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18 Institute for Particle Physics Phenomenology, Durham University, UK
19 Dipartimento di Fisica and INFN, Università di Roma 1, Italy
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Abstract

We discuss the physics potential and the experimental challenges of an up-
graded LHC running at an instantaneous luminosity of1035 cm−2s−1. The
detector R&D needed to operate ATLAS and CMS in a very high radiation
environment and the expected detector performance are discussed. A few ex-
amples of the increased physics potential are given, ranging from precise mea-
surements within the Standard Model (in particular in the Higgs sector) to the
discovery reach for several New Physics processes.
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1 INTRODUCTION

This note documents preliminary studies of the physics potential and experimental challenges of a future
high-luminosity (1035 cm−2s−1) upgrade of CERN’s Large Hadron Collider. Hereafter, we shall refer to
this upgrade as the Super-LHC (SLHC). It is impossible at this stage to give a conclusive judgement of
what will be the most interesting topics to study after the first few years of LHC operation at the nominal
1034 cm−2s−1 luminosity. We shall assume however that the physics programme of the LHC will have
been accomplished, and in particular that the Higgs boson and Supersymmetry will have been found, if
they are in the mass ranges expected today [1, 2]. The physicspotential of the SLHC can then be roughly
divided into the following main topics:

1. improvement of the accuracy in the determination of Standard Model (SM) parameters (e.g. triple
(TGC) and quartic (QGC) gauge boson couplings, Higgs couplings);

2. improvement of the accuracy in the determination of parameters of New Physics possibly discov-
ered at the LHC (e.g. sparticle spectroscopy,tan β measurements);

3. extension of the discovery reach in the high-mass region (e.g. quark compositeness, new heavy
gauge bosons, multi-TeV squarks and gluinos, Extra-dimensions);

4. extension of the sensitivity to rare processes (e.g. FCNCtop decays, Higgs-pair production, multi
gauge boson production).

The detector performance at high luminosity will have a different impact on the physics output de-
pending on the topic considered. In the case of searches at the high-mass frontier, in most cases detection
of multi-TeV objects should not be impaired by the high luminosity environment. In contrast, accurate
measurements of systems in the few hundred GeV range could besignificantly affected by the large event
pile-up, and reduced efficiencies or increased backgroundscould spoil the advantage of the higher lumi-
nosity. Accurate predictions will, in this case, depend on the actual detector configuration, e.g. whether
a fully functional tracker can be operated at1035 cm−2s−1. Given the rapid progress of technology and
R&D, it is premature at this stage to attempt to select a completely defined detector scheme. Therefore,
in the studies that follow, we have worked in most cases underthe optimistic assumption that the main
parameters of the detector performance (e.g. theb-tagging efficiency, the jet energy resolution) will re-
main the same as those expected at1034 cm−2s−1. To fully benefit from a tenfold increase in statistics,
this is an almost mandatory requirement.

The main goal of the studies presented here is to illustrate how the SLHC could allow good
progress to be made in the understanding of fundamental interactions, at a moderate extra cost rela-
tive to the overall initial LHC investment, given that the existing tunnel, accelerator and detectors would
be in large part reused. We shall mostly concentrate on physics studies which are not feasible at the stan-
dard LHC. As a result, we shall not coverB physics. While an increase in luminosity would in principle
improve the ability to study rareB decays, we expect aB physics programme to be extremely unlikely
at the SLHC given the difficulties to reconstruct low momentum particles.

We shall not attempt here any exhaustive cross-comparison with the potential of other machines. A
discussion of different accelerator options relevant to the CERN future programme is given in [3]. A first
study of the SLHC, including comparisons with the potentialof an LHC energy upgrade, was presented
in [4]. The prospects of several options for future hadron colliders have recently been reviewed in [5].

2 THE MACHINE UPGRADE

A feasibility study for upgrading the LHC has been launched at CERN [6], which develops scenarios
for increasing both, the luminosity in each of the two high-luminosity experiments and the beam energy.
The study presents some baseline options and discusses a fewalternative solutions, identifying further
investigations needed and proposing anR&D programme.

A staged upgrade of the LHC and its injectors has been considered, compatible with established
accelerator design criteria and fundamental limitations of the hardware systems, aiming at a target lu-
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minosity in proton operation of1035 cm−2s−1 in each of the two high-luminosity experiments, and an
upgrade of the centre of mass energy to 28 TeV. Three stages inthe upgrading process were identified:

• Phase 0: maximum performance without hardware changes to the LHC.

• Phase 1: maximum performance while keeping the LHC arcs unchanged.

• Phase 2: maximum performance with major hardware changes tothe LHC.

The nominal LHC performance for a beam energy of 7 TeV corresponds to a total beam-beam tune spread
of 0.01, with1.1 × 1011 protons per bunch, yielding a luminosity of1034 cm−2s−1 in IP1 (ATLAS) and
IP5 (CMS), halo collisions in IP2 (ALICE) and low luminosityin IP8 (LHCb). Any performance beyond
these conditions will be considered as an LHC upgrade.

The steps required to reach the maximum performance withouthardware changes to the accelera-
tor (Phase 0) are:

• Collide beams only in IP1 and IP5.

• Increase the bunch population up to the beam-beam limit of1.7 × 1011 protons per bunch, result-
ing in a luminosity of2.3 × 1034 cm−2s−1 at IP1 and IP5.

• Increase the main dipole field to 9 T (ultimate field), resulting in a maximum proton energy of
7.54 TeV. This ultimate dipole field corresponds to a beam current limited by cryogenics and by
beam dump considerations.

Increasing the LHC luminosity with hardware changes only inthe LHC insertions and/or in the injector
complex (Phase 1) includes the following steps:

• Modify the insertion quadrupoles and/or layout to yield aβ∗ of 0.25 m from the nominal 0.5 m.
In addition, although this is not the favoured option, a possible modification to the layout is to
include separation dipoles closer to the interaction pointto reduce the effect of long-range beam-
beam collisions.

• Increase the crossing angle by
√

2 to 424 µrad from the nominal300 µrad. The reason for in-
creasing the nominal crossing angle by

√
2 for half the nominalβ∗ is to keep the same small

contribution of long-range collisions to the beam-beam footprint.

• Increase the bunch population up to the ultimate intensity of 1.7 × 1011 protons per bunch, result-
ing in a luminosity of3.3 × 1034 cm−2s−1 at IP1 and IP5.

• Upgrading the injectors to deliver beams with higher brilliance could increase the luminosity with-
out exceeding the beam-beam limit, by increasing the product of crossing angle times bunch
length. This option may yield a luminosity of up to4 × 1034 cm−2s−1 with a β∗ = 0.5 m at
IP1 and IP5.

• Halving the bunch length with a new high-harmonic RF system would increase the luminosity to
4.7 × 1034 cm−2s−1 at IP1 and IP5.

However, there is an interesting alternative scheme to increase the LHC luminosity based on very long
‘super-bunches’. This scheme would consist of the following points:

• Modify the LHC insertion quadrupoles and/or layout to reachaβ∗ of 0.25 m.

• Possibly increase the crossing angle to several mrad in order to pass each beam through separate
final quadrupoles of reduced aperture.

• Inject a bunched beam of 1 A and accelerate it to 7 TeV.

• Use barrier buckets to form a single long super-bunch of 1 A current.

A 300-m long super-bunch in each of the LHC rings would be compatible with the beam-beam limit,
and the corresponding luminosity in ATLAS and CMS (with alternating horizontal-vertical crossing
planes) would be about9× 1034 cm−2s−1. The super-bunch option is very interesting for large crossing
angles. It can potentially avoid electron cloud effects andminimize the cryogenic heat load. However,
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the associated RF manipulations and beam parameters are challenging and require further studies. This
scheme requires upgrades to the detectors to achieve an effective length of between 20 m and 30 m. In
the following studies of physics performance and detector R&D we shall not analyze the impact of this
super-bunch option, and assume for the SLHC a 12.5 ns bunch crossing interval.

Finally, possible steps to increase the LHC performance with major hardware changes in the LHC
arcs and/or in the injectors (Phase 2) include:

• Modify the injectors to significantly increase the brilliance to beyond its ultimate value (in con-
junction with beam-beam compensation schemes).

• Equip the SPS with superconducting magnets and inject into the LHC at 1 TeV. This also implies
a corresponding upgrade to the transfer lines. For given mechanical and dynamic apertures at
injection, this option can increase the LHC luminosity by about a factor of two. This would also
be the natural first step in view of an LHC energy upgrade, since the corresponding energy swing
would be reduced by a factor of two.

• Install new superconducting dipoles in the LHC arcs to reacha beam energy of 14 TeV. Magnets
with a nominal dipole field of between 16 and 16.5 T, providinga safety margin of 1–2 T, can be
considered a reasonable target for 2010 and could be operated by 2015. This requires a vigorous
R&D programme on new superconducting materials.

More details can be found in [6]. As stated above, energy upgrades of the LHC, although being con-
sidered and being indeed most interesting from the physics point of view, require full replacement of
the machine and a majorR&D activity to develop the needed dipole technology. Therefore the physics
potential studies presented here were limited to the more realistic luminosity upgrade. In a few cases,
however, the expected performance of app machine running at a centre-of-mass energy of 28 TeV is
given for comparison. More results for this option can be found in Ref. [4].

3 THE EXPECTED DETECTOR PERFORMANCE

The expected ATLAS and CMS performance at1035 cm−2s−1, and the assumptions adopted for the
physics studies discussed here, are summarised below for the most relevant issues.

3.1 Tracking andb-tagging

It has been assumed that, provided that a large part of the inner detectors of both experiments can be
replaced with more radiation hard and granular devices resulting from the R&D described in Section 5,
reconstruction of isolated high-pT charged particles (e.g. muons and electrons withpT > 20 GeV) will
be possible with similar efficiency and momentum resolutionas with the present detectors operating
at design luminosity. Obviously, the information from the electromagnetic calorimeter and from the
external Muon Spectrometer will be used to improve the performance.

The impact of the higher luminosity on b-tagging has initially been evaluated by assuming that the
new pixel detectors will have the same two-track resolutionas the current silicon systems. In this way,
the probability of confusion in the pattern recognition remains low, and the extra (fake) b-tags are given
by real tracks from the minimum bias events which are produced near the main event primary vertex
and within the jet cone. The results are shown in Table 1 as a function of pT . It can be seen that for
a fixed b-tagging efficiency of 50%, the rejection against light-quark jets is deteriorated by a factor of
about eight at lowpT (pT < 50 GeV) and by a factor of less than three above 100 GeV.

Given that these results were obtained using the same response time as in the current detectors,
which is a conservative assumption in view of the discussionof Section 5.1, we shall assume in most of
the studies presented here that the b-tagging performance in terms of efficiency and fake rate will be the
same at the SLHC as at the standard LHC.
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Table 1: Rejection against u-jets (Ru) for a b-tagging efficiency of 50% and in variouspT bins, as expected in ATLAS at the

LHC design luminosity and with the upgraded luminosity.

pT (GeV) Ru at1034 cm−2s−1 Ru at1035 cm−2s−1

30-45 33 3.7
45-60 140 23
60-100 190 27
100-200 300 113
200-350 90 42

Table 2: Electron identification efficiency and rejection against jets, forET =40 GeV, as expected in ATLAS at the LHC design

luminosity and at the upgraded luminosity.

L (cm−2s−1) Electron efficiency Jet rejection
1034 81% 10600±2200
1035 78% 6800±1130

3.2 Electron identification and measurement

An increase of a factor of ten in luminosity, and therefore inthe number of pile-up minimum-bias events,
increases the contribution of the pile-up noise to the calorimeter energy resolution by about a factor
of three. The energy resolution of the ATLAS electromagnetic calorimeter at1035 cm−2s−1 has been
studied with electrons ofET =30 GeV and a full GEANT simulation which included the expected pile-
up. The energy resolution obtained by using also the information of the tracker is 3.6%, to be compared
to 2.5% at the LHC design luminosity. The deterioration is expected to be smaller at higher electron
energies, because the contribution of the pile-up noise to the energy resolution decreases with the particle
energy as1/E.

Electron identification at1035 cm−2s−1 has also been studied with a full simulation of ATLAS.
Table 2 compares the achieved rejection against jets fakingelectrons to the performance expected at the
LHC design luminosity, for electrons withET =40 GeV. For a fixed electron efficiency of about 80%, the
jet rejection decreases at the SLHC by about 50% compared to the standard LHC. This is mainly due to
the fact that isolation cuts and shower shape criteria in thecalorimeter are less powerful in the presence
of a larger pile-up. As in the case of the energy resolution, the loss in jet rejection power is expected to
decrease at higher electron energies.

3.3 Muon identification and measurement

If enough shielding can be installed in the forward regions to protect the external Muon Spectrometers
from the increased radiation background, the muon reconstruction efficiency and momentum resolution
provided by the muon chambers are not expected to be seriously deteriorated when running at the SLHC.
The additional shielding tanslates into a reduced rapidityacceptance, which will most likely be limited
to the region|η| <2. This is however not a big penalty, given the centrality of very high-pT final states.

3.4 Forward-jet tagging and central-jet veto

The presence of two jets emitted in the forward and backward regions of the detector is a distinctive signa-
ture of processes arising fromWW or ZZ fusion, where the vector bosons are radiated by the incoming
quarks. This is for instance one of the main Higgs productionmechanisms at the LHC. Tagging these
forward/backward jets (“forward jet tagging”) is an essential handle to increase the signal-to-background
ratio for these processes. Similarly, the relatively low jet activity at central rapidities in electroweak pro-
cesses (e.g. Higgs production) can be used to reject QCD backgrounds (e.g.tt). This is done by vetoing
the presence of additional jets.
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Fig. 1: Estimates of probabilities of single and double forward jet tagging from pile-up at the LHC, for the nominal and the

upgraded luminosities, as a function of the jet energy, and for jet cone sizes∆R = 0.4 (left) and∆R = 0.2 (right).

As the luminosity increases, both these handles are expected to become less powerful, mainly
because the increased pile-up can give rise to additional jets in the detector. Additional central jets over-
lapping purely electroweak processes spoil the efficiency of the jet veto. Similarly, additional forward
jets from pile-up can mimic the typical signature of vector-boson fusion processes.

The performance of the forward jet tag and central jet veto atthe SLHC was estimated in a pre-
liminary way by using a full simulation of the ATLAS detector. The pile-up was generated by summing
minimum-bias events over the correct number of bunch crossings, and by taking into account the shape of
the electronic response of the various calorimeters. Jets were then found using a jet finder cone algoritm
with cone sizes∆R = 0.4 and∆R = 0.2, and were assigned to ranges of rapidity:

• forward: η > 2.0

• backward:η < −2.0

• central:|η| < 2.

