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Abstract

We report measurements of the inclusive reaction, pp̄ → pXp̄, in events where
either or both the beam–like final–state baryons were detected in Roman-pot spec-
trometers and the central system was detected in the UA2 calorimeter. A Double-
Pomeron-Exchange (DPE) analysis of these data and single diffractive data from the
same experiment demonstrates that, for central masses of a few GeV, the extracted
Pomeron–Pomeron total cross section, σtot

PP , exhibits an enhancement which ex-
ceeds factorization expectations by an order-of-magnitude. This may be a signature
for glueball production. The enhancement is shown to be independent of uncertain-
ties connected with possible non–universality of the Pomeron flux factor. Based on
our analysis, we present DPE cross section predictions, for unit (1 mb) Pomeron-
Pomeron total cross section, at the Tevatron, LHC and the 920 GeV fixed-target
experiment, HERA-B.
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1 Introduction

We study the Double–Pomeron–Exchange (DPE) ”diffractive” process[1], depicted in
Fig. 1(a), using the reaction:

p̄ p → p̄ X p (1)

When the final state p and p̄ momenta both have large Feynman-xp, the process proceeds
with the exchange of two (virtual) gluon–rich colorless systems called Pomerons. These
systems, which carry a small fraction of the beam momentum of the two approaching
hadrons, ∆p/p = ξ = 1−xp, collide and constitute the entire effective interaction between
the two beam particles. This leads to the presence of “rapidity–gaps”, or regions of
pseudorapidity with no particles between p and p̄ and the central system, X. The system
X with invariant mass, MX , is the result of the Pomeron–Pomeron interaction and,
to good approximation, is given by MX

2 = s′ = ξ1ξ2s (we use the symbols, MX
2 and

s′, interchangably); thus, a given MX is produced at smaller ξ values when the c.m.
energy is larger. Single diffractive processes (see Fig. 1(c)) appear[2] to be essentially
pure Pomeron-exchange when ξ < 0.03.

The DPE process is the closest we can come to pure gluon interactions. As such, it
may be a splendid glueball production process [3]. At the very high energies of the LHC,
“diffractive hard scattering” in React. 1 may have advantages as a relatively clean pro-
duction mechanism of rare states. Diffractive hard scattering was proposed in Ref. [4] and
discovered in pp̄ interactions by the UA8 Experiment [5] at the Spp̄S–Collider (

√
s = 630

GeV) and in ep interactions by the H1 and ZEUS experiments at HERA[6] (see Refs. [7, 8]
for further studies at the Tevatron). First studies of hard scattering in React. 1 were made
at the Spp̄S–Collider [9] and at the Tevatron [10, 11]. Based on UA8’s observation of the
“super-hard” Pomeron in single diffractive dijet production [5], a small fraction (≈ 10%)
of all hard-scattering DPE events at the LHC may be high–mass gluon–gluon collisions.

In the present paper, we present final results on React. 1 from the UA8 Experiment at
the CERN Spp̄S–Collider. UA8 was the first experiment in which data acquisition from
a large central detector was “triggered” by the presence of outgoing beam-like protons or
antiprotons. The final-state baryons were measured in UA8 Roman–pot spectrometers [12]
which were installed in the outgoing arms of the same interaction region as Experiment
UA2 [13]; the central system, X, was measured in the UA2 calorimeter. At 630 GeV
center-of-mass energy, MX = 6.3 (18.9) GeV when ξ1 and ξ2 are both equal to 0.01 (0.03).

Previous measurements [14] of React. 1 with exclusive final states have been made in
pp interactions at the CERN Intersecting Storage Rings with c.m. energy,

√
s = 63 GeV,

and with α beams [15] at
√

s = 126 GeV. The advantage of the present ten–times higher
c.m. energy is that much smaller values of ξ are accessible for a given produced MX ,
thereby enhancing the purity of the Pomeron-exchange component.

As seen in Fig. 1, Reaction 1 is intimately related to the inclusive single–diffractive
reactions:

p̄ p → p̄ X or p̄ p → X p , p p → X p (2)

In Reactions 2, the Pomeron from one beam particle interacts with the second beam
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particle. Fig. 1(c) depicts the single diffractive reaction, while Fig. 1(b,d) show the cor-
responding (dominant) Triple-Regge diagrams of DPE and inclusive single diffraction.

At small momentum transfer, |t|, triple–Regge predictions of inclusive single diffractive
cross sections are found to increase more rapidly than do the observed cross sections [16,
17] and violate the unitarity bound above

√
s = 2 TeV. The observed large damping

effects in the data are believed to be due to multiple–Pomeron–exchange effects, which
phenomenologically are equivalent to a smaller effective Pomeron trajectory intercept
with increasing energy [18, 19]. However, despite these unitarizing effects, effective vertex
factorization appears to remain valid to an astonishing degree [19]. In the present analysis,
we assume its validity.

In terms of the Triple–Regge model, the cross section for React. 2 may be written
as the product of the Pomeron-proton total cross section, σtot

Pp, with the flux factor for
a Pomeron in the proton , FP/p(t, ξ). Since it is our working assumption that the same
FP/p(t, ξ) describes the Pomeron-proton vertices in both Reacts. 2 and 1, the cross section
for React. 1 is given by the product of the Pomeron-Pomeron total cross section, σtot

PP(s′),
with two flux factors. See, however, the discussion in Sect. 7 on systematic uncertainties
due to a possible non–universality of FP/p(t, ξ). The essential result of this paper will be
shown to be insensitive to such effects.

The empirical FP/p(t, ξ) has been “fine-tuned” in fits of the following equation to all
available data on React. 2 at the Spp̄S [2] and ISR [20]:

d2σsd

dξdt
= FP/p(t, ξ) · σtot

Pp(s
′) = [K · |F1(t)|2 · ebt · ξ1−2α(t)] · [σ0 · ((s′)0.10 + R(s′)−0.32)] (3)

|F1(t)|2 is the Donnachie-Landshoff [21] form factor1. The right-hand bracket in Eq. 3, the
Pomeron-proton total cross section, is assumed to have the same form that describes the s-
dependence of real particle total cross sections. The best values of the fitted parameters [2]
in Eq. 3 are2:

Kσ0 = 0.72± 0.10 mb GeV−2

R = 4.0± 0.6
b = 1.08± 0.20 GeV−2

The effective Pomeron trajectory is found [19] to be s–dependent and, at the energy of
the UA8 experiment (

√
s = 630 GeV), is:

α(t) = 1 + ε + α′t + α′′t2 = 1.035 + 0.165t + 0.059t2 (4)

while, over the ISR energy range (s = 549 to 3840):

ε(s) = (0.096± 0.004)− (0.019± 0.005) · log(s/549).

1F1(t) = 4m2
p−2.8t

4m2
p−t · 1

(1−t/0.71)2

2The fits are also consistent with the existing CDF results at the Tevatron [17, 19]
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α′(s) = (0.215± 0.011)− (0.031± 0.012) · log(s/549)
α′′(s) = (0.064± 0.006)− (0.010± 0.006) · log(s/549).

The quadratic term[2] in α(t) corresponds to a “flattening”3, or departure from linear
behavior, of the effective Pomeron trajectory at high-|t|. Direct evidence for this flattening
of the trajectory can be obtained by looking at the behavior of the UA8 single diffractive
data [2] at large-|t|. Figure 2 shows the observed Feynman-xp distributions for different
bands of |t| between 1 and 2 GeV2. Since the geometrical acceptance[2] depends linearly
and weakly on xp in this figure, the pronounced peaks near xp = 1 reflect the physics of
diffraction and are seen to persist up to |t| of 2 GeV2. They are due to the (approximate)
1/M2

X behavior of Triple-Regge phenomenology. If the trajectory did not flatten, but
continued to drop linearly, the diffractive peak would tend to disappear. For example,
with a trajectory, α(t) = 1.08 + 0.25t, the peak would disappear at −t = 2.3 GeV2

(corresponding to: 2α(t)− 1 = 0). Thus, the persistence of the diffractive peak in Fig. 2
is the most direct evidence that the effective Pomeron trajectory flattens at large-|t|.

