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2 INCLUSIVE HIGGS BOSON PRODUCTION AT HADRON COLLIDERS AT

NEXT-TO-NEXT-TO-LEADING ORDER
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Inclusive production via gluon fusion will be the most important production channel for Higgs
boson discovery at the LHC. I report on a calculation of the inclusive Higgs boson production
cross section at pp and pp̄ colliders at next-to-next-to-leading order in QCD.

1 Introduction

The Standard Model is almost thirty-five years old, and its basic assertion, that the weak and
electromagnetic interactions unify in a spontaneously broken SU(2)L ⊗U(1)Y gauge theory has
been spectacularly confirmed at the quantum level by the precision experiments at LEP and
the SLC. Still, the crucial ingredient, the agent of electroweak symmetry breaking, remains a
mystery.

The benchmark for studies of the symmetry breaking sector is the minimal standard model,
in which a single complex scalar doublet is introduced. Upon, spontaneous symmetry breakdown,
a single Higgs boson is left as the signature of the symmetry breaking sector. The final run at
LEP established a 95% confidence-level lower limit for the Higgs boson of 114.1 GeV1. The Higgs
boson can also be constrained by its effect on precisely measured electroweak observables. The
current best fit produced by the LEP Electroweak Working Group predicts that MH = 85+54

−34

GeV, with a 95% confidence-level upper limit of MH < 196 GeV.

With the end of LEP, the search for the Higgs boson is left to hadron colliders, the Fermilab
Tevatron and the CERN LHC. Higgs production at hadron colliders is dominated by the gluon
fusion mechanism, where gluons excite virtual top quark loops which couple strongly to the
Higgs. Despite its dominance, this production process cannot be exploited at the Tevatron
unless the Higgs boson mass is near the WW threshold. For lighter Higgs masses, the dominant
decay mode, H → bb̄ is overwhelmed by the QCD background and the overall rate is too low to
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permit the use of rare decay modes. Therefore, the Tevatron experiments must primarily rely
on the associated production mechanism, qq̄ → H + W , for their Higgs search.

At the LHC, however, gluon fusion is the most important production mechanism for Higgs
discovery for masses below ∼ 700 GeV, since the rate will be sufficiently high that one can use
the rare decay mode H → γγ in the low mass region. The discovery of the Higgs boson and
the subsequent study of its properties therefore relies on a solid theoretical understanding of the
gluon fusion production mechanism.

Unfortunately, next-to-leading order (NLO) studies 2,3 of inclusive Higgs production do not
provide this solid understanding. The NLO corrections are very large, of order 70 − 100%,
and initial estimates of next-to-next-to-leading order (NNLO) corrections 4 based on soft plus
collinear resummation indicated that they too might be very large. The unsettled nature of such
an important signal clearly calls for a renewed effort to bring this process under control.

Last year, two groups presented calculations of the soft plus virtual contributions to the
NNLO correction 5,6. It was known from NLO corrections that soft plus virtual terms alone
significantly underestimate the full correction. The leading hard scattering term is completely
collinear in nature and can be reliably obtained from resummation. The combined soft plus
virtual plus collinear (SVC) approximation 6 predicts that the total NNLO correction will be
much more moderate than the initial estimate 4. Still, one would like a full NNLO calculation
to verify that inclusive Higgs boson production is under perturbative control. In this talk, I will
present the results of that calculation 7.

2 The Calculation

In the limit that all quark masses except that of the top quark vanish, gluons couple to Higgs
only via top quark loops. This coupling can be approximated by an effective Lagrangian 8

corresponding to the limit mt → ∞, which is valid for a large range of MH , including the
currently favored region between 100 and 200 GeV. The effective Lagrangian is

Leff = −
H

4v
C1(αs)Ga

µνGa µν , (1)

where Ga
µν is the gluon field strength tensor, H is the Higgs field, v ≈ 246 GeV is the vacuum

expectation value of the Higgs field and C1(αs) is the Wilson coefficient, which for this calculation
we need to order (α3

s)
9,4.