A single tag is defined as an event with either a forward or backward jet; a double tag has both.
The probability of an event consisting only of minimum-biasinteractions having either a single or double
jet tag is shown in Fig. 1 as a function of the jet energy. The probability of an event having an additional
central jet is shown in Fig. 2 as a function ofpT . The numbers should be compared to typical forward-jet
tagging efficiencies of≥ 80%.

The main conclusion is that at a luminosity of1035 cm−2s−1 the forward jet tag and central jet
veto performances are significantly degraded compared to design luminosity. However, if sufficiently
small cone sizes are used to limit pile-up effects (∆R ≤ 0.2), these two strategies can still be effective.
For instance, with a jet cone∆R = 0.2 the probability of double tag is only 2% for forward jets with
energy above 300 GeV. For the same cone size, an additional central jet with pT >50 GeV is found
in 10% of the cases. We stress that these results are preliminary. In particular, the fake probabilities
reported in Figs. 1 and 2 depend significantly on the jet energy calibration and reconstruction conditions.
Furthermore, the performance reported here may be too pessimistic as it will be possible to increase
the calorimenter and trigger granularity in the forward regions, and to reduce the pile-up noise in the
calorimeters by using optimal filtering techniques. Finally, possible algorithms to distinguish between
incoherent pile-up of energy and QCD jets (e.g. based on the longitudinal shower profiles) have not been
investigated.
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Fig. 2: Estimates of probabilities of one or two extra central jets from pile-up at the LHC, for the nominal and upgraded

luminosities, as a function of the jetpT threshold, and for jet cone sizes∆R = 0.4 (left) and∆R = 0.2 (right).

3.5 Trigger

The strategy and expected performance of the trigger at the SLHC are discussed in Section 5.4. Here
we anticipate briefly that a robust trigger menu for physics can be obtained, for an acceptable rate, by
adopting the following philosophy: setting high thresholds for the inclusive triggers aiming at selecting
very high-pT final states; pre-scaling inclusive and semi-inclusive low-pT triggers aiming at selecting
well-known control/calibration samples (e.g.Z→ℓℓ); using a set of exclusive menus aiming at select-
ing specific final states (e.g. a given decay channel of a low-mass Higgs already observed at design
luminosity).

3.6 Summary of the assumptions used in this work

For the physics studies presented in this document, we have worked mostly under the assumption that the
detector performance at1035 cm−2s−1 is comparable to that at1034 cm−2s−1. The material presented
in Section 5, as well as the considerations made above, show that indeed the performance degradation is
not expected to be dramatic in most cases. For example, for forward-jet tagging and central-jet veto one
can recover to some extent the signal purity and background rejection by increasing the jet thresholds.
We shall explicitly mention the cases in which a more conservative scenario, with degraded detector
performance, has been adopted.

The detector simulations have been performed with different levels of detail. In some cases, fast
simulations of fully showered final states have been employed (e.g. ATLFAST [7]). These fast simu-
lations smear the momenta, energies and positions of the final-state particles according to the detector
resolutions, as obtained from GEANT-based studies and fromtest beams. In other cases, the analyses
are simply based on parton-level studies, with acceptancesand efficiencies estimated as a function of the
partons kinematics, but with no smearing for resolution effects. The precise assumptions will be listed
for each individual study.

We have assumed integrated luminosities corresponding to the standard data taking time of107

s/year. This gives rise to total integrated luminosities for each experiment of103 (3× 103) fb−1 for 1 (3)
year(s) of running at1035 cm−2s−1, and102 (3 × 102) fb−1 for 1 (3) year(s) at1034 cm−2s−1.
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Table 3: Expected numbers of events in fully leptonic final states from multiple gauge boson production, for an integrated

luminosity of 6000 fb−1and after cuts.

Process WWW WWZ ZZW ZZZ WWWW WWWZ
N(mH=120 GeV) 2600 1100 36 7 5 0.8
N(mH=200 GeV) 7100 2000 130 33 20 1.6

4 THE PHYSICS POTENTIAL

In this Section we discuss examples of physics areas where the SLHC is expected to improve on the
LHC potential, either because of the extended mass reach or because of the improved measurement
precision. It should be noticed that the quality and the depth of the studies presented here are by far
not comparable to those of previous studies performed by ATLAS and CMS for the standard LHC and
documented in Technical Proposals and Technical Design Reports. These results should therefore be
considered preliminary and illustrative only.

4.1 Electroweak physics

The high precision studies performed at LEP have clearly indicated the essential role played by precision
determinations of the electroweak (EW) parameters [8], also as a tool to look indirectly for New Physics.
We show in this Section a few examples of measurements where the SLHC should improve significantly
on the LHC accuracy. In addition, new channels which are rate-limited at the LHC should become
accessible at the upgraded machine.

4.1.1 Multiple gauge boson production

Production of multiple (nV ≥ 3) gauge bosons provides an important test of the high energy behaviour
of weak interactions. The cleanest final states are those where all W ’s andZ ’s decay leptonically, but
these are compromised by small branching ratios (BRs). As a rule of thumb, each additional gauge boson
emitted in the hard process costs a factor of approximately 1000 in rate. As a result, luminosity limits
the number of possible channels accessible at the LHC.

Table 3 shows the expectation at the SLHC. To obtain these results, we have assumed a 90%
identification efficiency for each lepton, and applied the following set of acceptance cuts:

|ηℓ| < 2.5 , pℓ
T > 20 GeV (1)

All rates were evaluated at LO, using the parton distribution set CTEQ5M and renormalization and
factorization scalesµR = µF =

∑

i=1,nW +nZ
mVi . NLO predictions are available in the case of di-

boson production [11], leading toK factors of the order of 1.3, 1.5 and 1.8 forZZ, W+W− andW±Z,
respectively [9]. Similarly,K factors of the order of 1.5 are expected for the higher multiplicities.
From Table 3 it can be seen that, although with limited statistics, the channelsW±ZZ→ 5ℓ, ZZZ→ 6ℓ
and even the four-gauge-boson final stateW+W−W+W− become accessible at the SLHC. As a result,
the first limits on 5-ple gauge boson vertices (expected to vanish in the SM) could be set. The standard
LHC luminosity would not allow these channels to be oberved.All rates are increased in presence of a
Higgs boson above threshold for the decay into boson pairs (see the row corresponding tomH=200 GeV
in Table 3).

In addition to the direct production of multiple gauge bosons, the SLHC luminosity should allow
also an accurate measurement of triple boson production in boson-boson fusion (allowing, again, a test
of the quintuple couplings). For example, for theWZ fusion processes

ZW±→W+W−W± (2)

870 fully leptonic events are expected formH=120 GeV and 6000 fb−1. In the case of a 200 GeV Higgs,
including the resonant production ofW pairs leads to 2700 events.
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4.1.2 Triple gauge boson couplings

As discussed in [9], the LHC will significantly improve the precision of the measurements of the Triple
Gauge boson Couplings (TGC) compared to the LEP and Tevatronresults. In the SM, the TGC’s are
uniquely fixed by gauge invariance and renormalizability. Extensions to the SM, in which for example
the gauge bosons are not elementary but are bound states of more fundamental particles, generically
lead to deviations from the SM prediction for the TGCs. The larger the available statistics, the higher the
sensitivity to these deviations. In the case of a positive indication of non-SM TGC’s at the LHC, increased
statistics at the SLHC should allow a deeper understanding of which specific realization of New Physics
is responsible for these deviations. The latter are in fact parameterized by effective interactions which, in
order to preserve unitarity at high energy, require the inclusion of form factors. The mass scaleΛ which
is needed to define such form factors is typically associatedto the scale at which New Physics manifests
itself. A measurement of the energy dependence of the TGC’s will probe the shape of the form factor [9],
and therefore allow extraction of the value of the scaleΛ. As a result, there is no limit a priori to the
accuracy one would like to achieve in the determination of TGCs: the larger the precision, the stronger
the reach in searches for phenomena beyond the Standard Model.

Assuming electromagnetic gauge invariance and C- and P-conservation, five parameters can be
used to describe the triple-gauge vertices:gZ

1 , ∆κγ , ∆κZ , λγ , andλZ [9]. The SM values of these
parameters are one forgZ

1 and zero for the others, at the tree level.

At the LHC two processes can be studied to access these TGCs:Wγ→ ℓνγ production, which
probes the couplingsλγ and∆κγ , andWZ→ ℓνℓℓ production, which probes the couplingsλZ , ∆κZ

andgZ
1 . After simple kinematic cuts and lepton and photon identification, a few thousands events are

expected for an integrated luminosity of 100 fb−1 in one experiment, with a background contamination
of 20-30%. In contrast, theWW→ ℓνℓν process, which also proceeds through triple-gauge interactions
in thes-channel, suffers from a largett̄ background and therefore has not been considered here.

The experimental sensitivity to anomalous TGC’s arises from the increase of the production cross-
section and from alteration of differential distributions. Theλ-type couplings have a strong

√
s depen-

dence, being enhanced at high centre-of-mass energy. Therefore they can be constrained by measuring
the total cross-section for the above-mentioned processesand by looking for an excess of gauge boson
pairs with highpT compared to the SM expectation. Theκ-type couplings, on the other hand, modify
mainly the angular distributions of the final state particles.

For a luminosity of1035 cm−2s−1, the analysis reported here uses conservatively only final states
containing muons and photons, because these final states do not necessitate significant detector upgrades.
This choice entails a loss of 50% (75%) of theWγ (WZ) effective rate. In addition, only transverse
momentum distributions have been used to constrain TGC’s, therefore these results are pessimistic in the
case of theκ-type couplings.

The expected sensitivity is summarised in Table 4 and Fig. 3 for different luminosity scenarios. For
comparison, the performance of app machine running at

√
s = 28 TeV is also shown. Only statistical

errors have been taken into account. The dominant systematic uncertainty is expected to come from
higher-order QCD corrections. Their contribution, which has not been evaluated for the studies presented
here, depends on the extent to which they can be constrained by using theory and data and controlled by
applying a jet veto at1035 cm−2s−1.

It can be seen that a tenfold luminosity increase should extend the sensitivity for theλ-type and
gZ
1 parameters into the range (∼ 0.001) expected from radiative corrections in the StandardModel,

and should therefore allow a meaningful test of these corrections and others that arise for example in
Supersymmetric models. It should also be noted that, even inthe pessimistic approach adopted here and
with only one experiment, the precision on theλ-type andgZ

1 parameters is equal to or better than that
expected at a Linear Collider with

√
s = 500 GeV and an integrated luminosity of 500 fb−1 [10]. On the

other hand even the SLHC is not competitive with a Linear Collider for the measurement of theκ-type

8



Table 4: Expected 95% C.L. constraints on Triple Gauge Couplings in ATLAS for various luminosity/energy scenarios

(Λ =10 TeV). Only one coupling is allowed to vary at the time, while the others are fixed at their SM values. The last col-

umn shows the expectation for a Linear Collider with
√

s=500 GeV and 500 fb−1 [10].

Coupling 14 TeV 14 TeV 28 TeV 28 TeV LC
100 fb−1 1000 fb−1 100 fb−1 1000 fb−1 500 fb−1, 500 GeV

λγ 0.0014 0.0006 0.0008 0.0002 0.0014
λZ 0.0028 0.0018 0.0023 0.009 0.0013

∆κγ 0.034 0.020 0.027 0.013 0.0010
∆κZ 0.040 0.034 0.036 0.013 0.0016
gZ
1 0.0038 0.0024 0.0023 0.0007 0.0050

parameters, which do not exhibit a strong energy dependenceand which are optimally constrained by
angular measurements in the clean environment of ane+e− machine.

4.1.3 Quartic gauge boson couplings

Quartic boson couplings (QGC) are an essential component ofthe EW theory. Similarly to the TGCs,
they are required by gauge invariance and their values are uniquely determined within the SM by the
value of the EW gauge coupling. As in the case of TGC’s, possible deviations from the SM prediction
are parametrised in terms of effective terms in the Lagrangian.

The results presented here are based on the work of Ref. [12],where the following operators
leading to genuine quartic vertices are considered:

L4 = α4 [Tr (VµVν)]
2 , (3)

L5 = α5 [Tr (VµV µ)]2 , (4)

L6 = α6 Tr (VµVν)Tr (TV µ)Tr (TV ν) , (5)

L7 = α7 Tr (VµV µ) [Tr (TV ν)]2 , (6)

L10 =
α10

2
[Tr (TVµ) Tr (TVν)]

2 . (7)

In the unitary gauge, there are new anomalous contributionsto theZZZZ vertex coming from all five
operators, to theW+W−ZZ vertex from all operators exceptL10, and to theW+W−W+W− vertex
from L4 andL5. A possible way to probe these couplings is via the scattering of gauge bosons in
reactions likepp → qqV V → V V jj [13, 14, 15], withV = W± or Z.

Table 5 shows the limits on the couplingsαi (i = 4, 5, 6, 7, 10) expected at the LHC, as a function
of integrated luminosity, compared to current indirect limits from Ref. [16]. Fully leptonic final states
were required and the cuts applied are those of Eq. (1). It canbe seen that in few cases the improvement
obtained with the luminosity upgrade goes beyond the simplestatistical scaling. This is due to the fact
that almost no events are expected in theZZ final state at1034 cm−2s−1. The interplay among the
various channels, and the correlations among different parametersαi, are shown in Figs. 4–6.

In addition to the vector boson scattering processes, an alternative probe of quartic couplings is
given by the production of three gauge bosons via the off-resonance production of a W or Z decaying into
a system of three gauge bosons (V ∗→V V V ). In this case, a different kinematical configuration is probed.
For vector boson scattering, two of the bosons are space-like, with virtualities of the order ofMW ; for
triple gauge boson production, one is off-shell but is time-like and with large virtuality. The observation
of anomalies in the two channels would therefore provide complementary information, and would also
be sensitive to different combinations of the QGC parameters. For triple gauge boson production we
updated the studies presented in [9], assuming a total integrated luminosity of 6000 fb−1. Given the
number of events quoted in Table 3, and using just theZZZ final state, the limit|α4 + α5| < 0.025 was
obtained at 95% C.L. forΛ = 2 TeV. This is to be compared with 0.09 with 100 fb−1.
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Fig. 3: Expected 95% C.L. constraints on Triple Gauge Couplings in ATLAS, resulting from two-parameter fits (Λ =10 TeV).

The contours correspond to 14 TeV and 100 fb−1 (solid), 28 TeV and 100 fb−1 (dot dash), 14 TeV and 1000 fb−1 (dash) and

28 TeV and 1000 fb−1 (dotted).

Table 5: 1σ limits on the anomalous quartic couplingsαi at LHC and SLHC (95% C.L. limits are also given in this case), as

well as the present indirect bounds from Ref. [16].