The question arises as to whether the Pomeron is still dominant for |t| > 1 GeV2, where
most of the data in the present experiment exists. The self-consistency of the Triple–Regge
analysis in this paper describing both single–diffraction and double–Pomeron–exchange
data is one supporting argument. Another important point is that the set of all Spp̄S and
ISR high–|t| data agree [17] with a “fixed–pole” description without damping. Another
argument is that the hard Pomeron structure found in the UA8 jet event analysis [5]
is consistent with that found in the analysis of low-|t| data at HERA[23]. Thus, our
working assumption is that Pomeron–exchange dominates React. 1 in the momentum–
transfer range, 1 < −t < 2 GeV2. Based on the results of earlier studies[2] of diffraction,
we can ignore Reggeon exchange when ξ < 0.03.

The differential cross section for the DPE process, React. 1, is:

d6σDPE

dξ1dξ2dt1dt2dφ1dφ2
= FP/p(t1, ξ1) · FP/p(t2, ξ2) · σtot

PP(s′) (5)

The variables, (ξi, ti, φi), describe each of the emitted Pomerons at the outer vertices in
Fig. 1(a), which are uniquely given by the measurement of the associated outgoing p (or
p̄) in the final state. Although there is no explicit φ–dependence on the right-hand-side
of Eq. 5 and the Pomerons are emitted independently and isotropically, φ correlations do
result, because significant regions in the 6-dimensional space, (ξ1, t1, φ1, ξ2, t2, φ2), are
unphysical and give s′ < 0. This point is discussed further in Sect. 4 in connection with
Monte–Carlo generation of events according to Eq. 5.

Using Eq. 5, our goal is to extract σtot
PP from our data on React. 1 and to determine its

energy (s′) dependence. In particular, we wish to know whether there are enhancements
at small s′ which could be due to a strong Pomeron-Pomeron interaction and possible

3This flattening is also claimed to be seen by the ZEUS experiment [22] at DESY in photoproduction
of low-mass vector mesons (ρ0 and φ0)
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glueball production. In the large–s′ region where Pomeron-exchange dominates, σtot
PP is

related by factorization to the Pomeron-proton and proton-proton total cross sections:

σtot
PP(s′) =

[σtot
Pp(s

′)]2

σtotal
pp (s′)

(6)

This is seen with reference to the ratios of forward elastic amplitudes for the three pro-
cesses shown in Fig. 3. A generalized optical theorem [24, 25] then leads to Eq. 6 between
total cross sections. Ryskin [26] has pointed out that the three cross sections must be
evaluated at the same value of s′.

Despite the fact that the cross sections, σtot
Pp and σtot

PP , can only be extracted from
data in product with the constant K in FP/p(t, ξ) (K2 in the case of σtot

PP and K in the
case of σtot

Pp; see Eqs. 3 and 5), we see in Eq. 6 that such factors of K cancel. Thus, the
factorization test does not require knowledge of K. However, absolute values of either σtot

Pp

or σtot
PP can only be given for an assumed value of K, for example by using the Donnachie–

Landshoff model [21] with K = 9β2/(4π2) = 0.74 GeV−2, which arises from an analysis of
elastic scattering data. Although different multi-Pomeron-exchange effects in diffraction
and elastic scattering mean that this value of K is only approximate, we nonetheless do
quote values for σtot

PP in the closing sections of this paper, assuming K = 0.74 GeV−2.
After describing the experiment and the event selection, we discuss the Monte–Carlo

event generation of React. 1, and the determination of σtot
PP . In the process, we compare

the results from two different data samples, one in which both p and p̄ are detected and the
other in which only p or p̄ is detected. We then test the factorization relation and come to
our conclusions which demonstrate, among other things, an overall self-consistency of our
phenomenological description of single diffraction and double-Pomeron-exchange. Based
on these conclusions, we calculate predictions for double-pomeron-exchange yields at the
Tevatron and LHC and also at the HERA-B fixed–target experiment.

2 Apparatus & trigger

Detailed descriptions of the UA8 apparatus, its properties, triggering capabilities and
interface to the UA2 experiment [13] are given elsewhere [12]. Thus we only provide a
brief summary of the spectrometer here.

UA8 constructed Roman-pot spectrometers [12] in the same interaction region as the
UA2 experiment, in order to measure the outgoing “beam-like” p and/or p̄ in React. 1 or
React. 2, together with the central system using the UA2 calorimeter system [13]. There
were four Roman-pot spectrometers (above and below the beam pipe in each arm) which
measured p and/or p̄ with xp > 0.9 and 0.8 < |t| < 2.5 GeV2. Fig. 4 shows one spectrom-
eter with the trajectories of 300 GeV particles (xp ∼ 0.95) emerging from the center of the
intersection region with minimum and maximum acceptable angles (solid curves). The
lower (upper) edge of the shaded area corresponds to the minimum (maximum) accepted
angles of xp = 1 tracks. The trajectory corresponding to the lower edge of the shaded
region is 12 beam widths (σ) from the center of the circulating beam orbit.
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Particle momenta in the Roman pot spectrometers were calculated in real–time by a
dedicated special–purpose processor system [12, 27], thereby providing efficient low–rate
p and p̄ triggers. Improved final-state proton and/or antiproton momenta are calculated
offline using the reconstructed vertex position (if it exists), given by the UA2 central
chamber system [13], and points reconstructed from hits in Roman pot chambers 1, 2 and
3. Chamber 4 was also used in the fit, if a track traversed it.

Figure 5 shows a “beams-eye” view of the UA8 chamber aperture which is closest to
the center of the interaction region. The four-lobed curve in the figure illustrates the
contour of the beam pipe which matches that of the quadrupole-magnet pole pieces. The
overlap between the beam pipe and rectangular chambers above and below the beam
illustrates the limited azimuthal ranges through which a particle may pass. These are
centered at φ ∼ 90◦ and φ ∼ 270◦. Data were recorded with the bottom edge of each pot
set, in different runs, at either 12 beam widths (12σ) or 14σ from the beam axis.

The upgraded UA2 calorimeter system [13], shown in Fig. 6, covered the polar angular
range, 6◦ < θ < 174◦, and was used to measure the central system, X. In order to isolate
React. 1 from other (background) events, rapidity–gaps are imposed offline between p and
X, and between p̄ and X, by requiring the absence of charged–particle hits in the UA2
Time–Of–Flight (TOF) counters. These counters are indicated in Fig. 6 and cover the
range of pseudorapidity, 2.3 < |η| < 4.1, in both arms (2◦–12◦ and 168◦–178◦). Since the
TOF counters have some overlap with the small–angle region of the end–cap calorimeters,
the calorimeter minimum acceptance angle for the events considered here is increased from
6◦ to 12◦ in both arms.

2.1 Triggering

Since the main goal of the UA8 experiment was to make measurements of hard-
diffraction scattering in React. 2 [4, 5], UA8 was interfaced to the UA2 data acquisi-
tion system, which allowed the formation of triggers based on various combinations of p
and/or p̄ momenta and transverse energy in the UA2 calorimeter system. Parallel triggers
were also employed to yield samples of elastic and inelastic diffraction reactions with no
conditions on the energy in the calorimeter system.

In order to find evidence for React. 1, one of the supplementary triggers required
detection of a non-collinear p and p̄ pair. The p and p̄ were both required to be either in
the “UP” spectrometers (above the beam pipe), as shown in Fig. 7(a), or in the “DOWN”
spectrometers (below the beam pipe).

During the 1989 run, 1297 events were recorded in which both p and p̄ tracks were
detected and the calorimeter system had a total recorded energy greater than 0.25 GeV.
The remainder of the event-selection procedure for these events is described in Sect. 3.1.