Three classes of Feynman diagrams must be evaluated to compute the NNLO cross section:
(i) two-loop virtual diagrams for gg → H; (ii) one-loop single real emission diagrams for gg →

Hg, gq → Hq, and qq̄ → Hg; (iii) tree-level double real emission diagrams for gg → Hgg,
gg → Hqq̄, gq → Hgq, qq → Hqq, qq̄ → Hgg, and qq̄ → Hqq̄. Sample diagrams are shown in
Figure 1.
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Figure 1: Sample diagrams of (a) virtual (b) single real emission and (c,d) double real emission corrections.

The most difficult part of the calculation, by far, is the computation of the corrections
due to double real emission. While the (tree-level) matrix elements are quite easy to compute,
the integration over double-emission phase space is quite complicated. We find, however, that



if we expand the double real emission integrals as power series about soft limit (where the
partonic center-of-mass energy is close to the Higgs mass, M2

H/ŝ ≡ x → 1), the integrals simplify
dramatically. Moreover, the series expansion is well-behaved and converges quite rapidly.

Thus, while we have computed the virtual corrections, single real emission and the effects of
mass factorization in closed analytic form, we have computed double real emission in the form
of a power series. The closed-form results can also be readily expressed as power series, so we
present the full partonic cross section as an expansion in (1 − x) and ln(1 − x):

σ̂ij =
∑

n≥0

(αs

π

)n

σ̂
(n)
ij ,

σ̂
(n)
ij = a(n) δ(1 − x) +

2n−1
∑

k=0

b
(n)
k

[

lnk(1 − x)

1 − x

]

+

+
∞
∑

l=0

2n−1
∑

k=0

c
(n)
lk (1 − x)l lnk(1 − x) ,

x =
M2

H

ŝ
.

(2)

Note that if all coefficients are computed, this is an exact expression for the partonic cross section.
In practice, we compute only a finite number of terms. The soft plus virtual approximation

includes only the a(2) and b
(2)
k terms at second order. The SVC approximation also includes the

c
(2)
03 coefficient. We have now computed all coefficients c

(2)
lk through l = 16 7. As can be seen in

Figure 3, this is more than enough terms to obtain a reliable result for the total cross section.

In Figure 2(a), we show the cross section at LO, NLO and NNLO. At each order, we use
the corresponding MRST parton distribution set 10. One immediately sees that the true NNLO

(a)

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LO
NLO
NNLO

√ s = 14 TeV

(b)

0

0.5

1

1.5

2

2.5

3

100 120 140 160 180 200 220 240 260 280 300

K(pp→H+X)

MH [GeV]

LO
NLO

NNLO

√ s = 14 TeV

Figure 2: (a) LO (dotted), NLO (dashed) and NNLO (solid) cross sections for Higgs production at the
LHC (µF = µR = MH). In each case, we weight the cross section by the ratio of the LO cross
section in the full theory (Mt = 175 GeV) to the LO cross section in the effective theory (Eq. (1)).
(b) Scale dependence at the LHC. The lower curve of each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with respect to the LO cross section at µR = µF = MH .

correction, while substantial, is much smaller than the NLO correction. Indeed, it is even a bit
smaller than predicted by the SVC approximation. Nonetheless, it verifies that the SVC is a
good approximation of the total cross section.

Figure 2(b) shows the renormalization and factorization scale dependence of the “K factor”,
the ratio of the NLO and NNLO cross sections to the leading order cross section. The scale
dependence of the NNLO cross section is still quite large, though somewhat smaller than at
NLO.

Figure 3 shows the rapid convergence of the power series expansion in (1−x). Observe that
the purely soft contributions underestimate the cross section by ∼ 10% − 15%, while the next
term, ∝ (1 − x)0, overestimates it by about 5%. By the time the third term in the series is
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Figure 3: K-factor for Higgs production at the LHC. Each line corresponds to a different order in the expansion
in (1 − x). The renormalization and factorization scales are set to MH .

included (∝ (1 − x)1), one is within 1% of the result obtained by computing the first 18 terms
(through (1 − x)16). In light of the large scale uncertainty in the result, there is little or no
precision to be gained from computing higher order terms in the expansion.

In conclusion, we have computed the full NNLO corrections to inclusive Higgs boson pro-
duction at hadron colliders. We find reasonable perturbative convergence and reduced scale
dependence.
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