Indirect Limits LHC, 100 fb−1 LHC, 6000 fb−1 LHC, 6000 fb−1

Coupling (1σ) (1σ) (1σ) 95% C.L.
(×10−3) (×10−3) (×10−3) (×10−3)

α4 −120. ≤ α4 ≤ 11. −1.1 ≤ α4 ≤ 11. −0.67 ≤ α4 ≤ 0.74 −0.92 ≤ α4 ≤ 1.1

α5 −300. ≤ α5 ≤ 28. −2.2 ≤ α5 ≤ 7.7 −1.2 ≤ α5 ≤ 1.2 −1.7 ≤ α5 ≤ 1.7

α6 −20. ≤ α6 ≤ 1.8 −9.6 ≤ α6 ≤ 9.1 −3.5 ≤ α6 ≤ 3.2 −4.3 ≤ α6 ≤ 3.9

α7 −19. ≤ α7 ≤ 1.8 −10. ≤ α7 ≤ 7.4 −4.4 ≤ α7 ≤ 2.2 −5.4 ≤ α7 ≤ 2.8

α10 −21. ≤ α10 ≤ 1.9 −24. ≤ α10 ≤ 24. −4.1 ≤ α10 ≤ 4.1 −4.8 ≤ α10 ≤ 4.8
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4.2 Higgs physics

The Higgs search programme, including the discovery of a SM Higgs over the full allowed mass range
or of at least one SUSY Higgs boson, will be largely accomplished at the standard LHC. There are issues
where the LHC potential is limited by statistics and where a luminosity upgrade could therefore have a
significant impact.

Four examples are discussed in this Section. The possibility of observing a Higgs boson in decay
channels which are rate-limited at the LHC; the measurements of Higgs couplings to fermions and bosons
with improved precision; the possibility of observing the production of Higgs pairs and measuring Higgs
self-couplings; the increased discovery potential for heavy MSSM Higgs bosons in the difficult region
of the decoupling limit. It should be stressed that Higgs physics requires fully functional detectors,
providing powerful b-tagging and electron identification and allowing precise measurements of particles
with moderate energies. Major detector upgrades are therefore needed in this case for the SLHC phase.

4.2.1 Rare decay modes

Two examples of channels which are accessible with difficulty at the LHC because of their tiny rates are
discussed here. Assuming that a Higgs boson will have been previously discovered in higher-rate final
states, these rare decay modes can be used to extend the information available on the Higgs couplings to
fermions and bosons.

The possible decayH→Zγ of a SM Higgs is relevant only in the mass region 100-160 GeV and
has a branching ratio of a few per mill. In contrast to theH→γγ channel, which has a similar branching
ratio, an additional suppression in theZγ case comes from the fact that only decays of theZ into electron
or muon pairs lead to observable final states above the background at the LHC. Taking this into account,
the production cross-section times branching ratio forH → Zγ → ℓℓγ is only ∼2.5 fb, too small to
be observed at the LHC. Indeed, the expected significance for600 fb−1 (300 fb−1 per experiment) is
∼ 3.5σ. A factor of ten in luminosity, i.e. 6000 fb−1, would allow the observation of a signal at the
∼ 11σ level. This additional channel would provide an additionalmeasurement of the Higgs couplings
to bosons (see Section 4.2.2).

Another interesting decay mode which may become accessibleat the SLHC isH → µ+µ−.
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Table 6: Expected signal significance of a SMgg→ H→ µµ signal for various mass values, as obtained by combining AT-

LAS and CMS and for an integrated luminosity of 3000 fb−1per experiment [19]. The expected statistical accuracy on the

measurement of the product of cross-section times BR is alsogiven.

mH (GeV) S/
√

B δσ×BR(H→µµ)
σ×BR

120 GeV 7.9 0.13
130 GeV 7.1 0.14
140 GeV 5.1 0.20
150 GeV 2.8 0.36

This channel, which in the SM has a BR of order10−4, has recently been studied for the LHC design
luminosity in [18] using production via gauge boson fusion,and in [19] using production viagg fusion.
The analyses were performed at the generator level, taking into account the experimental acceptance and
muon momentum resolution. The large background fromZ → µµ was reduced by constructing a signal
likelihood function based on theµµ system kinematics and the eventET distribution. It should also be
noticed that, since a Higgs signal will have been previouslyobserved in higher-rate decay modes, the
Higgs mass will be known with an accuracy of∼0.1%. Therefore the Z background can be precisely
measured in the signal region by using a sample ofZ→ee decays. Due to the small branching ratio,
this channel cannot be observed to better than3.5σ at the LHC design luminosity, even combining both
production channels. Extrapolation to the SLHC gives, for the gg-fusion channel alone, the results of
Table 6. In the mass range 120–140 GeV, a5σ evidence or larger can be obtained, and the square
root of the production cross-section times branching ratio(which is directly proportional to the muon
Yukawa couplinggHµµ) could be measured with statistical accuracies of better than 10%. These results
are comparable to those obtained for a 200 TeV Very Large Hadron Collider (VLHC) with an integrated
luminosity of 300 fb−1. The possibility of adding the contribution of the gauge-boson fusion production
channel rests on the viability of the forward jet tagging, and has so far not been explored in detail for the
SLHC.

4.2.2 Higgs couplings to fermions and bosons

Assuming that a SM Higgs boson will have been discovered at the LHC, measurements of Higgs cou-
plings to fermions and bosons should be possible [17], but inmost cases the precision will be limited by
the available statistics [20]. A luminosity upgrade shouldtherefore be useful for this physics.

In principle, the Higgs coupling for instance to a given fermion family f could be obtained from
the following relation:

R(H→ff) =

∫

Ldt · σ(pp→H) · Γf

Γ
(8)

whereR(H→ff) is the Higgs production rate in a given final state, which can be measured experi-
mentally,

∫

Ldt is the integrated luminosity,σ(pp→H) is the Higgs production cross-section, andΓ and
Γf are the total and partial Higgs widths respectively. Hence,a measurement of the Higgs production
rate in a given channel allows extraction of the partial width for that channel, and therefore of the Higgs
couplinggf to the involved decay particles (Γf ∼ g2

f ), provided that the Higgs production cross-section
and the total Higgs width are known from theory.

Model-independent measurements are only possible if one considers ratios of couplings, which
are experimentally accessible through the measurements ofratios of rates for two different final states,
because in the ratio the total Higgs cross-section, width and luminosity cancel. Examples are shown
in Fig. 7. The left plot gives the expected precision on the ratio of the Higgs widths for the decays
into WW andZZ. For masses larger than approximately 150 GeV a comparison of the H→ZZ→ 4ℓ
andH→WW→ ℓνℓν rates provides a direct measurement ofΓW /ΓZ . At smaller masses the process
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H→WW→ ℓνℓν has too low a rate but one can use the measured rate ofH→ γγ to extractΓW , at
the prize of introducing some theoretical assumptions (indirect measurement). The couplingH→ γγ is
dominated by a loop graph with an intermediateW and hence the rate ofH→ γγ can be related to the
HWW coupling. Similarly, the right plot in Fig. 7 shows the expected precisions on the measurements
of ratios of Higgs couplings to fermions and bosons. The coupling Htt̄ can be probed in the mass region
below 150 GeV by comparing theWH→ ℓνγγ rate and theH→ γγ rate. The latter production rate is
determined by the coupling of the Higgs to gluon pairs (sincegg→ H is the production mechanism) and
the dominant contribution to this coupling is from a top quark loop. An indirect measurement of the ratio
of couplingsHWW andHtt can therefore be performed. In the mass region above 150 GeV,ΓW /Γt

can be obtained in a similar way by using theWH→ WWW and theH→WW channels. Since in
this mass range the dominant systematics is the theoreticaluncertainty on the absolute cross-sections for
the two independent production channels, the higher luminosity leads to a minor improvement. Progress
in the understanding of the theoretical systematics will however allow to take full benefit of the higher
statistics. The processesttH (→ γγ) andttH (→ bb) can be combined to give the ratio of widths to
WW and tobb in an indirect way. Finally, measurements of theH→ ττ andH→ WW→ℓνℓν rates
in events with tagged forward jets, which arise from the fusion processqq→qqH, can be combined to
directly obtainΓW /Γτ . At this time, the impact of the1035 cm−2s−1 environment on the combined
request of tau identification, missingET and forward jets has not been evaluated, and we do not have an
estimate of the improvement possible at the SLHC for this channel.

It can be seen that at the SLHC ratios of Higgs couplings to fermions and bosons should be
measured with precisions of 10% or better in most cases. In some cases, this represents an improvement
by up to a factor of two on the ultimate precision expected at the standard LHC. Progress for other
channels can be anticipated as a result of improved theoretical understanding of the Higgs production
mechanisms, and of the impact of the experimental environment on the detector performance.

4.2.3 Higgs self-couplings

A complete determination of the parameters of the Standard Model requires the measurements of the
Higgs selfcouplings. These include a trilinear and a quartic interaction. In the SM, the corresponding
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couplings are fixed at LO in terms of the Higgs mass and vacuum expectation valuev:

λSM
HHH = 3

m2
H

v
, λSM

HHHH = 3
m2

H

v2
(9)

A direct measurement ofλHHH can be obtained via the detection of Higgs pair production, where a
contribution is expected from the production of a single off-shell Higgs which decays into a pair of
Higgs. This contribution will always be accompanied by diagrams where the two Higgs bosons are
radiated independently, with couplings proportional to the Yukawa couplings or to the gauge couplings.
As a result, different production mechanisms will lead to different sensitivities of theHH rate to the
value ofλHHH. The production mechanisms which have been considered in the literature in the context
of hadron-hadron collisions include [21]:

1. inclusiveHH production, dominated by the partonic processgg→HH [22, 23]

2. vector boson fusion [24]:qq→qqV ∗V ∗, followed byV ∗V ∗→HH (where possible different quark
flavours are understood in both initial and final state)

3. associated production withW or Z bosons [25]:qq̄→V HH

4. associated production with top quark pairs:gg/qq̄→tt̄HH

In theories beyond the SM, alternative production channelsmay exist. For example, when several Higgs
multiplets exist, as is typical of Supersymmetry, pairs of lighter Higgs bosons can be produced in the
resonant decay of a heavier one. In this document we concentrate on the SM case.

TheHH production rates are shown in Fig. 8 for the first three channels [21], and in Table 7 for
the tt̄HH case1. The arrows indicate the variation in rate expected when changing the self-coupling
in the rangeλSM

HHH/2 < λHHH < 3/2λSM
HHH . Depending on the value ofmH , different decay channels

dominate. FormH <
∼ 140 GeV H→bb̄ decays dominate, for170 <

∼ mH <
∼ 190 GeV H→WW dominates,

and for larger massesWW andZZ final states give the largest rate.

Given the extremely low production rates, and the potentially large backgrounds associated to the
final states with the largest signal rates, naive arguments lead to the conclusion that detection of SM
Higgs pairs at1034 cm−2s−1 is not feasible. As a result, no complete study of the backgrounds is present
in the literature. We present here the first preliminary results of studies performed specifically for the
1035 cm−2s−1 option. We analysed the cases of production via gluon-gluonfusion, vector boson fusion,

1C.G. Papadopoulos, unpublished, using results of [26].
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Table 7: Total production cross-section (fb) fb forpp→tt̄HH , as a function ofmH and ofλHHH (given in units of the SM

valueλSM

HHH).

mH(GeV) σ(λHHH = 1) σ(λHHH = 1/2) σ(λHHH = 2) σ(λHHH = 0)

120 1.0 0.9 1.3 0.8
140 0.54 0.48 0.73 0.42
160 0.32 0.32 0.47 0.24
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Fig. 9: λHHH dependence of thegg→HH rate [23], formH = 170 GeV (left) and 200 GeV (right).

and associated production with top quark pairs. In the latter two cases, we concluded that the large level
of backgrounds make it very hard, if not impossible, to extract meaningful signals. These findings will
be documented in more detail elsewhere. In the case of the gluon fusion channel, we shall now show
that the extra factor of ten in luminosity, if accompanied bya detector performance comparable to that
expected at the LHC, allows extraction of a signal,and provides the first measurements ofλHHH, if the
Higgs lies within the mass range170 GeV < mH < 200 GeV.

gg→HH

Thegg fusion process has a strong dependence on the value ofλHHH. This is shown in Fig. 9 [23]. For
smallmH , 4b final states dominate. In spite of the double resonance, the QCD bacgkround is immense
and limits any chance to observe a signal. Among all channelswe considered, the most interesting one
turned out to be

gg→HH→W+W− W+W−→ℓ±νjjℓ±νjj (10)

which has a good overall BR formH >
∼ 170 GeV. The like-sign lepton requirement is essential to reduce

the high-rate opposite-sign lepton final states from Drell Yan (DY) andtt̄. Potential backgrounds to this
signal arise from:

1. tt̄+jets, where the second lepton comes fromb decays

2. WZ+jets, where one of the leptons from theZ is not identified

3. tt̄W

4. WWWjj, including the resonant channelW (H→WW )jj

5. tt̄tt̄

All these backgrounds are in principle reducible, since they share one or more of the following features
not present in the signal: presence ofb-jets; presence of additional hard and isolated leptons; jet-jet
invariant masses not consistent withW decays.
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Table 8: Expected numbers of signal and background events after all cuts for thegg→HH→ 4W→ ℓ+ℓ′+4j final state, for
∫

L = 6000 fb−1.

mH Signal tt̄ W±Z W±W+W− tt̄W± tt̄tt̄ S/
√

B

170 GeV 350 90 60 2400 1600 30 5.4
200 GeV 220 90 60 1500 1600 30 3.8

To reduce the top-quark backgrounds, all events with one (ormore) b-tags are rejected (this is
accomplished by reweigthing each event with a factor of 0.5 for eachb jet with ET > 30 GeV and
|η| < 2.4). To select hadronicW decays we require the presence of at least two jet pairs with invariant
masses50 < mjj < 110 GeV. To reduce the contribution of leptons from untaggedb decays we apply
an isolation cut. We assumed a 10% identification inefficiency for either leptons, to estimate the residual
DY contamination from non-reconstructed DY pairs. In addition, the following cuts are applied:

pT
ℓ > 20GeV , |ηℓ| < 2.4 ∀ ℓ (11)

≥ 4 jets withET > 20 GeV and|η| < 2.4 , two of which with ET > 30 GeV (12)

To reduce the high jet multiplicity 4t processes, we finally ask that there be at most six jets with
ET > 30 GeV in the event. Backgrounds 1-3 were generated withPYTHIA, and processed through
ATLFAST; backgrounds 3-5 were evaluated using parton-level simulations based on exact multi-particle
matrix elements, following [27]. We used the channeltt̄W , for which simulations were carried out using
both approaches, to cross-check our overall results. We also verified that aPYTHIA+ATLFAST simula-
tion of theqq̄′→WH contribution to theWWWjj background is consistent with a partonic simulation
of theqq̄′→WH subset of the full set of contributing processes.