The essential topology characteristic of these events is summarized in Table 1. It is
seen that, when both p and p̄ have xp > 0.95, 48% of the events have rapidity–gaps in
both arms (with pseudorapidity, 2.3 < |η| < 4.1). However, when one or the other of the
tracks has xp < 0.95, the percentage which possess rapidity–gaps in both arms falls to
only a few percent. Thus, the first class of events constitutes a unique and distinct class
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of events that are not part of the distribution of events with one or the other xp < 0.95.
A secondary data sample of React. 1 was extracted from data which were triggered

by requiring that either p or p̄ is observed, as shown in Fig. 7(b). In these events, since
there is no selection bias on momentum transfer, t, of the undetected particle, its natural
distribution prevails, with an average value, |t| ≈ 0.2 GeV2. There were 62,627 such events
recorded, after offline cuts for pile-up, beam-pipe geometry and halo cuts are made [2].
These data are dominated by single diffraction, React. 2. However, we show in Sect. 3.2
that the offline imposition of the rapidity–gap veto in both arms isolates React. 1 in this
data sample.

3 Event selection

We henceforth refer to the event sample for which both p and p̄ were required in the
trigger as the “AND” data sample. These events for which either p or p̄ are detected are
referred to as the “OR” data sample.

3.1 “AND” data sample

In these events, because the entire final state of React. 1 is seen in the Roman-pot
spectrometers and in the calorimeter system, the four constraints of energy-momentum
conservation can be individually examined.

Fig. 8(a) shows the distribution of total visible energy (p and p̄ and calorimeter)
for these events. Although there is clearly a component of events which possess the
full available energy of 630 GeV, a significant fraction of the events have less energy.
Fig. 8(b) shows the same distribution, but for those events in which rapidity–gaps have
been imposed using the Time–Of–Flight (TOF) counters in both arms. 188 events remain
in a clean signal at 630 GeV.

Having seen that the energy constraint is well satisfied, we now consider the three mo-
mentum constraints. As implied by Fig. 7(a), a minimum accepted transverse momentum
of ∼ 1 GeV for each of p and p̄ corresponds to a net transverse momentum imbalance,
Pt > 2 GeV, which is compensated for by a corresponding (opposite) momentum vector
in the UA2 calorimeter system. In order to observe this, we define a summed momentum
vector in the calorimeter. The cell energies observed in the UA2 calorimeter system are
summed up as (massless) vectors to approximate the total momentum vector, ~P (X), of

the system X in React. 1. The azimuthal angle of ~P (X), ΦX , is plotted in Fig. 9(a) vs.
the azimuthal angle of the summed momentum vector of the final-state p and p̄ particles.
There are peaks seen at 90◦ and 270◦, corresponding to the cases where both p and p̄
are both in their DOWN spectrometers or both in their UP spectrometers (as sketched
in Fig. 1(b)), respectively. Although ΦX has no acceptance or trigger bias, in both cases
it is seen to be opposite the azimuthal angle of the summed pp̄ momentum vector in the
figure.

The projection of the points in Fig. 9(a) on the ΦX axis is shown in Fig. 9(b). The
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different intensities in the two peaks are due to small differences in the distances of the
Roman-pots from the beam axis in the two spectrometers, resulting in a mismatch in
their low–Pt cutoffs. The solid curve is a Monte–Carlo calculation and shows that the
width of the peaks is understood. We select 139 events with ΦX in the bands 90◦ ± 20◦

and 270◦ ± 20◦.
Although the summed transverse momentum of p and p̄, Pt(p + p̄), drops off sharply

below 2 GeV, the transverse component of calorimeter vector, ~Pt(X), shown in Fig. 9(c)
displays a much broader distribution due to the resolution of the calorimeter and the fact
that, at small particle energies, some energy is lost before the particles reach the sensi-
tive volume of the device. Fig. 10(a) shows the transverse projection of the calorimeter
momentum vector together with the result of a Monte–Carlo simulation [28, 29] of the
UA2 calorimeter system. This shows that the UA2 calorimeter simulation software does
a good job in describing the calorimeter’s low energy response. We select 126 events with
1 < Pt(X) < 3 GeV for further analysis.

The degree of longitudinal momentum balance is demonstrated in Fig. 9(d), a his-
togram of total longitudinal momentum, ΣPlong, which includes the p, p̄ and calorimeter
longitudinal energies. A final sample of 107 DPE events satisfy the selection, |ΣPlong| < 7
GeV. The shaded histogram in Fig. 8(b) shows the total visible energy for these events
and demonstrates how well the energy constraint is satisfied. Fig. 8(c) is essentially the
same as Fig. 8(b), except that the order of the TOF veto and momentum–conservation
cuts is inverted.

Table 2 summarizes the event losses in the cuts described here. They are compared
with the effect of the same cuts on the Monte–Carlo generated events discussed in Sect. 4.
The similarity between the two sets of numbers implies that most of the 188 events shown
in Figs. 8(b) and 9(a,b) are in fact real examples of React 1.

An additional point can be made that there is an insignificant contribution in the data
sample from events in which the observed proton comes from a diffractively–produced low–
mass system (Baksay et al. [30] measured that this occurs (12±2.5)% of the time). Such
events would lead to an asymmetry and tail on the low side of the total visible energy
distribution in Fig. 8. Although a small tail of this type does exist, it disappears when
the momentum conservation cut is made. Thus we conclude that the rapidity–gap veto
combined with momentum conservation eliminates this source of background.

3.2 “OR” data sample

As remarked above, the “OR” triggered sample is dominated by React. 2. However,
the small component which is React. 1 can be isolated by selecting those events which
possess rapidity–gaps in both arms.

A signature which distinguishes React. 1 from React. 2 is the presence of a longi-
tudinally forward-backward symmetric distribution of particles in the UA2 calorimeter.
Fig. 11(a) shows distribution of the summed longitudinal momentum component of all
struck cells in the calorimeter for the triggered “OR” data sample. In constructing this
plot, each event is plotted on the negative side if the summed vector is in the same hemi-
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sphere as the observed trigger particle, and on the positive side if the vector is in the
opposite hemisphere. A large asymmetry is seen favoring the hemisphere opposite the
trigger particle, as expected for React. 2.

Fig. 11(b) shows the subset of events in Fig. 11(a) which have no hits in any of the
UA2 Time–Of–Flight counters. This corresponds to rapidity–gaps in the range 2.3 <
|η| < 4.1 in both arms. The forward-backward asymmetry seen in the calorimeter system
disappears. The “AND” events are also plotted in Fig. 11(b) and are seen to have the
same summed calorimeter momentum distribution as do the “OR” events. We take the
events in the resulting symmetric distribution as the candidates for React. 1.

The next step in the selection of React. 1 is to look at the equivalent of Fig. 9(b)
for this sample, namely the azimuthal angle, ΦX , of the summed calorimeter vector.
Fig. 12(a) shows its distribution for those single-diffractive events in which the observed
p or p̄ is seen in the DOWN spectrometer. Not surprisingly, a correlation is seen between
the azimuthal angles of the observed p or p̄ and the summed calorimeter vector. However,
when we make the “OR” event selection, by imposing the rapidity–gap condition using
the TOF counters, we see in Fig. 12(b) that the correlation becomes much stronger. The
distribution is broader than that seen in Fig. 9(b) for the “AND” events because of the
unknown (small) Pt of the unobserved final–state p or p̄ and also because of the smaller
energy in the calorimeter. The Monte–Carlo simulation of the UA2 calorimeter is in
reasonable agreement with the observed distribution. We select 698 “OR” events, with
ΦX either in the range 90◦ ± 20◦ or 270◦ ± 20◦.

Finally, for these “OR” candidates, we examine the summed transverse momentum in
the calorimeter shown in Fig. 10(b). Because this vector is opposite only one observed
vector of the p or p̄, its average value is less than that seen in Fig. 10(a) for the “AND”
sample. However, it also is in reasonable agreement with the Monte–Carlo simulation of
the UA2 calorimeter.

Figure 13 shows that the momentum transfer (t) distribution of the “OR” events is
in good agreement with that of the full single-diffractive data sample. This is consistent
with our basic assumption that the flux factor is common to Reacts. 2 and 1. The
lower statistics “AND” data sample (not shown here) is also compatable with the single–
diffractive data.

