role
in shadowing, due to the steepness of the cross section.
This can be seen in Fig. 3(a), which shows the shadowing
ratio (7) (full line) for Z0 production at

√
s = 5.5 TeV.

In Fig. 3(b) we show the RG2 ratio defined in Eq. (6)
for Pb+Pb collisions for the limiting values of G2 = 0.8
GeV2 (dashed) and G2 = 1.5 GeV2 (solid), respectively.
Since Fig. 3(b) provides a good measure of the overall
uncertainty on the shadowing ratio, and this uncertainty
is less than 2%, the characteristic shape of Rsh may be
easier to confirm experimentally by comparing the full
pT spectra in Pb+Pb versus pp collisions at the same
energy.
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FIG. 3. Cross section ratios for Z0 production in Pb+Pb collisions at
√

s = 5.5 TeV: (a) Rsh defined in Eq. (7) (solid line),
and Rsh with the scale fixed at 5 GeV (dashed) and 90 GeV (dotted); (b) RG2 defined in Eq. (6) with G2 = 0.8 GeV2 (dashed)
and 1.5 GeV2 (solid).

The appearance of Rsh is surprising, because even at
pT = 90 GeV, x ∼ 0.05, and we are still in the “strict
shadowing” region. Therefore, the fact that Rsh > 1
for 20 GeV <∼ pT

<∼ 70 GeV is not “anti-shadowing”;
rather, it is a consequence of the change of the shape
of the cross section from pp to AB reactions shown in
Fig. 2. To better understand the shape of the ratio
as a function of pT , we also show Rsh with the scale
fixed at the values 5 GeV (dashed line) and 90 GeV (dot-
ted), respectively, in Fig. 3(a). In other words, the nu-
clear modification to the parton distribution function is
only a function of x and flavor in the calculations repre-
sented by the dashed and dotted lines. These two curves
are similar in shape, but rather different from the solid
line. In b̃ space, W̃ (b̃, M, xA, xB) is almost equally sup-
pressed in the whole b̃ region if the fixed scale shadowing
is used. However, with scale-dependent shadowing, the
suppression increases as b̃ increases, as a result of the
scale µ ∼ 1/b̃ in the nuclear parton distribution. We can
say that the scale dependence re-distributes the shadow-
ing effect. In the present case, the re-distribution brings
Rsh above unity for 20 GeV <∼ pT

<∼ 70 GeV. When pT

increases further, the contribution from the Y term starts
to be important, and Rsh dips back below one to match
the fixed order pQCD result.

We see from Fig. 3 that the shadowing effects in the
pT distribution of Z0 bosons at the LHC are intimately
related to the scale dependence of the nuclear parton dis-
tributions, on which we have only very limited data [18].
Theoretical studies (such as EKS98) are based on the as-
sumption that the nuclear parton distribution functions
differ from the parton distributions in the free proton,
but obey the same DGLAP evolution [18]. Therefore,
the tranverse momentum distribution of heavy bosons at

the LHC in Pb+Pb collisions can provide a further test
of our understanding of the nuclear parton distributions.

In summary, higher-twist nuclear effects appear to be
negligible in Z0 production at LHC energies. (The re-
sults for W± production are very similar [13].) We have
demonstrated that the scale dependence of shadowing ef-
fects may lead to unexpected phenomenology of shadow-
ing at these energies. Overall, the Z0 transverse momen-
tum distributions calculated in this paper can be used
as a precision test for leading-twist pQCD in the TeV
energy region for both, proton-proton and nuclear colli-
sions. We propose that measurements of Z0 spectra be
very high priority at the LHC.
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