The resulting event numbers after all cuts are shown in Table8. In spite of the signal being smaller
than the backgrounds, the number of events is large enough toprovide a statistical excess of 5.3 (3.8)σ
for mH=170 (200) GeV. It is important to remark that the precise size of the backgrounds is subject today
to large theoretical uncertainties, and the above significance values should be taken as indicative only.
However, once the data will be available these uncertainties can be determined experimentally by using
control samples or by other tools. For example, the largest backgrounds (tt̄W± andW±W+W−jj) have
a potentially measurable charge asymmetry. The ratiosσ(XW+) − σ(XW−)/σ(XW+) + σ(XW−)
(with X = tt̄, W+W−jj) are quite insensitive to theoretical uncertainties (scales, parton densities, etc),
thereby allowing a determination of the background normalization. Additional handles for an accurate
estimate of the backgrounds come from counting events wheresome of the cuts are relaxed (e.g. the
b-veto, the lepton misidentification). We therefore assume that the uncertainty on the background sub-
traction will be dominated by statistics. In the case of SM Higgs production, this leads to a determination
of the total production cross-section with a statistical uncertainty of±26% (±20% ) for mH=200 GeV
(mH=170 GeV). This allows a measurement ofλHHH with statistical errors of 25% (19%).

4.2.4 The heavy Higgs bosons of the MSSM

The LHC discovery potential for MSSM Higgs bosons decaying into SM particles is summarised in
Fig. 10 in the usual tanβ vsmA plane. This plot shows that over a good part of the parameter space (note
the logaritmic scale) the LHC should be able to discover two or more SUSY Higgs bosons, except in
the region at largemA (the so-called “decoupling limit”). In this region, only the lightest Higgs bosonh
can be observed, unless the heavier Higgs bosons (H, A, H±) have detectable decay modes into SUSY
particles. This means that the LHC cannot promise a completeand model-independent observation of
the heavy part of the MSSM Higgs spectrum, although the observation of sparticles (e.g. squarks and
gluinos) will clearly indicate that additional Higgs bosons should exist.

In the region of the decoupling limit, the heavy Higgs bosonsare not accessible at a future Lin-
ear Collider like TESLA either. In this case, however, very precise measurements of theh parameters
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Fig. 10: Regions of the MSSM parameter space where the various Higgs bosons can be discovered at≥ 5σ at the LHC (for

300 fb−1 per experiment and both experiments combined) through their decays into SM particles. In the dashed regions at least

two Higgs bosons can be discovered, whereas in the dotted region only h can be discovered at the LHC. In the region to the

left of the rightmost contour at least two Higgs bosons can bediscovered at the SLHC (for 3000 fb−1 per experiment and both

experiments combined).
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Table 9: Cross-sections for backgrounds to theWLZL→WLZL process.

Process σ (pb)
qq→qqWZ 1.45

Zbb̄ 141
Ztt̄ 2.23

qq→WZ 3.00
qq→ZZ 0.81

should be able to demonstrate indirectly (i.e. through radiative corrections), and limited to the region
mA < 500 GeV, the existence of heavier Higgs bosons [10]. Figure 10 also shows that the SLHC
should be able to extend significantly the region over which at least one heavy Higgs boson can be dis-
covered at≥ 5σ in addition toh (rightmost contour in the plot), covering in particular almost the full
part of the parameter space where TESLA should be able to constrain (at the 95% C.L.) the heavy part
of the SUSY Higgs spectrum through precise measurements.

4.3 Strongly-coupled vector boson system

If there is no light Higgs boson, then general arguments [28]imply that scattering of electroweak gauge
bosons at high energy will show structure beyond that expected in the Standard Model. In order to
explore such signals it is necessary to measure final states containing pairs of gauge bosons with large
invariant mass.

4.3.1 WLZL→WLZL

Estimates of the production of aρ-like vector resonance ofWLZL can be obtained from the Chiral La-
grangian model, with the inverse amplitude method of unitarization [9, 29]. The cross-section depends,
in next to leading order, on a linear combinationa4 − 2a5 of two quadrilinear coupling parameters. The
model was implemented in PYTHIA. Only the channelWLZL→WLZL→ℓνℓ+ℓ− is considered here,
although the resonance can be produced in theqq̄ fusion channel at higher rate. Forward jet tagging is
here an essential ingredient to reduce the background.

The irreducible Standard Model backgroundqq→qqWZ, with transverse gauge bosons in the final
state, was generated with COMPHEP [30] with cutspT (q,W,Z) > 15 GeV, andmWZ > 500 GeV,
with CTEQ5L structure functions andQ = mZ . The process includes electroweak and QCD diagrams,
as well as the quadrilinear gauge boson couplings. The Higgsmass was set at the low value of 100 GeV,
and the signal is then defined, as in [31], as the enhancement of the SM prediction over the 100 GeV
Higgs. Other backgrounds considered wereZbb̄ andZtt̄, also generated with COMPHEP, with cuts
pT (b, t) > 15 GeV andpT (Z) > 50 GeV, and SM production ofWZ, ZZ, generated with PYTHIA.
Table 9 gives the cross-sections for the different backgrounds.

The selection criteria are based on leptonic cuts:

pT (ℓ1) > 150 GeV, pT (ℓ2) > 100 GeV, pT (ℓ3) > 50 GeV

|m(ℓ1ℓ2) − mZ | < 10 GeV

Emiss
T > 75 GeV

and forward jet tagging, i.e. the presence of one forward andone backward jet (|η| > 2) with energy
greater than 300 (400) GeV at LHC (SLHC) luminosity. In addition, events with jets with transverse
momenta greater than 50 (70) GeV at LHC (SLHC) luminosity in the central region (|η| < 2) were
rejected. The degraded jet tag and jet veto performances discussed in Section 3.4 were used for the
SLHC case.
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Fig. 11: Expected signal and background for a 1.5 TeV WZ resonance in the leptonic decay channel for 300 fb−1 (left) and

3000 fb−1 (right).

Figure 11 shows the expected signal for a 1.5 TeV resonance, corresponding to the choice of the
Chiral Lagrangian parameters of eqs. (3)-(4)α4 − 2α5 = 0.006, at the LHC and at the SLHC. The
resonance is at the limit of the observation at LHC, with 6.6 events expected over a background of about
2.2 events around the region of the peak, but at the SLHC the signal has a significance ofS/

√
B ∼ 10.

4.3.2 ZLZL scalar resonance

Production of a scalarZLZL resonance decaying via the gold-plated channelZZ→ 4ℓ is a rare process,
well suited to the SLHC. As in the case of theWZ resonance discussed above, the Chiral Lagrangian
model with regularization by the inverse amplitude method was used. The cross-section depends on a
linear combination,7α4 + 11α5, of the same parameters as those of the vector resonance, andtherefore
observation of the scalar resonance will resolveα4 andα5 unambiguously.

Production occurs through the scattering processesW+
L W−

L →ZLZL andZLZL→ZLZL. Stan-
dard Model backgrounds leading toqqZZ in the final state have been generated with COMPHEP, with
cutspT (q, Z) > 15 GeV, mZZ > 500 GeV, mqq > 200 GeV, with CTEQ5L structure functions and
Q = mZ . The process was implemented in PYTHIA as an external process. The Higgs mass was
set at 100 GeV, so that the contribution from longitudinal vector boson scattering was negligible in this
background. With these conditions, the SM cross-section is69.4 fb. Other backgrounds considered
wereqq→ZZ, with cutmZZ > 500 GeV and cross-section 8.66 fb. The backgroundgg→ZZ was not
included, but is expected to contribute about one third of the qq̄ fusion process [29].

The analysis requires the presence of four isolated leptonswith transverse momenta greater than
30 GeV, and with two-lepton invariant masses compatible with coming fromZ bosons. Forward jet
tagging was applied by requiring the presence of one forwardand one backward jet with energies greater
than 400 GeV. No central jet veto was imposed, as this is not needed to reject the main backgrounds. The
expected signal and background for a resonance of mass 750 GeV, corresponding to7α4+11α5 = 0.063,
is shown in Fig. 12 for an integrated luminosity of 3000 fb−1. Such a process would not be observable
at the nominal LHC.

4.3.3 W+
L W+

L

Non-resonant production of vector boson pairs at high mass represents a challenge at LHC because the
background needs to be very well understood.

The production ofW+W+ pairs has no contribution fromqq fusion. Two models have been
considered:
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Fig. 12: Expected signal and background at the SLHC (3000 fb−1) for a scalar resonance of mass 750 GeV decaying into four

leptons.

• A Higgs boson of mass 1 TeV (as a reference point).

• WW production with K-matrix unitarization.

Backgrounds arise from gauge boson pairs produced by electroweak and gluon exchange dia-
grams [1]. Here only the most promisingℓ+ℓ+νν final state, arising from same-signW+W+ production,
is discussed. Selection cuts were applied on the transversamomenta of both leptons, on their azimuthal
angle and on the event missing transverse energy [1]. Two forward tagging jets with energies above 400
(600) GeV were required for the LHC (SLHC) scenario, and events were rejected if there was a central
jet with transverse momentum greater than 40 (60) GeV.

Table 10 shows the number of signal and background events expected, and the signal significance,
for the LHC, the SLHC and (for comparison) for a machine with

√
s =28 TeV.

In spite of the increase in statistical significance at the SLHC compared to the standard LHC, it
should be noticed that extraction of a convincing signal in this channel will not be easy, because the
shapes of the background and of the signal are similar.

4.4 Top-quark physics

Given the large top quark cross-section, most of the top physics programme should be completed during
the first few years of LHC operation [32]. In particular, thett̄ and the single-top production cross-sections
should be measured more precisely than the expected theoretical uncertainties, and the determination of
the top mass should reach an uncertainty (dominated by systematics) of∼ 1 GeV, beyond which more
data offer no obvious improvement.

There is however one issue in top physics, namely rare decays, that the LHC can only address with
limited statistics. While most of the rare decays expected in the SM are beyond any possible reach, there
is a large class of theories beyond the SM where branching fractions for decays of top quarks induced

21



Table 10: Expected numbers of reconstructed events above aninvariant mass of 600 GeV (for
√

s=14 TeV) and 800 GeV

(for
√

s=28 TeV) for models with a strongly-coupled Higgs sector andfor the background. The significance was computed as

S/
√

S + B.

300 fb−1 3000 fb−1 300 fb−1 3000 fb−1

Model 14 TeV 14 TeV 28 TeV 28 TeV
Background 7.9 44 20 180

K-matrix Unitarization 14 87 57 490
Significance 3.0 7.6 6.5 18.9
Higgs, 1 TeV 7.2 42 18 147
Significance 1.8 4.5 2.9 8.1

by flavour-changing neutral currents (FCNC) be as large as10−5 − 10−6. Studies documented in [32]
indicate that the data which can be collected with a luminosity of 1034 cm−2s−1 are not sufficient to
explore these models.

Three possible FCNC decays have been investigated:

t→q γ, q = u or c (13)

t→q Z, q = u or c (14)

t→q g, q = u or c (15)

For each channel the number of signal events was evaluated for the reference value of

BRdef(t→(u + c)V ) = 1.0 × 10−3 , V = γ, Z, g

The “reachable” branching ratio fort→qV decay was estimated as follows [33]:

S√
S + B +

√
B

≥ 3

2
σ, (CL = 99%)

whereS andB stand for the numbers of signal and background events, respectively. The considered
background processes include:

• tt̄ (σ = 830 pb)

• W (→ e, µ)+ jets (σ ∼ 7500 pb forpT,W > 20 GeV )

• WW + WZ + ZZ (σ = 110 pb)

• W γ (σ = 17.3 pb)

• single top (generated withTopRex [34]) (σ = 240 pb)

All b-tagged jets should have|η| < 2.5. We considered three cases for theb-tagging efficiency:

• An ideal case, where jets fromb, c and light quarks are identified and distinguished with 100%
efficiency.

• A realistic case, based on a CMS simulation valid for a luminosity of 1034 cm−2s−1 where the
b-tagging efficiency isǫb ≈ 60%, the mistagging probability forc-jets≈ 10%, and the mistagging
probability for light-quark and gluon jets≈ (1 − 2) %.

• A pessimistic case, in which only semileptonic muon decays of the b-quarks can be used. In
particular, we requirepT (µ) ≥ 20 GeV for non-isolated muons carrying at least 60% of the jet
energy, and having apT relative to the jet axis larger than 700 MeV. This algorithm leads to a
b-tagging efficiencyǫb = 6.4%.

t→q γ
We consider(γ + ℓ±+ ≥ 2 jets) final states, with the following cuts:
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Table 11: Fort→qγ decays, the achievable branching ratio (in units of10
−5) at the LHC and SLHC for differentb-tagging

hypotheses (see text).

b-tagging ideal real. µ-tag
600 fb−1 0.48 0.88 3.76

6000 fb−1 0.14 0.26 0.97

Table 12: Fort→qg decays, the achievable branching ratio (in units of10
−5) at the LHC and SLHC for differentb-tagging

hypotheses (see text).

b-tagging ideal real. µ-tag
600 fb−1 22.3 60.8 210.

6000 fb−1 7.04 19.2 66.2

• One isolated photon, withET ≥ 75 GeV and|ηγ | ≤ 2.5.

• One isolated lepton, withpT ≥ 20 GeV and|ηℓ| ≤ 2.5.

• two or more jets withET j ≥ 30 GeV and|ηj| ≤ 4.5. No third jet withET j ≥ 50 GeV. One of
the jets should beb-tagged.

• One pairing of the jets, theγ and the reconstructed semileptonic top such that:

|M(j1 + γ) − mt| ≤ 15 GeV |M(b − jet + W ) − mt| ≤ 25 GeV

The results are given in Table 11.

t→qg

We consider(ℓ±+ ≥ 3 jets) final states, with the following cuts:

• One isolated lepton, withpT ≥ 20 GeV and|ηℓ| ≤ 2.5.

• Njets = 3, with ET j ≥ 50 GeV and|ηj | ≤ 4.5. Only one of the three jets should beb-tagged.

• At least one combination such that|M(b − jet + W )−mt| ≤ 25 GeV and|M(j1 + j2)−mt| ≤
25 GeV.

The results are given in Table 12.

t→qZ

We consider(3 ℓ±+ ≥ 2 jets) final states, with the following cuts:

• Three isolated leptons withpT ≥ 20 GeV and|ηℓ| ≤ 2.5.

• Njets ≥ 2, with ET j ≥ 50 GeV and|ηj | ≤ 4.5. Only one of the jets should beb-tagged.

• At least one combination with|M(b − jet + W )−mt| ≤ 25 GeV and|M(Z+j)−mt| ≤ 25 GeV.

The results are given in Table 13.