3.3 Feynman-xp distribution

The shaded distributions in Figs. 14(a,b) show the distributions of Feynman-xp and
xp̄ for the final “AND” and “OR” data samples, respectively. They are essentially indis-
tinguishable. The open histogram superimposed on both “AND” and “OR” distributions
(shaded) in Fig. 14 is the xp/xp̄ distribution in the single–diffractive data of React. 2
in our experiment [2]. In order that both sets of distributions have the same kinematic
conditions, the single–diffractive data are plotted only for those events that have no hits
in the TOF counters on the trigger side, which cover pseudorapidity, 2.3 < η < 4.1. Each
open histogram is normalized to its shaded distribution for the bin: 0.990 < xp < 0.995.

We see that the single–diffractive data possess a significant event population for xp >
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0.995, which is not seen in either set of data for React. 1. As discussed in the Introduction
and in Sect. 4, this apparent breakdown of factorization is merely a kinematic suppression
in React. 1, due to the requirement that s′ > 0 for the two–Pomeron system. In the
Monte–Carlo generation of two independently–emitted Pomerons according to Eq. 5 (see
Sect. 4), 61% of all events, in which both tracks have |t| > 1 GeV2, have s′ < 0 and are
discarded. The rejected events mostly have small–ξ; for example, when one ξ < 0.0005,
100% of events are rejected, whereas when ξ ≈ 0.03, only 26% of events are rejected. This
qualitatively accounts for the difference between DPE and single diffractive data near xp

= 1 in Fig. 14. For the ”OR” topology, when only one |t| > 1 GeV2, the rejection at
small–ξ is about the same (95%), whereas there is more rejection at ξ = 0.03 (51%);
this accounts for the difference in shape between ”AND” and ”OR” data in Fig. 14. The
detailed shapes of these distributions depend on σtot

PP , which we have not yet determined.

4 Monte–Carlo event generation

A complete Monte–Carlo simulation [29] of React. 1 was performed to determine the
spectrometer and calorimeter acceptances as well as the efficiencies of the various cuts.
Events were generated such that the Pomerons are emitted independently from proton
and antiproton, respectively, according to Eq. 5, using the Pomeron flux factor [19, 2]
in Eq. 3. σtot

PP is assumed to be independent of s′, although in Sect. 6 we will look for
departures from this assumption.

Points were chosen randomly in the 6-dimensional space4, (t1, ξ1, φ1, t2, ξ2, φ2), ac-
cording to the product of two flux factors. Each such point defines the properties of the
Pomeron–Pomeron system, its energy and its momentum vector. We have observed that,
even though the two Pomerons are assumed to be independently emitted, not all points
in the 6–dimensional space are kinematically allowed because the associated Pomeron-
Pomeron invariant mass may be unphysical (i.e., s′ < 0). Thus, events are retained only
if they are in regions of the 6-dimensional space for which s′ > 0. In our |t|-domain,
1–2 GeV2, such events are 39% of the total generated. We note that, even though the
Pomerons are generated isotropically and independently in azimuthal angle, φ, correla-
tions occur due to this kinematic suppression.

The number of particles of the central system, X, in React. 1 is generated according
to a Poisson distribution with its mean charged particle multiplicity depending on MX , as
measured in a study of low-mass diffractive systems [31], n̄ = 0.6MX (MX =

√
s′ in GeV);

the mean number of neutral particles is assumed to be one-half the number of charged
particles. The tracks are generated isotropically in the MX center-of-mass (see Sect. 5).
As described in Sect. 5.2, where the central system is seen to have longitudinal structure
for MX > 5 GeV, the Monte–Carlo generator is tuned to agree with the data.

After phase-space generation of the complete events, their data were passed through
detector simulation software for both the UA8 spectrometers and the UA2 detectors [28],

4Since the 3 observables of a final-state proton or antiproton are uniquely related to those of its
associated Pomeron, we use the Pomeron variables, ξ, t and φ.
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and then through the same offline analysis software and cuts used for the real data.
As already discussed in Sect. 3, Table 2 shows the good agreement between the real

event losses with the momentum cuts described in Sect. 3 and those on the Monte–Carlo
events calculated here. Since the Monte–Carlo event sample of React. 1 suffers a 46% loss
when the TOF veto is imposed, the net efficiency for event retention due to TOF veto
and event selection cuts is 26%.

The combined geometric and detection efficiency of proton and antiproton is about
6 · 10−4 at an average |t| of 1.2 GeV2. Figures 15(a,b) show the MX–dependence of the
overall geometric and detection efficiencies averaged over all other variables, for “AND”
and “OR” data, respectively, when the observed particles are in the range, 1.0 < −t <
2.0 GeV2. The 26% central system detection efficiency is also included in these efficiencies.
The fall–off in acceptance for the ”AND” data at low mass results from the fact that,
kinematically, low–mass events tend to have back–to–back p and p̄, which do not satisfy
the ”AND” trigger topology seen in Fig. 7. The ”OR” trigger topology does not have
such a bias against low–mass events.

The longitudinal structure seen in Sect. 5.2 for central system masses larger than about
5 GeV must impact the acceptance of the central system. Thus, we show in Fig. 15(a) for
the “AND” data, the acceptances assuming isotropic decay of the central system and then
with a longitudinal decay distribution which matches that observed for MX > 4 GeV.
At large mass, there is about a 25% loss in the acceptance between the isotropic and
longitudinal acceptances. Since, with our statistics, it is not possible to properly study
the transition from isotropic to longitudinal decay, we take the effect into account in the
following way. For MX < 4 GeV, we use the calculated acceptance for isotropic decay,
shown as the solid curve. For MX > 10 GeV, we use the fitted horizontal solid line in the
figure. In the intermediate range, between 4 and 10 GeV, the dotted interpolation line is
used.

For the ”OR” acceptance at low mass (MX < 4 GeV), we use the calculated acceptance
for isotropic decay in Fig. 15(b), just as we did for the ”AND” data. For MX > 10 GeV,
we use the solid horizontal line which is 25% below the calculated efficiency for isotropic
decay. Again, the dashed interpolation line is used in the intermediate region.

5 Calorimeter measurement of central system

We use the UA2 calorimeter information to study the invariant mass and other prop-
erties of the central system, X, in React. 1. The UA2 detector simulation software [28]
was used to perform a complete Monte–Carlo study of the calorimeter response. As noted
above, the UA2 simulation software is remarkably good in describing the low-energy de-
posits encountered in our data.

5.1 Invariant mass of central system

Since we do not directly observe the individual particles of this system, but rather the
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energies deposited in the calorimeter cells, we assume that the non-zero energy in each
“struck” cell of the calorimeter is caused by a massless particle, and then calculate,

Mobserved
2 = (ΣEi)

2 − |Σ~Pi|2, (7)

summing over all cells.
Figure 16 is the result of a Monte–Carlo study [29] which shows that this procedure

underestimates the true mass by an amount that increases with mass. This effect results
from incomplete detection of energy; for example, the finite cell size leads to overlapping
energy deposits from neighboring particles, or some energy can be lost before the particles
enter the calorimeter. The difference between the true MC mass, Mtrue and the calculated
or observed mass, Mobserved, is plotted vs. Mtrue. The dependence is well fit by the
equation (with M in units of GeV): Mtrue − Mobs = (1 + 4Mtrue)/14, which can be
rewritten as:

Mtrue = 1.4 Mobserved + 0.1. (8)

We define the corrected mass, M2
X = s′, to be the true mass given by this equation and

only refer to these corrected values in the remainder of this paper.
The validity of the calorimeter invariant mass calculation may be conveniently tested

by comparing it with the missing mass calculated using the measured p and p̄ 4-vectors for
an event. Although the experimental uncertainty in a “missing mass” calculation is much
larger than for the calorimeter invariant mass, they should agree on average. Fig. 17 shows
the average missing mass calculated for the events in each of the calorimeter invariant mass
bins shown in the figure. The observed clustering of the points around the diagonal and
the absence of any systematic shifts constitutes proof that the calorimeter mass evaluation
is reliable.