With a detector performance comparable to that expected at1034 cm−2s−1, the SLHC should
enhance by a large factor the sensitivity to FCNC top decays.In the case oft→Zq, in particular, the
improvement is almost linear with the luminosity, thanks tothe very low background level. Branching
ratios of order10−6 are achievable, which are of interest for some theories beyond the Standard Model,

Table 13: Fort→qZ decays, the achievable branching ratio (in units of10
−5) at the LHC and SLHC for differentb-tagging

hypotheses (see text).

b-tagging ideal real. µ-tag
600 fb−1 0.46 1.1 83.3

6000 fb−1 0.05 0.11 8.3
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Fig. 13: Expected5σ discovery contours in the mSUGRA planem0 versusm1/2 for A0 = 0, tanβ=10 andµ < 0. The various

curves show the potential of the CMS experiment at the standard LHC (for luminosities of 100 fb−1and 200 fb−1), at the SLHC

(for 1000 fb−1and 2000 fb−1), and (for comparison) at a machine with a centre-of-mass energy of 28 TeV.

as discussed in [32]. Loss of the ability to tagb-quarks with a secondary vertex technique would however
downgrade the sensitivity to such a level that no gain could be obtained from SLHC data compared to
the standard LHC.

4.5 Supersymmetry

If Supersymmetry is connected to the hierarchy problem, it is expected that sparticles will be sufficiently
light that at least some of them will be observed at the LHC. However it is not possible to set a rigorous
bound on the sparticle masses, and it may well be that the heaviest part of the SUSY spectrum (usually
squarks and gluinos) is missed at the standard LHC.

The LHC discovery potential for squarks and gluinos, in several energy and luminosity scenar-
ios, is summarised in Fig. 13. The various contours were derived within the framework of minimal
Supergravity models (mSUGRA), and are shown as a function ofthe universal scalar massm0 and of
the universal gaugino massm1/2. They were obtained by looking for events with many high-pT jets
and large missing transverse energy. This is the most typical and most model-independent signature for
SUSY if R-parity is conserved.

It can be seen that a luminosity upgrade would extend the massreach for squarks and gluinos
from about 2.5 TeV (standard LHC) to about 3 TeV (SLHC). This performance does not require major
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Fig. 14: For Point K, the distributions of the effective mass(left) and of thepT of the hardest jet from a sample of 2 jets +
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detector upgrades because these inclusive searches are based mainly on calorimetric measurements of
high-pT jets and large missing transverse energy. On the other hand,reconstruction of more exclusive
decay chains which may be rate-limited at the LHC, such as some cascade decays of heavy gauginos,
could become possible at the SLHC provided the full detectorfunctionality is preserved. To illustrate
this case, two points (here called K and H) of the mSUGRA parameter space have been studied in some
detail [35]. These points were taken from a recently-proposed set of benchmark points [36], that satisfy
existing bounds including dark matter constraints and results from direct searches at LEP. Three of these
points (F, H, K), where the squark and gluino masses exceed 2 TeV, might benefit from a luminosity
upgrade2, because the expected event rates are small at the LHC and therefore detailed SUSY studies
will not be possible.

Point K has gluino and squark masses slightly above 2 TeV. Squark pair production dominates,
and is followed by the decays̃qL→χ̃±

1 q, χ̃0
2q and q̃R→χ̃0

1q. The signal can inclusively be observed on
top of the background by using for instance the distributionof the effective mass, defined as

Meff = Emiss
T +

∑

jets

ET,jet +
∑

leptons

ET,lepton

where the sum runs over all jets withET > 50 GeV and|η| < 5.0 and isolated leptons withET > 15
GeV and|η| < 2.5. Events were selected with at least two jets withpT > 0.1Meff , Emiss

T > 0.3Meff ,
∆φ(j1, E

mis
T ) < π − 0.2, and∆φ(j1, j2) < 2π/3. The distributions inMeff for signal and background

are shown in Fig. 14. The signal emerges from the background at large values ofMeff . For an integrated
luminosity of 3000 fb−1, a signal of 500 events should be observed on top of a background of 100 events
for Meff > 4000 GeV. These rates are sufficiently large that a discovery could be made already at the
LHC.

Production of̃qRq̃R followed by the decay of each squark toqχ̃0
1 gives a di-jet signal accompanied

by missingET . In order to extract this signature from the Standard Model background, hard cuts on the
jets andEmiss

T are needed. Events were required to have two jets withpT > 700 GeV,Emiss
T > 600 GeV,

and∆φ(j1, j2) < 0.8. The resulting distribution of thepT of the hardest jet is shown in Fig. 14. Only a
few events survive with 3000 fb−1, hence this exclusive channel is not observable at the standard LHC.
The transverse momentum of the hardest jet is sensitive to the q̃R mass [1]. The mass determination will
be limited by the available statistics.

Since the decaỹχ0
2→χ̃0

1h is dominant at Point K, Higgs particles should be found in thedecay
q̃L→χ̃0

2q, followed by χ̃0
2→χ̃0

1h. The Higgs signal should be observed as a peak in thebb invariant
2Point M is beyond the sensitivity even of a SLHC, given that the squark and gluino masses are above 3 TeV.
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of τ̃1 for Point H (dashed: all̃τ1; solid: τ̃1 reaching the ATLAS Muon Spectrometer with a delay∆t > 7 ns).

mass distribution. It is therefore essential thatb−jets can be tagged with good efficiency and excellent
rejection against light-quark jets. There is a large background fromtt̄ production that must be overcome
using topological cuts. Events were selected to have at least three jets withpT > 600, 300, 100 GeV,
Emiss

T > 400 GeV, Meff > 2500 GeV, ∆φ(j1, E
miss
T ) < 0.9, and∆φ(j1, j2) < 0.6. Thebb invariant

mass distribution is shown in Fig. 15 assuming ab-tagging efficiency of 60% and a rejection of∼ 100
against light-quark jets.

Point H is characterised by squark and gluino masses above 2.5 TeV and by almost degenerate
τ̃1 andχ̃0

1 masses. In this particular case,τ̃1 6→χ̃0
1τ , so τ̃1 must decay by second order weak processes,

τ̃1→χ̃0
1eν̄eντ , with a long lifetime. The dominant SUSY rates arise from thestrong production of squark

pairs, with q̃L→χ̃±
1 q, χ̃0

2q and q̃R→ qχ̃0
1. The staus which are produced from cascade decays of the

gauginos traverse the detector with a signal similar to a “heavy muon”. ThepT spectrum of these quasi-
stableτ̃1 is shown in Fig. 15. The ATLAS Muon Spectrometer [1] has a resolution of about 0.7 ns
for the time of flight measurement. The spectrum for staus reaching the muon chambers with a time
delay∆t > 7 ns (10σ) is also shown in Fig. 15. This signal could be observed with∼ 300 fb−1. The
mass of the stable stau can be determined by combining a momentum measurement with a time of flight
measurement in the Muon Spectrometer. Studies of such quasi-stable particles at somewhat smaller
masses carried out with simulations of the ATLAS detector showed a mass resolution of approximately
3% given sufficient statistics [1]. A precision of this ordershould be achieved for Point H with 3000 fb−1.

The stablẽτ1 signature is somewhat exceptional. Therefore other signatures that would be present
if the stau decayed inside the detector were examined. Events were selected by requiring at least two
jets with pT > 0.1Meff , Emiss

T > 0.3Meff , ∆φ(j1, E
miss
T ) < π − 0.2, and∆φ(j1, j2) < 2π/3. The

Meff distributions after these cuts show that the number of events in the region whereS/B > 1 is of
order 30 for 3000 fb−1. Di-leptons arise from the cascade decayq̃L→qχ̃0

2→qℓ+ℓ−χ̃0
1. The di-lepton

invariant mass distributions should have a kinematic end-point corresponding to this decay. Figure 16
shows the distribution for same-flavor and different-flavorlepton pairs. Events were required to have
Meff > 3000 GeV, Emiss

T > 0.2Meff , and two isolated opposite-sign leptons withET > 15 GeV and
|η| < 2.5. The end-point structure may be observable, although it should be noted that the background
has large errors as only three generated events passed the cuts. The edge comes mainly from̃χ0

2→ℓ̃±Lℓ∓,
which has a branching ratio of 15% per flavor. This gives an end-point at
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Fig. 16: For Point H, theMℓℓ distribution for all events (left) and events containing a stable stau (right). Solid: same-flavour

lepton pairs. Dashed: different-flavour lepton pairs. Shaded: SM background.

Table 14:Z′ production cross-section at the LHC times branching ratio into electron pairs andZ′ width, as a function of mass.

Z ′ mass (TeV) 1 2 3 4 5 6
σ(Z ′ → e+e−)(fb) 512 23.9 2.5 0.38 0.08 0.026

ΓZ′ (GeV) 30.6 62.4 94.2 126.1 158.0 190.0

consistent with the observed end-point in Fig. 16. Obviously this distribution does not distinguish̃ℓL and
ℓ̃R.

If the stable stau signature is used, then the situation improves considerably. The di-lepton mass for
events containing ãτ1 with a time delay in the ATLAS Muon Spectrometer in the range7 < ∆t < 21.5 ns
is shown in Fig. 16. Since∆t > 10 σ, the Standard Model background is expected to be negligible. A
measurement of the end-point should be possible at the SLHC.

4.6 New gauge bosons

The potential of the SLHC for the discovery of additional heavy gauge bosons has been studied by
considering aZ ′ with Z-like couplings to leptons and quarks. TheZ ′ production cross-section times
branching ratio into electron pairsσ(Z ′ → e+e−) and theZ ′ width are shown in Table 14 as a function
of mass.

The study is based on the CMS detector performance and the result is then extrapolated to the case
of two experiments. The analysis takes into account acceptance, reconstruction efficiency and resolution
for muons and electrons. The expected pile-up noise at1035 cm−2s−1 is also included, as well as
saturation effects in the CMS crystal calorimeter.

TheZ ′ mass is reconstructed conservatively without correcting for internal photon radiation. This
leads to some tails in the mass spectra. The expected number of signal and background events is cal-
culated from the gaussian part of these spectra. The background is found to be small, i.e.≃ 2% from
Drell-Yan production and less than 1% fromtt̄. The expected number of signal events for two experi-
ments is shown in Fig. 17. Assuming that a discovery can be claimed if the number of observed events is
at least ten, the LHC discovery reach improves from∼ 5.3 TeV (standard LHC, 600 fb−1) to ∼ 6.5 TeV
(SLHC, 6000 fb−1). For comparison, a machine with

√
s= 28 TeV running at1034 cm−2s−1 would

extend the mass reach of the standard LHC by 50% [4].

It should also be noted that discovery will be mainly based onthe electron final state, which
provides the best mass resolution, whereas measurements ofcouplings and asymmetries will use both
lepton channels.
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Fig. 17: Expected number ofZ′→µ+µ−, e+e− events in both experiments for integrated luminosities of 300 fb−1 per experi-

ment and 3000 fb−1 per experiment.

4.7 Extra-dimensions

Theories with large extra-dimensions, which aim at solvingthe hierarchy problem by allowing the gravity
scale to be close to the electroweak scale, have recently raised a lot of interest. They predict new phe-
nomena in the TeV energy range, which can therefore be testedat present and future colliders. Several
models and signatures have been considered in the study presented here. They are discussed below.

4.7.1 Direct graviton production in ADD models

In these models [37], the extra-dimensions are compactifiedto the sub-millimiter size and only gravity
is allowed to propagate in them, whereas the SM fields are confined to a 4-dimensional world. Gravitons
in the extra-dimensions occupy energy/mass levels which are separated by very small splittings, and
therefore give rise to a continuous tower of massive particles (‘Kaluza-Klein (KK) excitations’). The
presence of additional dimensions can therefore produce new phenomena involving gravitons, such as
direct graviton production at high energy colliders.
The most sensitive channel at the LHC should be the associated production of KK gravitons with a quark
or a gluon. The resulting signature is an energetic jet plus missing transverse energy, since the gravitons
escape detection. The cross-section depends on two parameters, the gravity scaleMD and the number
of extra-dimensionsδ, and decreases with increasing values of bothMD and δ. The background is
dominated by the final stateZ(→νν) + jets.

The discovery potentials of the LHC and SLHC are compared in Fig. 18. It can be seen that
a factor of ten in luminosity would improve the LHC mass reachby typically 30%. Major detector
upgrades are not crucial for this physics, since the search is based on events with jets and missing energy
in the TeV range. For comparison, doubling the LHC energy butkeeping the instantaneous luminosity
of 1034 cm−2s−1 would approximately double the reach inMD for any value ofδ [4].
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Fig. 18: Expected5σ discovery reach on the gravity scaleMD as a function of the number of extra-dimensionsδ in ATLAS in

the framework of ADD models, for 100 fb−1 (LHC) and 1000 fb−1 (SLHC).

4.7.2 Virtual graviton exchange in ADD models

Virtual KK gravitons can also be exchanged between incomingand outgoing SM particles in high-energy
collisions, thereby leading to modifications of the cross-section and angular distributions compared to
the SM expectations. Since graviton effects are enhanced athigh energy, due to the large number of
accessible Kaluza-Klein excitations, such manifestations of Extra-dimensions are expected at large in-
variant mass andpT of the particles in the final state. Drell-Yan and two-photonproduction are among
the most sensitive channels at high-energy colliders. Using these channels, it was found that the reach
in the gravity scaleMD for δ = 3 increases from∼8 TeV (100 fb−1, standard LHC) to 11.7 TeV (3000
fb−1, SLHC).

4.7.3 Resonance production in Randall-Sundrum models

In the Extra-dimension scenario proposed by Randall and Sundrum [38] the hierarchy between the Planck
and the electroweak scales is generated by an exponential function called “warp factor”. This model
predicts KK graviton resonances with both weak scale massesand couplings to matter. In its simplest
form, with only one extra-dimension, two distinct branes (the TeV brane and the Planck brane), and with
all of the SM fields living on the TeV brane, the Randall-Sundrum model has only two fundamental
parameters: the mass of the first KK statem1 and the parameterc = k/MPL, wherek is related to the
curvature of the 5-dimensional space andMPL is the effective Planck scale. The parameterc governs
the width of the resonances, and is expected to be not far fromunity.

Direct production of Randall-Sundrum resonances (pp→ G) can lead to spectacular signals, for
instance in the clean di-lepton decay mode (G→ ℓℓ). They should be observable already in the first years
of LHC running if m1 is in the range 1-3 TeV. In addition, their properties (e.g. their spin-2 nature)
can be measured and should distinguish them from e.g.Z ′ production [39]. Figure 19 summarises
95% C.L. exclusion limits in the planem1 versusc-parameter. It shows the present constraints from
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Fig. 19: 95% C.L. exclusion limits in the planem1 versusc (see text) for Randall-Sundrum graviton resonances decaying into

electron or muon pairs. The triangular region labelled as ‘allowed’ represents the theoretically favoured domain. HereM5 is the

5-dim Planck scale,R5 is the 5-dim curvature invariant andΛπ is the inverse coupling strength of the KK gravitons. The bound

|R5| < M2
5 is applied so that quantum gravity loop effects are small andwe can treat the RS model classically. The dashed

line and the full line show the LHC potential for integrated luminosities of 10 fb−1 and 100 fb−1 respectively, the dotted line

shows the potential of the SLHC with 1000 fb−1. The exclusion domains lie to the left of the lines. The present Tevatron limit

is also indicated, as well as the region excluded by precision measurements of the electroweak oblique parametersS, T, U at

LEP.

LEP and Tevatron, as well as the potentials of the LHC and SLHC. The region labelled as “allowed” is
theoretically favoured [40], although the rest of the planeis not strictly forbidden. It can be seen that the
SLHC should extend the LHC reach by almost 1 TeV.

4.7.4 Resonance production in TeV−1 scale Extra-dimensions

In these models [41] only the fermion fields are confined to a 4-dimensional brane, whereas the SM
gauge fields are allowed to propagate in a number of additional small extra-dimensions (compactification
radius∼ 1 TeV−1), orthogonal to the brane. The most important phenomenological consequence is the
predicted existence of KK excitations of the SM gauge bosons, γ, Z,W andg. For simplicity, only the
case of one extra-dimension is considered here. The model iscompletely specified by a single parameter
Mc, the compactification scale, from which the massesMn of the KK excitations of the gauge bosons
can be derived using the relationM2

n = (nMc)
2 + M2

0 , whereM0 is the mass of the SM gauge boson.
The couplings are the same as the corresponding SM couplings, scaled by a factor

√
2. Constraints from

precision electroweak measurements give an approximate lower limit Mc > 4 TeV [42].

The possibility of detecting the leptonic decays of theKK excitations of theγ andZ bosons at the
LHC and SLHC has been studied. The production of the gauge boson excitations, including interference
terms and angular information, was performed using the fullBreit-Wigner shape for the first two excited
states [43], and a resummed expression for the higher states. The matrix elements were interfaced to
PYTHIA, and the produced events were passed through a fast simulation of the ATLAS detector [7].

The main experimental issue in the study of these models is the measurement of leptons with very
high transverse momenta. As an example, the ATLAS detector has been designed to measure leptons with
pT up to∼2-3 TeV. For electrons the main issue is the saturation of thedynamic range of the calorimeter
electronics, which can be possibly compensated by a modification in the gain of the readout electronics.
For muons, the momentum is obtained from the track curvaturein the external Muon Spectrometer, and
this measurement is very poor for transverse momenta above 4TeV.
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Fig. 20: Invariant mass distribution ofe+e− pairs as expected from the Standard Model (full line) and from a gauge excitation

model withMc = 5 TeV (dashed line). The histograms are normalised to 3000 fb−1.

Events were selected by requiring two opposite-sign isolated leptons (ℓ = e, µ) with pT > 20 GeV,
inside the rapidity range|η| < 2.5 and with invariant massm(ℓ+ℓ−) > 1000 GeV. In the absence of
New Physics, approximately 18000 events survive these cutsfor each lepton flavour and for an integrated
luminosity of 3000 fb−1. Figure 20 shows the expected two-lepton invariant mass spectrum for an Extra-
dimension signal withMc = 5 TeV on top of the SM background. One can notice two structures. A
peak centered aroundMc, corresponding to the superposition of the firstγ and Z resonances, and a
suppression of the cross-section with respect to the SM expectation for masses below the resonance.
This suppression is due to the negative interference between the SM gauge bosons and the whole tower
of KK excitations, and is sizeable even for compactificationscales well above those accessible form a
direct detection of the mass peak.

The reach for the observation of a resonant peak in theℓ+ℓ− invariant mass distribution can be
obtained from Table 15, which gives the expected numbers of signal and background events in the elec-
tron and muon channels separately, for an integrated luminosity of 3000 fb−1 and for different values of
Mc. Using as a discovery criterion that at least ten events (summed over both lepton species and both
experiments) be detected with two-lepton invariant mass above a given value, and that the signal statisti-
cal significance beS/

√
B > 5, the reach should be∼6 TeV for 300 fb−1 per experiment and∼7.7 TeV

for 3000 fb−1 per experiment (both experiments combined). It should be noticed that to achieve this
result a good knowledge of the rate of background events at high masses, which could be affected by
mismeasurements of the lepton momenta, is crucial. ForMc = 4 TeV a few events from the second
resonance at 8 TeV could be observed, thereby hinting at the periodic structure of the mass spectrum
of the resonances. For higher compactification scales, onlythe first KK excitation will most likely be
accessible.

Sensitivity to a signal can also be obtained from the observation of off-resonance (negative) inter-
ference effects in the Drell-Yan mass spectrum (see Fig. 20). A detailed estimation requires a likelihood
fit to the shape of the distribution. A simpler method was usedto obtain the results reported here, which
consists of evaluating the decrease in the number of events (compared to the SM expectation) inside
a givenm(ℓ+ℓ−) range, as a function ofMc. The statistical significance of the cross-section suppres-
sion is approximately given by(N(tot) − N(SM))/

√

N(SM), whereN(tot) is the total number of
observed events andN(SM) the expected number of events from the Standard Model. Thereare how-
ever uncertainties in the knowledge of the shape of the two-lepton invariant mass distribution, due to
both instrumental effects (absolute energy scale, linearity), and theoretical effects (structure functions,
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Table 15: For an integrated luminosity of 3000 fb−1 and one experiment, expected number of signal events in the peak region

for different values of the mass of the lowest KK excitationMc, and expected number of SM background events. The peak

region is defined by a cut on the minimumℓ+ℓ− invariant mass given in the second column. The results for electrons and

muons are shown separately.

Mc(GeV) Cut (GeV) Signal (e) Signal (µ) Background (e) Background (µ)
4000 3000 5160 4680 44 54
5000 4000 690 600 4.5 6.6
5500 4000 270 240 4.5 6.6
6000 4500 99 84 1.5 3
7000 5000 13.5 11.4 0.45 0.5
8000 6000 1.3 1.6 0.045 0.36

higher order corrections). A precise estimation of these uncertainties requires a dedicated study, which
is beyond the scope of this paper. Therefore here we have simply assumed that a signal can only be
claimed ifR ≡ |N(tot)/N(SM) − 1| > 5% or R > 10%. For an integrated luminosity of 3000 fb−1

per experiment, combining both experiments and both leptonflavours, and looking at the mass range
1500 < m(ℓ+ℓ−) < 3500 GeV, the reach should beMc = 14 TeV (10σ statistical significance)
requiring R > 10% andMc = 20 TeV (5σ statistical significance) requiringR > 5%. As a com-
parison, in one year at the nominal LHC luminostiy, i.e. with100 fb−1, and considering the interval
1000 < m(ℓ+ℓ−) < 3500 GeV, the 5σ reach should be∼10 TeV, corresponding to a 14% deviation
from the Standard Model cross-section.

In conclusion, with an integrated luminosity of 3000 fb−1 per experiment, the LHC experiments
should be able to detect directly KK excitations of theγ andZ gauge bosons in their leptonic decay
modes for compactification scales of up to 7.7 TeV. By studying the deviation from the Standard Model
expectation of the non-resonant part of the two-lepton invariant mass distribution, this reach can be ex-
tended to higher compactification scales. The sensitivity in this case is limited by the assumed uncertainty
on the knowledge of the SM Drell-Yan spectrum at high mass, and is of order 15-20 TeV for a systematic
uncertainty of 5–10%.

4.8 Quark substructure

A tenfold increase in the LHC luminosity should give access to jets of up toET ∼ 4.5 TeV (see Fig. 21),
thereby extending the machine kinematic reach for QCD studies by more than 0.5-1 TeV. This improved
sensitivity should have an impact also on the search for quark sub-structures. Indeed, signals for quark
compositeness should reveal themselves in deviations of the high energy part of the jet cross-section
from the QCD expectation. The angular distribution of di-jet pairs of large invariant mass provides
an independent signature and is less sensitive to systematic effects like possible non-linearities in the
calorimeter response. This method was therefore used in this study.

Figure 22 shows the expected deviations from the SM prediction for two values of the composite-
ness scaleΛ, as a function of the variableχ defined asχ = (1 + | cos θ|)/(1 − | cos θ|). Hereθ is the
angle between a jet and the beam in the centre-of-mass frame of the di-jet system. The invariant mass
of the di-jet system was required to be larger than 6 TeV. The effect of compositeness shows up as an
increase in the event rate at small values ofχ. The compositeness scales that can be probed in this way
at the LHC and SLHC are summarised in Table 16. For comparison, the potential of a 28 TeV machine
is also shown. It can be seen that a tenfold luminosity increase would have a significant impact for this
physics.

As these measurements involve only the calorimeters and jets in the TeV range, they can be per-
formed at the SLHC without major detector upgrades. Abilityto extend the heavy-flavour tagging to the
very highET region could however help disentangling the flavour composition of a possible cross-section
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Fig. 21: Integrated production cross-section and rates forinclusive central (|η| < 2.5) jets. The different curves label the

various contributions to the total the cross-section.

Fig. 22: Expected deviations from the Standard Model predictions for the angular distribution of di-jet pairs at the SLHC

(ATLAS experiment, integrated luminosity of 3000 fb−1), for two values of the compositeness scaleΛ. Di-jet pairs are required

to have invariant mass greater than 6 TeV.

Table 16: The 95% C.L. lower limits that can be obtained in ATLAS on the compositeness scaleΛ by using di-jet angular

distributions and for various energy/luminosity scenarios.

Scenario 14 TeV 300 fb−1 14 TeV 3000 fb−1 28 TeV 300 fb−1 28 TeV 3000 fb−1

Λ(TeV) 40 60 60 85
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excess. We evaluated that only a fraction smaller than 1% of the jets withET > 2 TeV should contain
bottom or charm quarks, therefore any indication of a long lifetime component in these jets beyond this
level would signal New Physics.

5 THE EXPERIMENTAL CHALLENGES AND THE DETECTOR R&D

The main motivation for a luminosity upgrade is to extend thephysics reach of the experiments by
providing more statistics. For a full exploitation of this upgrade it is imperative that the general detector
performance remains at the same level as at the nominal LHC. In order to face the challenge of operation
at an order of magnitude higher luminosity than foreseen in the original LHC design3, we have therefore
deliberately chosen to pose first the question of whether thecurrently planned detectors could survive
and operate at luminosities of1035 cm−2s−1. If they cannot then the question is posed of possible
replacements of detectors or technologies.

Development of new particle detectors takes a long time and goes through many phases starting
from the idea or concept, progressing through intensive R&D, prototyping, systems integration, instal-
lation and commissioning and finally data taking. This can beillustrated using any one of the many
detector technologies in the LHC experiments. Typical time-scales stretch over more than a decade. In
order to create a R&D roadmap we therefore assume that the upgraded detectors should be installed and
commissioned by around 2012/2013, and try to answer the following questions:

• What R&D is necessary?

• What priority should be assigned to the R&D?

• When should the R&D start, taking account of the manufacturing phase?

• What resources would be required (financial and manpower)?

• How would the R&D interface with that carried out elsewhere?

In this Section, we shall address the above points for each sub-detector in turn, as well as for the trigger,
data acquisition and electronics. While, as discussed in Section 2, several options can be envisaged for
the bunch structure at high luminosiry, we limited our studies to the case of 12.5 ns bunch spacing.

5.1 Inner Tracking Detector

The performance of the tracker is characterised by momentumresolution, track reconstruction efficiency
and b-tagging efficiency and purity. In order to keep the occupancy and two-track resolution at the
standard LHC levels, the cell sizes have to be decreased in order to compensate for the increased track
density at SLHC. Cell sizes have to be decreased by a factor 10, though simulations will be needed to
optimise the granularities required at a given radius. The total cost should not much exceed that of the
currently planned trackers, implying that the cost per channel has to be decreased by a factor of 10. Cost
reduction should therefore be a driving feature of any planned R&D.

In what follows we assume that the tracker will be equipped with electronics that is fast enough to
distinguish individual crossings. Otherwise, at1035 cm−2s−1, the detectors will have to deal with about
200 collisions per 25 ns, producing about 1200 charged tracks per unit of pseudo-rapidity.

The limiting factor for the lifetime of the detectors will beradiation damage, which for cooled
silicon detectors is mainly a function of the integrated luminosity. For the latter we assume 2500fb−1,
which is 5 times more than the assumption used e.g. in the CMS Technical Design Report for the design
luminosity of LHC. The integrated fluence and dose for the CMSTracker are given in Table 17. Because
the radiation environment is dominated by the pp secondaries, these values are of rather generic nature
and not strongly CMS specific.

3For further reference the neutron flux at10
35

cm
−2

s
−1 and the dose for an integrated luminosity of 2500 fb−1 are shown

in Fig. 23.
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Fig. 23: Upper: the neutron flux (cm
−2

s
−1) at an instantaneous luminosity of10

35
cm

−2
s
−1. Lower: dose (Gy) for an

integrated luminosity of 2500 fb−1

Table 17: Hadron fluence and radiation dose in different radial layers of the CMS Tracker (barrel part) for an integrated

luminosity of 2500 fb−1.

Radius (cm) Fluence of fast Dose (kGy) Charged Particle
hadrons (1014cm−2) Flux (cm−2s−1)

4 160 4200 5× 108

11 23 940 108

22 8 350 3× 107

75 1.5 35 3.5× 106

115 1 9.3 1.5× 106
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The currently planned silicon systems (designed for integrated luminosities of approximately
500pb−1) would probably be nearing the end of their lifetime at the start of a potential SLHC pro-
gramme. They would not be able to handle the fluences at SLHC. The silicon sensors, both strip and
pixel systems, would suffer substantial radiation damage,increased noise and thermal runaway as a con-
sequence of the increased leakage currents. Since the current sensor design would not support the bias
voltage required for full depletion, the sensors would operate under-depleted, decreasing the signal and
increasing the noise, and hence degrading the performance.

For the electronics the situation is somewhat more favourable. The indications are that deep sub
micron (DSM) electronics can probably withstand higher doses, but is not fully characterised at the
doses and fluences under discussion. Mitigation of single event effects will also have to be carefully
investigated. At low radius it is unlikely that the current DSM chips could survive. We also expect the
opto-electronic components to be affected, and most of the materials, glues, and cooling fluids are not
tested to the doses discussed above.

The innermost strip layers (at a radius of around 25cm) will have occupancies above 10 %. The
TRT in ATLAS will face occupancy approaching 100 % and cannotbe used. So even if the detectors
could tolerate the radiation damage, they will not be suitable for the SLHC.