The MX distributions of the system X in React. 1 are shown for the final selected
“AND” and “OR event samples in Figs. 18(a,b), after requiring that the momentum
transfer of all detected protons and antiprotons be in the range, 1–2 GeV2. From the
relatively flat acceptance curves in Figs. 15(a,b), we see that the observed shapes of the
distributions are reasonably good representations of the true distributions (except for the
lowest mass bin in the “AND” data) . In Sect. 6.1, we show that part of the low–mass
enhancements are attributable to an explicit s′ dependence in σtot

PP , corresponding to an
enhanced Pomeron–Pomeron interaction in the few-GeV mass region. However, with an
estimated 1.8 GeV mass resolution obtainable from the calorimeter, we are unable to
observe details of any possible s-channel resonant structure in this spectrum.

5.2 Other properties of the central system

In addition to the invariant mass distribution of the system, X, other properties
of the system can be studied. One is the particle multiplicity of the central system.
Figure 19 shows the number of calorimeter cells struck as a function of the corrected
calorimeter mass, MX . The solid line is a fit to the data; the dashed line is based on the
naive multiplicity expectation assuming [31] < N >= 0.6MX for the number of charged
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particles (π+ and π−). The number of π0 is assumed to be Poisson–distributed with a
mean of 0.3MX ; each of these is assumed to appear as two γ. The resulting dashed line
is the function N = 1.2MX and clearly captures the gross features of the data. The
observed numbers of struck cells lie somewhat above the line, as expected geometrically
from the cluster widths in the calorimeter and the finite cell sizes. A complete Monte–
Carlo simulation [29] accounts for the small observed differences. We can conclude that
the number of observed struck cells increases with mass roughly as expected, and the
total observed multiplicity displays no anomalous features.

Because of the separated electromagnetic and hadronic section of the UA2 calorimeter,
it has also been possible to study the fraction of electromagnetic energy possessed by the
central system. Fig. 20 shows the distribution in this fraction for the “AND” events in
the low-mass enhancement, MX < 6 GeV, compared with the Monte–Carlo generated
distribution assuming, on the average, equal numbers of π+, π− and π0 in the track
generation. Again we see no anomalous features in this variable. The enhancement visible
in both data and Monte–Carlo when the ratio, (e.m. energy)/(total energy), equals unity
corresponds to low mass systems where the slow pions deposit all their energy in the
electromagnetic calorimeter cells.

We have examined the angular distributions of calorimeter cell energies in the center-
of-mass of the X system, dN/dcosθ, with respect to the Pomeron-Pomeron direction of
motion. Figs. 21(a,b) show these distributions for MX < 5 GeV and MX > 5 GeV. At
the higher masses we see a similar type of forward–backward peaking as is seen in all
hadronic interactions as a result of the presence of spectator partons. In the present case,
this would imply that there are spectator partons in the Pomeron. We have already
reported [2, 32] similar effects in Pomeron-proton interactions in the single-diffractive,
React. 2.

The Monte–Carlo histogram in Fig. 21(a) shows isotropically-decaying events. In
Fig. 21(b), the histogram shows a Monte Carlo event sample which has been selected in
such a way that it has the same forward–backward peaking as the experimental distri-
bution. For each isotropically–decaying Monte–Carlo event, the mean value of cos2θ is
evaluated averaging over all outgoing tracks in the central system. We have found [29]
that, if Monte–Carlo events are selected for which this quantity is larger than 0.375, the
selected events follow the experimental cosθ distribution.

6 Cross Sections

The observed mass distributions, dN/dMX , shown in Figs. 18(a,b) for the “AND” and
“OR” data, respectively, are converted into absolute cross section distributions, dσ/dMX ,
in the following way. Bin–by–bin, the numbers of events in Figs. 18 are divided by
the Monte–Carlo acceptance curves in Figs. 15(a,b). Then, all are divided by a global
efficiency, ε0, for event retention when halo and pileup cuts [12, 29] are made, and by the
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appropriate integrated luminosity for each trigger sample:

∆σDPE =
∆N

∫ Ldt · ε0 · A (9)

The “AND” (“OR”) data samples have an efficiency, ε, of 0.54 (0.76) and an integrated
luminosity,

∫ Ldt, of 2894 nb−1 (5.4 nb−1). The “OR” luminosity is “effective”, due to
prescaling of the “OR” trigger. In both cases, the cross section is given only for momentum
transfer of the observed trigger particle(s) in the range: 1.0 < |t| < 2.0 GeV2. In the
“OR” case, the unseen p or p̄ has its “natural” Pt distribution and therefore peaks at
small values. Thus, the observed cross section is much larger for the “OR” data. The
resulting cross sections for the two triggered data samples of Reaction 1, dσ/dMX , are
the points shown in Figs. 22(a,b).

6.1 Pomeron–Pomeron total cross section

We now extract the Pomeron–Pomeron total cross section, σtot
PP , from the data, so

that we can look for deviations from our earlier assumption that it is independent of MX .
The histograms in Figs. 22(a,b) are Monte–Carlo predictions for the dσ/dMX points in
the figure, made using Eq. 5 and FP/p(t, ξ) in Eq. 3. We assume a constant Pomeron–
Pomeron total cross section of σtot

PP = 1 mb and the (arbitrary) value, K = 0.74 GeV−2,
as discussed in Sect. 1.

Since the UA8 spectrometer acceptances [2] do not vary significantly over the range
of ξ studied here, the ratios of the points to the histogram values in Figs. 22 give values
of the Pomeron-Pomeron total cross section, σtot

PP , vs. MX . These ratios are shown in
Fig. 23, for both the “AND” and “OR” data. We note that despite the large difference
between the measured cross sections, dσ/dMX , in Figs. 22(a,b), both data sets exhibit
the same general properties for σtot

PP , enhancements for MX < 8 GeV, with relatively
MX-independent shapes at larger MX .

The small–MX enhancement in Fig. 23 also reflects itself in the observed xp (xp̄)
distributions seen above in Figs. 14. Such a correlation must exist because of the kinematic
relation, MX

2 = s′ = ξ1ξ2s; small MX correlates with small ξ. Fig. 24 repeats the xp (xp̄)
distribution for the “AND” data in Fig. 14(a). The solid curve normalized to its area is the
Monte–Carlo prediction which assumes an s′–independent σtot

PP . The pronounced excess
of events near xp = 1.0 in the experimental distribution, compared with the Monte–Carlo
distribution, is another manifestation of the low–mass enhancement in σtot

PP .
The low–mass enhancements seen in both distributions in Figs. 23 are most likely too

large[33] to be due to a breakdown of factorization at small mass, especially for the “AND”
data. Thus, the rise may indicate that glueball production is a significant component of
the low-mass Pomeron-Pomeron interaction, although not necessarily an s-channel effect.
That is, the observed invariant mass could be that of a glueball plus other particles, which
would not lead to resonance structure in the mass distribution. In any case, with a mass
resolution of ≈ 1.8 GeV, no s–channel structure could be seen.
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We now address the apparent differences in shape of the “AND” and “OR” σtot
PP dis-

tributions at low mass. See the discussion in Sect. 7 on a possible systematic uncertainty
on the ”OR” result; it could, however, only increase the observed differences. Although
the two values of σtot

PP in the first bin (MX < 2 GeV) are consistent with being equal, in
the next three bins (2 < MX < 8 GeV) the “AND” cross sections may be three times
larger than the “OR” cross sections.

It is interesting to question whether the differences in the “AND” and “OR” σtot
PP

distributions at low mass can have anything to do with the observations of the WA102
Collaboration [34]. WA102 observes that there are different dependences of the production
of known quark-antiquark states and glueball candidates on the difference in transverse
momenta of the two Pomerons in React. 1 . This difference, ∆Pt, is most easily visualized
with reference to our Fig. 7. In the upper figure (“AND”), it is seen that both Pomeron
transverse momenta are roughly equal and in the same direction; hence their difference is
zero. In the lower figure (“OR”), one transverse momentum is near zero and the other is
near 1 GeV; hence their difference is about 1 GeV.

The primary WA102 effect is that the production of qq̄ states appears to vanish as
∆Pt → 0. There may also be an enhancement in the production of glueball candidates in
this domain of small ∆Pt, although it appears not to be as striking an effect. Close and
Kirk [35] suggested that these effects may serve as a “glueball filter”.