We conclude that the only viable solution is to completely rebuild the Inner Detector systems
of ATLAS and CMS.

Simple extrapolations based on the available experimentaldata show that current detector tech-
nologies, with some new developments, could work at a factor3 larger radius, i.e. strips at R> 60 cm,
pixels at R> 20 cm. This can also be seen from Table 17, where the fluences atthese radii correspond
to the currently foreseen fluences for strip and pixel detectors at the LHC. As a result of these rather
straightforward considerations the tracker volume can be split into three radial regions:

• R > 60 cm: where detectors can be built by further pushing existing silicon strip technology.

• 20< R < 60 cm: where further developed hybrid pixel technology can work

• R < 20 cm: where most likely new approaches and concepts are required.

The R&D programs should be focussed towards upgrades of ATLAS and CMS.For both experi-
ments it is important to establish common guidelines and requirements for the relevant studies from the
beginning. This implies good overall co-ordination of the R&D and good contact between the various
R&D groups. There are in particular two areas where common understanding and ground rules must be
established with dedicated studies:

• Common software and physics studies: pattern recognition,fluences, activation, occupancy, cell
size optimisation, segmentation (e.g. macro pixels, mini strips), radius of the innermost layer
(driven by b-jets), material effects on the key physics channels to be studied at SLHC.

• Tracker system studies: understand the timing, synchronisation, readout/trigger rates and limita-
tions, engineering issues (see Section 5.5).

This focus is necessary to make appropriate choices and set priorities relatively early in the R&D phase.
In the following Sections we discuss these three regions andpropose and motivate various R&D programs
for suitable tracking detectors.

5.1.1 Tracking at a radius greater than 60 cm.

Silicon micro-strip detectors can be used to instrument theouter tracker (60< R < 110 cm) in a layout
similar to that chosen by CMS.

Six layers of silicon micro-strip detectors with read-out pitch ranging between 80 and 160µm
would be good enough to cope both with the occupancy expectedfor operation at1035 cm−2s−1 and
have a point resolution needed for good transverse momentumresolution. By extrapolating estimates of
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occupancy in the CMS Si tracker at nominal LHC the global occupancy is expected to vary from less
than 1 % in the outer layers to a maximum of a few %. In this region a 50 % increase in number of
channels would probably be needed compared to the current CMS strip tracker.

The fluence of fast hadrons in this region for an integrated luminosity of 2500fb−1 is estimated
to be between 1 and3 × 1014cm−2. Extensive studies have been done in preparation of the current
generation of LHC inner trackers to validate the use of silicon detectors up to integrated fluences of1.5×
1014cm−2 [44, 45]. In particular it has been demonstrated that the current high breakdown technology
(Vbreak > 500 V) guarantees safe operation of these devices for the entireLHC lifetime.

For SLHC many of the characteristics of what are considered to be standard “radiation resistant”
silicon micro-strip detectors will be maintained: p+n technology, integrated AC coupling, poly-silicon
bias circuit,〈100〉 crystal orientation, standard 0.20-0.25 w/p ratio and metal overhang on the strips. A
careful study will be needed on the charge collection efficiency in heavily irradiated devices read-out
by very fast shaping time electronics. A focused R&D programwill be needed to optimise the Si-strip
detector characteristics, performance and cost.

A factor of 2 higher fluence in SLHC would require further improvement in breakdown voltage
in industrially produced devices though use of lower resistivity silicon and thinner devices could lower
the bias voltage at full depletion. The choice of wafer resistivity and thickness will have an impact on
system aspects (detector module layout and strip length, read-out granularity, noise performance of the
front-end electronics, cooling needs etc) and on the total cost (number of channels, number of detectors,
technology and cost of processing).

The microelectronics industry is rapidly migrating to 8” (and then to 12”) processing lines. It is
likely that the currently used 6” lines will not be availablein 6-8 years from now. As a consequence a
part of the R&D program should be devoted to the exploration of the feasibility of processing of detector
grade Si wafers with a larger diameter, and to transfer the existing detector processing technology to the
new lines.

5.1.2 Tracking between a radius of 20 cm and 60 cm.

Today’s pixel technology is expected to work at radii above 20 cm. Questions related to the infrastructure,
services, power and cost are likely to be decisive in determining the minimum radius at which the pixels
can be deployed at the SLHC.

It is possible to marry the current pixel architecture (bothsensor and electronics) for cell-sizes that
are ten times bigger than the current pixels but ten times smaller than the size of the current microstrips in
this region. Hence a critical goal of the necessary R&D wouldbe to achieve a cost/pixel that is between
10 and 100 times smaller than the current cost/microstrip. Such devices can be labelled ’macro-pixel’
devices. Many issues such as routing will need to be addressed. Such devices could already figure in the
upgrades of innermost silicon strip detectors of current LHC trackers.

Defect engineered silicon (section 5.1.4.a) is already used in the current LHC trackers, in particular
to reduce damage due to charged hadron irradiation at low radius. Defect engineered silicon has the
potential of reducing the radius at which current technologies can be used at SLHC.

5.1.3 Tracking at a radius smaller than 20 cm.

At the LHC design luminosity the innermost pixel detectors are expected to be placed at a radius of 7 cm
from the beamline. The occupancy at 7 cm is estimated to be≃ 3× 10−4. At SLHC, in order to preserve
the occupancy at a tolerable level at such radii, the pixels area should be decreased by at least a factor of
5. The b-tagging performance should then not be degraded.

At SLHC, and at a radius of≃ 7 cm, the dose and fluence of hadrons is expected to be 100 kGy and
5× 1015 hadron/cm2 respectively. Hence this is an extremely harsh region. Short of changing the hybrid
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pixel detectors annually, or perhaps even more frequently,there are currently few solid and demonstrated
possibilities. Hence fundamental research rather than only development is needed. New concepts, ge-
ometries and materials are probably needed to attain the required speed and radiation hardness.

The pixel systems in the current trackers will possibly be changed during the LHC period and
some of the R&D mentioned above will also be very relevant forthese upgrades.

5.1.4 Subjects for R&D

a) Use of defect-engineered silicon
The term “defect-engineering” stands for the deliberate incorporation of impurities or defects into the
silicon bulk material before or during the processing of thedetector. The aim is to suppress the formation
of microscopic defects that have a detrimental effect on themacroscopic detector parameters during or
after irradiation. In this sense defect engineering tries to cope with the problem of radiation damage at
its root.

One example of a defect-engineered material is the “Diffusion Oxygenated Float Zone” (DOFZ)
silicon developed by the ROSE (CERN RD48) collaboration [46]. It was shown that this oxygen-enriched
material exhibits an improved radiation tolerance with respect to charged hadron irradiation. The in-
crease of depletion voltage after type inversion is reducedby a factor of three and the so-called “reverse
annealing” saturates at fluences above about2×1014cm−2 (24 GeV/c protons). Furthermore, the reverse
annealing is slowed down allowing for longer warm up (maintenance) periods. These properties and the
relatively simple and cheap implementation into detector processing make DOFZ an ideal material for
the detectors located closest to the interaction points. After thorough testing the ATLAS collaboration is
now using it for the pixel layers. It is anticipated that the CMS pixel collaboration will follow the same
path.

It is expected that further optimisation studies of the oxygenation process will lead to better results
with respect to radiation tolerance. Furthermore it is worth exploring other promising possibilities for
defect-engineering [47].

b) 3D detectors and new biasing schemes
The main characteristic of ’3D’ detector concept is to placethe electrodes (p,n) throughout the bulk in
the form of narrow columns instead of being deposited parallel to the detector surface. In a conventional
silicon sensor the depletion and charge collection across the full wafer thickness (usually 300µm) re-
quires high voltages and becomes incomplete after intense irradiation. The main advantage of the 3D
approach is the short distance between the collecting electrodes. This allows very low depletion bias
voltage (≃ 10V) as well as very fast collection times and low noise. The principle has been successfully
proven on small prototypes operated after irradiation withprotons up to2 × 1015n1MeV eq/cm

2 [48].
Other approaches are also under study [49].

The 3D concept is a very new approach. Considering that above1015 particle/cm2 only electrons
contribute to the generated signal, due to the rapid trapping of the holes and the reduced effective drift
length of the electrons, ’3D’ concepts potentially are probably ’rad-hard’ up to fluences of5 − 10 ×
1015 particles/cm2 if collection is performed at the n+-electrode. Moreover, if ’3D’ concept would
be combined with defect engineered material and operated inforward bias at cryogenic temperatures,
radiation tolerance might be achieved for even higher particle fluences. Size and uniformity of the sensors
are important issues to be addressed together with optimisation of the manufacturing techniques.

c) New sensor materials
CVD diamond is almost an ideal material for radiation hard charged particle detectors. Its outstanding
radiation tolerance, fast charge collection, low dielectric constant, and low leakage current make it a
good candidate for high luminosity colliders.

The RD42 collaboration has demonstrated that small area strip and pixel detectors based on di-
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amonds can be fabricated; they can collect signals corresponding to about 8,000 e− and work up to a
proton fluence of5 × 1015 p/cm2 [50].

A complete qualification of the technology would require a strong partnership with the producers
of the raw material to increase the collected charge and to perform basic research on defects and impuri-
ties, both before and after irradiation. In terms of processing techniques an optimization of the electrical
contacts is needed. Further studies would be needed on the characterization of complete detector mod-
ules.

d) Cryogenic Silicon Tracker development
The main motivations for silicon detectors operated at 130 Kare:

• a factor of 10 increase in radiation hardness due to the ’Lazarus’ effect [51];

• a factor 5 higher mobility for both carriers which leads to very fast sensors;

• negligible bulk and surface current generation rate at highvoltage, even after substantial radiation
damage.

In addition the factor 3 increase in the thermal conductivity of silicon between 130 K and 300 K would
facilitate significantly the engineering design of the detector modules as far as evacuation of heat is
concerned.

Results of the RD39 collaboration show that prototype modules can be fabricated with simplified
techniques and successfully operated at very high SPS lead ion fluences of(5 ± 2) × 1014 ions/cm2

yielding almost 100 Grad energy deposit [52]. It was also shown that the development of fast low-noise
cryogenic read-out electronics is feasible, and that the basic engineering issues of operating complex
systems of low temperature detectors can probably be addressed.

The basic advantage of this approach is that, once proven to be feasible and reliable on the large
scale required for the SLHC trackers, it could be used for allthe three radial regions. The need for further
replacement will then be mainly motivated by the limits of radiation resistance of the DSM electronics.

From the point of view of the engineering design, it would be attractive to close the ends of the
cavity that would house the entire tracker in cryogenic vacuum. Microtubes integrated in the module
design would evacuate the heat produced locally by the electronics. The clean vacuum would help in
avoiding contamination of the detector components, and a very thin-walled beam pipe would then be
feasible.

While the cryogenic micro-strip sensors and modules are already being developed with promising
initial results, there is much work still to be done in optimisation and testing of the pixel devices and
DSM front-end electronics for low-temperature operation.At present the current-injected or forward-
biased cryogenic sensors can be operated up to the fluence of2 × 1015cm−2 in the strip segmentation,
and perhaps 5 times higher in the pixel devices. These results were obtained, however, using simpli-
fied devices; it is clear that further R&D is required for large area detectors to be produced with high
yield and then assembled in an automated manner. The device structures and current injection schemes
should be further studied and optimised. Low-temperature studies of the bulk silicon under high damage
should also be pursued, with view on possible optimisation of the defect neutralization and charge carrier
trapping.

The engineering studies of the cryogenic tracker would alsobe a critical issue for the R&D.

e) Monolithic Pixel Detectors
In a monolithic pixel detector a two-dimensional array of detecting diodes and the associated miniatur-
ized readout electronics are integrated on the same siliconsubstrate. Compared to the hybrid approach,
in which the arrays of sensing elements and readout cells aremanufactured on different wafers, which
are then bump-bonded together, the monolithic approach presents clear advantages in terms of detector
assembling and handling.

Another important advantage of the monolithic technology is the reduction of the amount of matter
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Table 18: The neutron fluence and radiation dose at shower maximum at different pseudorapidities for an integrated luminosity

of 2500 fb−1.

Pseudorapidity ECAL Dose HCAL Dose ECAL Dose Rate
η (kGy) (kGy) (Gy/h)

0 - 1.5 15 1 2.5
2.0 100 20 14
2.9 1000 200 140
3.5 - 500 -
5 - 5000 -

to be traversed by the particles. Moreover, the very small capacitance (down to few fF) presented by the
detecting element at the input of the close-by front-end transistor result in reduced noise.

Monolithic pixel detectors will only be attractive if standard technologies can be used to keep
costs affordable. A key issue is to understand whether fast switching front-end electronics needed for
the SLHC can be integrated on the same piece of silicon with the detecting element. Recent tests of
such sensors are promising though it is not clear whether therequired level of radiation hardness will be
achievable.

5.1.5 Engineering aspects

For the support structures a highly modular approach based on carbon fibre composite elements seems to
be appropriate to cope with the increased radiation levels of SLHC. Moreover a large part of the existing
outer supporting structures could probably be copied.

An increased number of channels and higher radiation levelswould increase cooling needs. Since
the requirements will be driven by the inner parts of the tracker, and a unique operating temperature for
the entire tracking volume is advisable, the most likely operating scenario foresees an overall temperature
T ≃ − 15/ − 200 C. We presume that the currently foreseen cooling techniques could be used.

The power requirements for the front-end electronics should be defined early to enable implemen-
tation of radiation-hard local voltage regulators. Their use is mandatory in order to reduce the mass of
power cables which otherwise would be one of the dominant contributors to the material budget.

Extensive use of high density interconnections, low mass hybrids and flexible circuitry will be
necessary to reduce the amount of material for the read-out and ancillary electronics.

It will be important to maintain some level of accessibilityfor maintenance of critical detector
components.

5.1.6 Electronics

See Section 5.5

5.2 Calorimetry

The chosen calorimeter technologies of ATLAS and CMS [53, 54, 55, 56] are designed to withstand an
integrated luminosity in excess of500 pb−1. ATLAS has chosen liquid argon sampling calorimetry for
the electromagnetic, the endcap hadronic and the forward calorimeters. The barrel hadronic calorimeter
comprises iron/plastic scintillator sandwich with wavelength shifting fibres. CMS is using scintillating
crystals for the electromagnetic, and brass/plastic scintillator sandwich with wavelength shifting fibres
for the hadronic calorimeter. The forward calorimeter usesquartz fibres embedded in grooves in iron
plates. The neutron fluence and radiation dose at shower maximum and at different pseudorapidities for
an integrated dose of 2500 fb−1 are given in Table 18.
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Table 19: Comparison of the critical density with the energydensity for ATLAS liquid argon calorimeters

Critical density ATLAS 1034 ATLAS 1035

Barrel EM,η=0 5 × 106 0.5 × 105 5 × 105

Barrel EM,η=1.3 4 × 106 1.2 × 105 1.2 × 106

End-cap EMη=1.4 3 × 106 1.3 × 105 1.3 × 106

End-cap EMη=3.2 5 × 106 2.5 × 106 25 × 106

FCAL η=3.2 1500 × 106 2.5 × 106 25 × 106

FCAL η=4.5 130 × 106 1300 × 106

Below we consider the possible limitations of these techniques and calorimeters for a 10-fold
increase in instantaneous luminosity, and a 5-fold increase in integrated luminosity.