We note that our “AND” data sample corresponds to an almost pure sample of ∆Pt =
0 events, while our “OR” data sample corresponds to ∆Pt = 1.0 GeV. The WA102
results would imply that our “AND” data do not contain any qq̄ states and, hence, the
enhancement for 2 < MX < 8 GeV in those data may be due to production of some, as
yet unknown, glueball–like objects. The apparent suppression of σtot

PP by about a factor of
three between our “AND” and “OR” results might be due to an enhancement of glueball
production at ∆Pt = 0 GeV, as compared to the production at ∆Pt = 1.0 GeV.

It is relevant to note that the WA102 experiment was run at a c.m. energy of 29 GeV,
compared with the 630 GeV of UA8. This translates to Pomeron momentum fractions, ξ,
which are 22 times larger in WA102 than in UA8. Thus, a 2–GeV mass object produced at
an average ξ = 0.003 in UA8 is produced at an average ξ = 0.069 in WA102. Since non–
Pomeron–exchange contributions are perhaps as large as 50% at the latter ξ value [2, 20],
it appears to be very difficult to separate Pomeron–exchange effects from other effects in
the WA102 data.

6.2 Test of factorization

We now test the factorization relation, Eq. 6, between σtot
PP , σtot

Pp and σtot
pp . If we multiply

both sides of Eq. 6 by K2, we find:

K2 · σtot
PP(s′) =

[K · σtot
Pp(s

′)]2

σtotal
pp (s′)

(10)

which relates precisely the measured quantities. Thus, it is evident that tests of factor-
ization using Eq. 6 or 10 are equivalent and we may, with no loss of precision, assume the
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value, K = 0.74 GeV−2 (see discussion in Sect. 1), and make the test using Eq. 6.
In order to calculate the right-hand-side of Eq. 6 a function of s′, we use the following

parametrizations for the Pomeron–proton total cross section [2]:

σtot
Pp =

0.72

0.74
· [(s′)0.10 + 4.0(s′)−0.32] mb, (11)

and for the proton-proton total cross section [36, 37]:

σtot
pp = 18 · s0.10 − 27 · s−0.50 + 55 · s−0.32 mb (12)

These functions are shown as the dashed curves in Figs. 25(a,b). Since Eq. 6 is only valid
for the Pomeron–exchange component of these functions, we show only the first terms in
Eqs. 11 and 12 as the solid curves in the figures.

The dashed line in Fig. 23 shows the factorization prediction for σtot
PP calculated using

Eq. 6 and the Pomeron terms in Eqs. 11 and 12.

σtot
PP(s′) =

[σtot
Pp]

2

σtotal
pp

=
(0.72/0.74)2

18
· (s′)0.10 (13)

We see that there is increasingly better agreement between the prediction and the mea-
sured σtot

PP points as the mass increases, as expected, since the measured points contain
both Pomeron exchange and Reggeon exchange. The results are seen to be in reasonable
agreement with the validity of factorization for Pomeron-exchange in these reactions.

The solid curve in Fig. 23 is a fit to the “OR” points with MX > 10 GeV of the sum
of Eq. 13 and a Reggeon–exchange component as in Eq. 11.

σtot
PP(s′) =

(0.72/0.74)2

18
· [(s′)0.10 + R · (s′)−0.32]. (14)

We find a value, R = 13.6± 4.7 with a χ2/D.F. = 1.3.

7 Discussion and predictions

Table 1 demonstrates that there is a new class of events, the so–called double–Pomeron–
exchange events, which appear when both xp values are greater than 0.95; characteristic
rapidity–gaps appear in both arms. The analysis which follows this observation shows
that, remarkably, the Regge formalism describes all inclusive double–Pomeron–exchange
and single–diffractive data, providing that an s-dependent effective Pomeron trajectory is
used [19]. The latter is equivalent to increasing multi-Pomeron–exchange effects with en-
ergy [18]. That Regge phenomenology works as well as it does, despite the complications
of multi-Pomeron-exchange, should place constraints on a theory of such multi-Pomeron–
exchange effects yet to be developed.

The large enhancement seen for σtot
PP at small mass (MX < 8 GeV) probably reflects

glueball production in this region, where there would be a mix of s-channel production
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(i.e. glueball alone) and production with other particles. Observation of resonant mass
structure is precluded for us because of our mass resolution of ≈ 1.8 GeV.

In this low-mass region, we see a apparent factor of 3 times larger cross section for our
“AND” events, with ∆Pt = 0, than for the “OR” events with ∆Pt = 1 GeV. However, we
have as yet no simple interpretation of our results in terms of the azimuthal correlations
observed by the WA102 [34] experiment at much lower energies and the suggestion of
Close and Kirk [35] that such correlations may act as a “glueball filter”.

We observe that the produced central systems display no anomalous multiplicity dis-
tributions or electromagnetic energy fraction of total observed calorimeter energy. Our
measurements agree with normal expectations.

The fact that the “AND” and “OR” data yield essentially the same σtot
PP at larger

mass implies that our rapidity–gap procedures for isolating React. 1 are fundamentally
sound and can be extended to future experiments at Tevatron, RHIC and LHC. It will
clearly be extremely valuable for the new experiments to repeat the type of measurements
reported here, but with central detectors which are capable of more detailed studies of the
produced central systems. On the basis of the WA102 data, Close and Schuler [38] show
that the effective spin of the Pomeron can not be zero and that the Pomeron transforms
as a non-conserved vector current. This may lead to much interesting work in the future
experiments on React. 1.

Finally, we address the issue of systematic uncertainties that may arise from the pos-
sible non-universality of the Pomeron flux factor. It is already known that FP/p(t, ξ)
is not universal between ep and pp̄ collisions because of the different effective Pomeron
trajectory intercepts found in the two cases, attributable to different multi–Pomeron–
exchange effects. Similarly, if multi-Pomeron-exchange is not identical in Reacts. 2 and
1, there would be some uncertainty as to whether the same flux factor should appear in
both Eqs. 5 and 3. We note, however, that this potential uncertainty does not exist for
our “AND” results, because both final–state baryons have |t| > 1.0 GeV2, where all the
evidence[17, 19] points to an s–independent Pomeron trajectory; in that high–|t| region,
FP/p(t, ξ) appears to be insensitive to the damping which mainly leads to an s–dependent
effective Pomeron intercept[19] at t = 0.

In the “OR” data sample, however, the unseen final–state baryon has low–|t| and
its flux factor in Eq. 5 is sensitive to the choice of effective ε value. We have thus
recalculated the ”OR” cross sections in Fig. 23 assuming a larger Pomeron trajectory
intercept, ε = 0.10 in FP/p(t, ξ). This is an extreme (unrealistic) case which assumes that
there are no damping contributions from multi–Pomeron–exchange in React. 1 at our
energy. We find that the ”OR” cross sections decrease from those shown in the figure; for
example, the lowest mass point decreases by 58%, whereas the point at 11 GeV decreases
by 41%. Thus, any increase in the effective ε used in calculating σtot

PP will increase the
disagreement already observed in Fig. 23.

We know of no systematic uncertainty which could be the source of our observed low–
mass enhancement, nor the fact that σtot

PP from the ”OR” data is smaller than that from
the ”AND” data at low–mass. Therefore, we believe that the low–mass enhancement and
the observed cross section differences have physics origins.
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7.1 Predictions for Tevatron and LHC colliders

The study of the relatively pure gluonic collisions in React. 1 at higher energy colliders
may yield surprising new physics. In the UA8 papers on the occurance and study of jet
events in single–diffraction [5], it was reported that, in about 30% of the 2-jet events,
the Pomeron appeared to interact as a single hard gluon with the full momentum of the
Pomeron (the so–called “Super–Hard Pomeron) . This result suggests that, in roughly
10% of hard Pomeron–Pomeron interactions, there is effectively a gluon-gluon collision
with the full MX of the central system. Thus, for example, at the LHC with

√
s = 14 TeV,

a rather pure sample of central gluon-gluon collisions should occur with MX as large as
0.03(14) = 0.42 TeV.

The phenomenology developed in our study of React. 1 can be used to make cross
section predictions for React. 1 at the Tevatron (

√
s = 2 TeV) and at the LHC (

√
s =

14 TeV). Figure 26 and Table 3 show the results of Monte–Carlo calculations of dσtotal
DPE/dMX

assuming that σtot
PP is MX–independent and constant at 1 mb. Since the fitted value [19]

of the effective Pomeron–Regge–trajectory intercept, 1 + ε = 1.035, at
√

s = 630 GeV is
also compatible with the available data at the Tevatron, we give the results for ε = 0.035
at both Tevatron and LHC. Schuler and Sjöstrand [39] suggest, in a model of hadronic
diffractive cross sections at the highest energies, that ε = 0 is a reasonable approximation
and we therefore also give results for this value. The observed peaking at small mass
directly reflects the ξ-dependence of the Pomeron flux factor in the proton.

To obtain cross section predictions for central Higgs production [40] in React. 1, the
calculations in Fig. 26 can be multiplied by calculated QCD cross section for the process
(in units of mb) based on the best available Pomeron structure function.

We note that the cross section predictions obtained in this way give the total cross
section for React. 1, where there are no selection cuts on either final–state p or p̄. Clearly
the largest sensitivity for rare events will be obtained if neither p nor p̄ are detected. In
that case, if rapidity–gap vetos are used to suppress background events, corrections must
be made for the acceptance loss of central system particles in the rapidity–gap regions.

7.2 Predictions for forward spectrometers

For completeness, it may be useful to briefly summarize the possibilities for detection
of DPE processes using existing or planned forward multiparticle spectrometers. There
are two classes of such experiments, those traditionally called fixed-target experiments
and those installed at storage-ring colliders[41].

Forward spectrometers installed at colliders can kinematically observe DPE processes if
there is an asymmetry between ξ1 and ξ2. The earliest example of such a measurement was
Experiment R608 studying pp interactions with

√
s = 63 GeV at the Cern Intersecting-

Storage-Rings. Central production of D(1285) was observed[42] with almost pure helicity
±1, later explained by Close and Schuler [38] as due to the Pomeron behaving as a non-
conserved vector current. In that process, the Pomeron appeared to dominate even though
ξ1 − ξ2 ≈ 0.35. In the future, the higher energy forward–spectrometer B–experiments,
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LHCb and B-TeV, will have good access to low-mass central systems with much smaller
values of ξ, as was pointed out in the LHCb Letter-of-Intent[43].

In fixed-target experiments, centrally-produced systems are boosted forward with γ
of the center-of-mass, such that ELab = γMX . Experiment WA102 [34] was the first
experiment to carry out major DPE studies using this approach although, as commented
above, with a beam energy of 450 GeV, the Pomeron ξ-values were larger than desired.
We note that the existing experiment, HERA-B[44], running at the HERA 920 GeV
proton storage ring using wire targets, could improve on the WA102 measurements. For
example, with

√
s = 42 GeV, production of a 2-GeV central system occurs with an average

ξ = 0.047. Fig. 27 shows dσ/dMX for pp interactions with a beam energy of 920 GeV,
calculated as for Fig. 26. As indicated after Eq. 4, the Pomeron trajectory intercept[19]
used at this c.m. energy is: 1 + ε = 1.087.
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p or p̄ has xp > 0.95 Number Fraction with
Other has xp in bin Events rapidity–gaps

0.70-0.75 42 0.02± 0.02
0.75-0.80 113 0.04± 0.02
0.80-0.85 147 0.07± 0.02
0.85-0.90 163 0.03± 0.02
0.90-0.95 219 0.06± 0.02
0.95-1.00 314 0.48± 0.04

Table 1: Numbers of events and their fractions which have rapidity–gaps, 2.3 < η < 4.1
in both arms, for different xp selections of p and p̄. 1297 events have two reconstructed
tracks and at least 250 MeV of energy in the calorimeter system. The table shows the
998 events, in which either p or p̄ has xp > 0.95, while the other has xp in the indicated
bin. In the remaining 299 events, for which both p and p̄ have 0.70 < xp < 0.95, only
0.7% possess both rapidity–gaps.

After Events percentage MC percentage
Cut remaining remaining remaining

TOF veto 188 – –
ΦX 139 74± 6 % 72 %
Pt 126 67± 6 % 60 %

ΣPlong 107 57± 5 % 50 %

Table 2: Comparison of Real and Monte–Carlo event losses (after TOF veto) as a function
of momentum cuts in event selection.
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MX dσtotal
DPE/dMX (mb/GeV)

Tevatron LHC
(GeV) ε = 0.00 ε = 0.035 ε = 0.00 ε = 0.035

1 1.25E-01 2.69E-01 2.07E-01 7.55E-01
3 5.44E-02 1.00E-01 9.42E-02 2.96E-01
5 3.01E-02 5.17E-02 5.39E-02 1.58E-01
10 1.31E-02 2.11E-02 2.53E-02 6.76E-02
20 5.33E-03 7.65E-03 1.15E-02 2.75E-02
30 3.02E-03 4.14E-03 7.17E-03 1.62E-02
40 1.96E-03 2.57E-03 5.08E-03 1.13E-02
50 1.40E-03 1.78E-03 3.86E-03 8.34E-03
60 1.01E-03 1.25E-03 3.11E-03 6.45E-03
70 7.76E-04 9.42E-04 2.56E-03 5.23E-03
80 6.08E-04 7.15E-04 2.17E-03 4.32E-03
90 4.78E-04 5.54E-04 1.85E-03 3.75E-03
100 3.72E-04 4.21E-04 1.64E-03 3.20E-03
120 2.36E-04 2.48E-04 1.28E-03 2.46E-03
140 1.37E-04 1.61E-04 1.04E-03 2.01E-03
160 7.45E-05 9.35E-05 8.87E-04 1.60E-03
180 3.10E-05 3.74E-05 7.58E-04 1.36E-03
200 1.12E-05 4.21E-06 6.55E-04 1.18E-03

Table 3: Predictions for dσtotal
DPE/dMX (mb/GeV) at Tevatron and LHC assuming an MX–

independent σtot
PP = 1 mb, for two values of effective Pomeron–trajectory intercept (see

Fig. 26.
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Figure 1: (a) Inclusive double-Pomeron-exchange reaction (the central blob is the
Pomeron-Pomeron interaction) and its corresponding Triple-Regge diagram in (b); (c,d)
Inclusive single diffractive reaction and its corresponding Triple-Regge diagram. In both
cases, Pomeron-exchange dominance means i = j = Pomeron. k can be either Pomeron
or Reggeon.
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Figure 2: Raw (uncorrected) Feynman-xp distributions for different bins of momentum
transfer (units are GeV2) in single-diffractive data from the UA8 experiment [2]. As
explained in the text, the xp–dependence of the geometrical acceptance is not responsible
for the observed peaks.
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Figure 3: Ratios of forward elastic amplitudes which are equal if factorization is valid.
The optical theorem implies that the following relation between the corresponding total
cross sections should be valid if Pomeron-exchange dominates: σtot

PP = (σtot
Pp)

2/σtot
pp .
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Figure 4: Particle trajectories through a UA8 Roman-pot spectrometer. The labels,
“Quads”, refer to the low-β machine quadrupole magnets. The center of the UA2 detector
is at z = 0 at the left of the sketch. The vertical lines indicate the positions of the UA8 wire
chambers in the Roman-pots. The solid curves show the trajectories of 300 GeV particles
(xp ∼ 0.95), as described in the text. The shaded area shows the allowed trajectories for
xp = 1 tracks.
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Figure 5: UA8 spectrometer aperture viewed from the interaction region. The shaded
rectangles indicate the sensitive regions of the first wire chambers at a distance z = 13 m
from the interaction region center. The curved line indicates the walls of the beam pipe
inside the quadrupole magnets.
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Figure 6: A cross sectional view of the upgraded UA2 apparatus. Detectors which were
used for the measurements reported here are the Calorimeters, the Time–Of–Flight (TOF)
counters and the Silicon Vertex Detector within the Central Detector assembly. The TOF
counters covered pseudorapidity from 2.3 to 4.1 in each arm.
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Figure 7: (a) Side view sketch of an accepted event in which both p and p̄ go into the UP
spectrometers. In this case, the central system recoils downward with a minimum Pt of
∼ 2 GeV. (b) sketch for events which are triggered on p or p̄. In this case, the unobserved
p (or p̄) has momentum transfer close to zero on average and the central system recoils
downward with a minimum Pt of ∼ 1 GeV.
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Figure 8: (a) Total visible energy in “AND” triggered events (1297) in 1989 data sample
with total calorimeter energy, ΣE > 250 MeV, selected offline; (b) Open histogram con-
tains events (188) after veto using TOF counters, as discussed in the text. Shaded events
(107) are after momentum conservation cuts (Figs. 9); (c) Open histogram are events
(193) after momentum conservation cuts, but before TOF cuts. Shaded events are after
the TOF cuts (107 events).
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Figure 9: “AND” events (188) after TOF veto selection (see text); (a) Scatter plot of
azimuthal angles of the p + p̄ system vs. summed calorimeter momentum vector; (b) ΦX

projection of (a). The curve on the right-hand peak is a Monte–Carlo simulation described

in the text; (c) |~Pt(p + p̄)| vs ~Pt(X) measured in calorimeter, for events (139) which
satisfy ΦX selection in the bands, 90◦ ± 20◦ and 270◦ ± 20◦. (d) Summed longitudinal
momentum, ΣPlong, of p, p̄, and calorimeter for events (126) which satisfy the selection,

1 < ~Pt(X) < 3 GeV. 107 events satisfy the cut, |ΣPlong| < 7 GeV.
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Figure 10: Transverse momentum, Pt, measured in the UA2 calorimeter system: (a)
“AND” data sample, projection of Fig. 9(c) (139 events ); (b) “OR” data sample (698
events, after TOF and ΦX cuts). The histograms [29] are from a Monte–Carlo simulation
of the UA2 calorimeter response.
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Figure 11: For “OR” triggered events, comparison of the summed longitudinal momentum
in the calorimeter, with and without rapidity–gap veto (TOF). (a) Without TOF veto;
events are plotted on the positive axis if their summed momentum is in the hemisphere
opposite the observed trigger particle. Events are required to have at least 250 MeV
energy in the UA2 calorimeter system (partial sample, 15,080 events); (b) With rapidity–
gap veto (1985 events). Solid points show the 107 “AND” events, normalized to the “OR”
data.
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Figure 12: Calorimeter azimuthal angle, ΦX . (a) single-diffractive data sample, with p
or p̄ in DOWN spectrometer (Φp+p̄ selection in the band, 270◦ ± 20◦) and with total
calorimeter energy, ΣE > 250 MeV (5547 events); (b) Same as (a), but after TOF veto
selection to obtain (partial) “OR” data sample (635 events). The histogram in (b) is a
Monte–Carlo simulation described in the text.

35



10

10 2

1 1.2 1.4 1.6 1.8 2

DIFF

OR

-t (GeV2)

E
ve

nt
s 

pe
r 

∆t
 =

 0
.1

 G
eV

2

Figure 13: Observed momentum-transfer distributions for the “OR” data sample of Re-
act. 1 (solid points). The histogram normalized to the points is the single-diffractive data,
React. 2.
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Figure 14: Feynman-xp distribution; (a) Shaded histogram is xp and xp̄ (2 points per
event) for the “AND” events of React. 1 (139 events with TOF and ΦX cuts). The open
histogram is the xp/xp̄ distribution from inclusive single diffraction [2], with a TOF veto
only on the trigger side. The shaded and open histograms are normalized to the same
area for the bin, 0.990 < xp < 0.995; (b) Same as (a), but the shaded histogram is xp or
xp̄ for the “OR” data (698 events with TOF and ΦX cuts). The vertical scale is linear.
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Figure 15: Geometrical acceptance and track reconstruction efficiency vs. MX . As de-
scribed in the text, retention efficiencies of TOF veto cut and event selection are included;
(a) “AND” triggered events with p and p̄ both having 1.0 < −t < 2.0 GeV2. As discussed
in the text, the open histogram assumes isotropic decay and the shaded histogram as-
sumes longitudinal decay, for MX > 4 GeV. The combination of solid and dashed curves
are the acceptance function used in cross section calculations; (b) “OR” triggered events
with 1.0 < −t < 2.0 GeV2 for the observed final-state particle assuming isotropic decay.
The solid line for MX > 10 GeV is the assumed acceptance for longitudinal decay which,
as for the ”AND” data, is reduced by ≈ 25% from the isotropic decay acceptance.
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Figure 16: Monte–Carlo study of invariant mass calculation using the calorimeter. The
observed (downward) shift in mass (true - observed) vs. the true mass. The fitted line
corresponds to Eq. 8 in the text.
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Figure 17: The mean “missing mass” calculated from the observed p and p̄, vs the cor-
rected invariant mass calculated from the calorimeter information. See discussion in text.
The vertical error bars on each point are the errors-in-the-mean for the missing mass
calculation, while the horizontal bars show the event binning.
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Figure 18: Final event sample; number of observed events vs. corrected calorimeter mass,
MX , with 1.0 < −t < 2.0 GeV2 for detected p and/or p̄; (a) “AND” triggered data (85
events); (b) “OR” triggered data (586).
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Figure 19: Mean number of struck calorimeter cells with at least 200 MeV energy (total
energy in electromagnetic and hadronic sections) vs. corrected calorimeter invariant mass.
Dashed line is the naive expectation, using < N >= 1.2MX , as discussed in the text.
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Figure 20: Number of “AND” double–pomeron–exchange events with MX < 6 GeV, vs.
ratio of electromagnetic energy to total energy. The peak corresponding to (e.m. energy
= total energy) in both data and Monte Carlo is due to low–energy charged tracks losing
all their energy in the e.m. sections of the UA2 calorimeter.
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Figure 21: Central system decay distributions. dN/dcos(θ) for all “struck” cells, averaged
over the event sample: (a) for MX < 5 GeV; (b) for MX > 5 GeV. Histograms are Monte–
Carlo distributions described in the text. Vertical scale is arbitrary and linear.
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Figure 22: dσtotal
DPE/dMX , the corrected differential cross section for React. 1 (proportional

to the ratios of Figs. 18 and Figs. 15), only for momentum transfer(s), t, of the observed
trigger particle(s), p and/or p̄, in the range, 1.0 < −t < 2.0 GeV2; (a) “AND” triggered
data; (b) “OR” triggered data. As discussed in the text, the absolute values shown
assume the (somewhat arbitrary) value, K = 0.74 GeV−2. The histograms are Monte–
Carlo predictions assuming MX–independent, σtot

PP = 1 mb.
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Figure 23: Mass dependence of the Pomeron–Pomeron total cross section, σtot
PP , derived

from the “AND” and “OR” triggered data, respectively, The (arbitrary) cross section
scale assumes K = 0.74 GeV−2, as explained in the text. Dashed curve is the factorization
prediction (which is independent of of the assumed value of K) for the Pomeron–exchange
component of σtot

PP . The solid line is the fit to the “OR” points of a Reggeon–exchange
term, (M2

X)−0.32, added to this Pomeron–exchange term.
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Figure 24: xp (xp̄) distribution for the “AND” data as in Fig. 14(a). The solid curve
normalized to the data is the Monte–Carlo prediction assuming no explicit s′–dependence
in σtot

PP .
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Figure 25: (a) Dashed curve is σtot
Pp, the Pomeron-proton total cross section, from Ref. [2],

assuming K = 0.74 GeV−2 (see text for explanation). The solid curve is only the
Pomeron-exchange component; (b) same as (a), except for the proton-proton total cross
section [36, 37].
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Figure 26: Predicted differential cross section, dσDPE/dMX assuming constant σtot
PP = 1

mb. (a) Tevatron (
√

s = 2 TeV); (b) LHC (
√

s = 14 TeV). The solid (dashed) curves are
for assumed effective Pomeron intercepts, α(0) = 1.035 (1.00) respectively.
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Figure 27: Predicted differential cross section, dσDPE/dMX for the HERA-B experiment
with Pbeam = 920 GeV, assuming fixed-target pp interactions and constant σtot

PP = 1 mb.
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