5.2.1 Liquid Argon Calorimeter

The ATLAS Calorimeter was optimised for the nominal LHC luminosity of1034 cm−2s−1 and a centre
of mass energy of 14 TeV. A factor of 10 increase in this luminosity would raise concerns that are
considered below.

a) Space charge effects.
During steady operation of the calorimeter, an equilibriumis reached between ion creation by the passage
of charged particles and ion collection by the electric fieldin the gaps. When the positive ion space
density integrated over the gap becomes comparable to the charge density on the electrodes due to the HV
polarisation, the field is distorted, and a distortion of theresponse may occur. Fortunately, no practical
change in the response occurs until a region near the anode with zero field appears. The onset of such a
regime goes likeV 2/d4µ, where V is the operating voltage, d the gap andµ the Ar+ mobility. This last
quantity is not very well measured experimentally, and so far we have had more confidence in checking
directly the onset of some saturation. Measurements in testbeam using prototypes of the ATLAS EM
calorimeter [53] show that losses at the level of 1 % occur foran energy flux of about5 × 106 GeV
cm−2s−1.

Table 19 compares the “critical density” with the energy density in various parts of ATLAS liquid
Argon calorimeter for two values of the luminosity. The critical density in the various areas is scaled
from the measured number, taking into account the actual geometry and the sampling fraction, as well
as the shower extension in length. A major step occurs for theFCAL with gaps as narrow as 0.25 mm in
a dense tungsten matrix

The numbers in the Table indicate a comfortable margin in thebarrel, while the inner parts of the
EM endcap, and of the FCAL may be affected. Ways to stay away from limits set by the space charge
effects have to be investigated. These could involve different liquids (perhaps liquid krypton),or a cold
dense gas under pressure (compatible with what the cryostats can withstand).

b) Voltage drop in the HV distribution
The current induced by the drift of electrons and ions in the gap, circulates in the HV polarisation chain,
which incorporates resistors to isolate from each other channels hooked to the same HV supply. The
value of these resistances should not be too low in order to avoid cross-talk, and not too high such that
the induced drop would require a rate dependent correction.

The value of the resistances is about 10 times larger at LAr temperature than at room temperature.
This factor≃ 10 has large fluctuations from pad to pad (rms/average≃ 0.3) which precludes using
measurements made at room temperature to correct for the drop.

The expected voltage drops are given in Table 20. As for the ion build-up there is a comfortable
margin for the barrel. The “small wheel” of the EM endcap, because of its smaller number of electrodes
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Table 20: The voltage drops expected in ATLAS liquid argon calorimeters

Resistance/0.05 Current at 1034 Voltage drop Voltage drop
1034 1035

Barrel EM,η=0 ∼ 1 Mohm 80 nA 0.08 V
Barrel EM,η=1.3 200 nA 0.2 V 2 V

End-cap EM,η=2.4 400 nA 0.4 V 4 V
End-cap EM,η=2.5 4000 nA 4.0 V 40 V
End-cap EM,η=3.2 8000 nA 8.0 V 80 V

(256 against 768) sees a large current per sector. Significant effects are expected in this area, which
would not allow precision measurements.

In order to get rid of the limitation induced by this effect, adifferent liquid should be explored,
with less charge deposited per GeV or one that is at higher temperature. A cold dense gas should also be
evaluated in this respect.

c) Activation
While this affects the “logistics” and not the detector response itself, activation may become a very seri-
ous limitation for the practical use of the detector. In particular for ATLAS one would have to reconsider
the level of Ar40 that can be released into the atmosphere in case of evacuation of the liquid due to a fault
in the cryogenic system.

d) Radiation damage to the detector
There is a comfortable margin in this respect. The only measurable effect found so far is a small increase
of the polarisation resistances, that are silk screened on electrodes (see section b), under neutron irradia-
tion.

e) Radiation damage to the electronics
Apart from the HEC cold preamplifiers, all active circuits are in warm environment, and therefore ac-
cessible and replaceable if needed. By design all ASICs (including the HEC GaAs preamplifiers) were
manufactured in a technology offering a large safety marginw.r.t. the expected radiation level at the
nominal high luminosity of LHC.

Nevertheless a dedicated analysis would be needed to evaluate the potential problems for 10 times
more radiation. Particularly critical may be the case of thefew COTS (commercial components) used in
the front-end crates.

f) Sequencing of the readout
The effect of shorter bunch spacing, such as 12.5 ns, has to beevaluated though the current scheme may
well be adequate. In “standard” ATLAS conditions calorimeter pulses are sampled every 25 ns, and the
energy and time are calculated using “optimal filtering” with data from 5 consecutive samples. Timing
is arranged such that the third sample falls at the maximum ofthe pulse.

In the test beam, which is asynchronous, all events in a window of ± 12.5 ns around the optimum
timing are used, and give results indistinguishable from those sampled at the peak. In the case of 12.5
ns bunch spacing, one could therefore continue to clock the readout at 40 MHz, requiring only that the
LVL1 identifies whether the triggered event is synchronous with this clock or advanced by 12.5 ns.

g) Formation of LVL1 signals
The bandwidth of the present LVL1 authorises “ BCID” for all signals above a given threshold. To
obtain a similar “BCID” at 80 MHz is likely to require an upgrading of this system. Since everything is
accessible, such a change would cost money but should not be an a priori show-stopper
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h) Level of pileup
With no change to the circuits nor to the signal treatment, a factor of 10 in luminosity translates into a
factor of 3 in pile-up, while electronics noise in unchanged. An optimal filtering could allow to “speed-
up” the equivalent response, for a better balance between electronics and pile-up noise, leading to a
smaller degradation.

The use of a different liquid, or cold dense gas, would indeedrequire a full re-evaluation of the
signal to noise ratio, and in general of the calorimeter performance.

In conclusion, an increase of luminosity would certainly create space charge and voltage drop
problems in the largeη region of the Endcap electromagnetic calorimeter (η >2.5) and the forward
calorimeter (FCAL). R&D will be needed to understand betterthese effects, and to investigate the use of
other liquids or of a cold dense gas.

5.2.2 CMS Crystal ECAL

a) Crystals
In case of an order of magnitude luminosity increase, the dose rate in the Barrel (at shower max) will
increase from 0.15Gy/h to 1.5 Gy/h, which corresponds to thecurrent nominal situation atη=2.4. There
should therefore be few problems. For the endcaps, the dose rate reaches 30 Gy/h atη=2.6 and 75 Gy/h at
η=3. This is close to the “saturation” irradiation conditions actually used at the Geneva Hopital Cantonal
(250 Gy/h). It is known that the light attenuation in this condition is > 1 meter and therefore the light
loss is less than 25 %.

However, for a complete understanding, a programme of irradiations under these conditions should
be performed including

• long-term irradiation (days)

• irradiations with high fluxes of hadrons, for comparison with gammas.

• calibration studies

b) Photosensors
The leakage current in the APDs used in the Barrel will increase by approx 20µA per year at SLHC.
This should translate into a large increase in electronics noise, reaching 100 MeV per crystal after a few
years. Improved recovery mechanisms (e.g. higher temperature during shut down) could be investigated.

For Endcap VPTs the glass window has to be tested at the expected very high radiation doses. The
behaviour of the tube with a strong steady current should also be studied.

c) On-detector Electronics
Radiation hardness.
The electronics is built using radiation-hard processes that are qualified for the nominal situation in the
endcap (5Mrad,2 × 1014 n/cm2 for an integrated luminosity of 500 fb−1). One can therefore conclude
that the electronics in the Barrel will survive an order of magnitude luminosity increase. The situation for
the endcaps is much more critical. The actual electronics has already been recessed from the beam axis
to limit the maximal fluence to2 × 1014 n/cm2. An increase by a factor 10 requires either a move from
the actual position to the periphery -which is probably impossible - or a replacement after a vigorous
R&D to find more radiation hard technologies. This affects all the components of the Front-End cards
(preamplifier, ADC, optolinks)
Faster bunch crossing.
Running the actual electronics at 80MHz is impossible. As inthe case of the ATLAS liquid Argon
calorimeter, the first thoughts are that one could cope with adoubling of the frequency (12.5 ns bunch
crossing) by still sampling at the original 40 MHz frequency. The excellent time resolution obtained with
the multi-sample electronics would allow a corect assignment of the bunch crossing The LV1 trigger
primitives are created by filters using 5 consecutive samples. The consequences on the actual CMS
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Trigger system have to be studied.

d) Pileup
Pileup effects have to be assessed, both from the physics point of view and also for the electronics (for
example the variation of the base line for the Floating PointPreamplifier). The last point may be an issue
in the highη range.

e) Activation
One of the biggest worries is the activation level that wouldbe reached in the endcaps,; certainly several
mSv/h after a run at a luminosity of1035 cm−2s−1. This means that interventions will be very difficult
(the integrated allowed yearly dose being reached in a few hours). One should not envisage regular
replacements of hardware in these conditions.

The results of the radiation hardness tests suggested abovefor VPTs and for electronics are there-
fore crucial. One should note that already the replacement campaign for the endcaps electronics before
the upgraded Luminosity period will require careful planning.

In summary the CMS ECAL Barrel could probably be used with an increase of luminosity, even
if the performance may be somewhat degraded due to an increase in noise and pileup. The situation
for the Endcap is more difficult to assess: R&D is required to verify the behaviour of the crystals and
photosensors under high dose rates. The Front End electronics will have to be replaced in difficult
activation conditions.

5.2.3 Plastic Scintillator Based Hadron Calorimeters

CMS employs a brass/plastic scintillator sampling hadronic calorimeter up to|η| < 3. ATLAS uses a
similar technique in the barrel region. The plastic scintillator used in these calorimeters loses half of its
light output after a dose of about 50 kGy. Hence, from Table 18, it can be seen that the ATLAS and CMS
hadron calorimeters in the barrel region (|η| < 1.5) should not need changing.

The situation is more difficult for the CMS endcap hadron calorimeter. The deleterious effects of
radiation can be substantially mitigated by individully reading out the scintillator layers in the first 3-4
interaction lengths. The signals from these layers can thenbe weighted to compensate for the loss of
light. Periodic replacement of the scintillator, albeit difficult, could also be envisaged. A programme of
R&D should be undertaken to search for an alternative activemedium and for a more radiation tolerant
scintillator.

5.2.4 CMS Very Forward Calorimeter

The radiation dose in the forward region (3< |η| < 5) changes rapidly. The CMS iron/quartz fibre
calorimeter uses plastic-clad quartz fibres. Quartz -clad quartz fibres are more radiation resistant but are
much more expensive. Replacing plastic-clad fibres by quartz-clad fibres, will allow the use of the same
technique up to integrated luminosity of 2500 fb−1.

Novel technologies that can operate at ultra high radiationlevels should be searched and devel-
oped. A possibility is to detect the Cerenkov light emitted in pressurised gas contained in 2 mm diameter
steel tubes whose reflectivity on the inner surface at grazing incidence is very high. The idea has been
tested in CERN-H4 beam [57]

5.3 Muon Systems

5.3.1 Intensity considerations

Background radiation
The ATLAS and CMS muon systems [58, 59] have been designed according to conservative assumptions
in the background rates (factor 3 to 5 safety margin above estimates from simulations). The real safety
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margin can only be established from measurements once LHC operates. It is possible that in some regions
measured rates will be substantially higher than current expectations and this information, available only
five years hence, will influence the modifications necessary for SLHC.

The particle fluence scales with luminosity and is an even stronger function ofη and r (factor of
100 variation). It is predominantly composed of low energy (< 100 MeV) neutrons, high energy neutrons
and photons (with typical energy< 10 MeV). At SLHC, the fluence of each species ranges up to some
105cm−2s−1 in the highestη region. The detection efficiency for these particles is in the range of 0.1-1
%. They dominate the observed hit rate at lowη (≤ 2.2). The rate for charged particles (hadrons, muons,
isolated electrons) is typically much lower than the rate ofdetected neutral ones, except in the highη
region (2.2-2.7), where it progressively becomes dominant.

When considering technologies for use at SLHC, it is worth pointing out that the strong geometric
dependence implies that detector types which function at high-η in LHC will certainly work quite ade-
quately at low-η in SLHC.

Shielding and muon tracking in the high-η region
The simplest viable modification for SLHC is to increase shielding around the beam-pipe at high-η,
which reduces the overall background rate and is particularly effective at low-η, where neutrals dominate
the observed hit-rate in the muon detectors. The penalty is acut in the high-η acceptance. However, the
rate from charged particle background (20-40 % muons), effectively irreducible by shielding, may in any
case limit the deployment of detectors in the forward regions, and force a reduction in the acceptance at
SLHC.

Figure 24 compares the contours of fluence in the low radius, high-η region of the CMS detector,
for a high-η cut-off of 2.4 (present LHC shielding) and 2.0 (possible shielding for SLHC). The maximum
rates to which the cathode strip chambers are exposed are similar in the two cases, thus a re-build of the
low radius muon layers to match the new geometry could be doneusing the existing technologies. The
CMS resistive plate chambers used in triggering are alreadylimited to the|η| < 2.1 region. Depending
on the exact configuration of machine elements chosen for theSLHC low-η insertions (see below),
re-design of the shielding around the TAS collimator, and around the beam-pipe within the forward
muon system might also imply significant engineering re-design of the entire forward regions of the
experiments, for instance the forward toroids of ATLAS or the forward calorimetry system of CMS. All
this adds to the uncertainty in the rate estimates, and it is not inconceivable that in the worst case the
first forward muon stations might need to be replaced by a different design concept. However, the aim
would be to use developments of technologies already provenat LHC in a worse environment, eg those
that were candidates for central tracking.

Tracking in the low-η region (η < 2).
Assuming that an effective forward shielding design can be maintained, the current muon detectors in the
central regionη < 2, will mostly perform well enough. However, the insensitivity to ageing at integrated
dose levels higher than considered so far may need to be confirmed in some cases. The expedient of
substituting high-η technologies in the most vulnerable low-η regions, could lead, in the CMS case, to
replacement of drift tube chambers by endcap-type cathode strip chambers in the first and fourth barrel
stations. However, the detector performance may be otherwise affected by the increased background -
e.g., the resolution of the ATLAS MDTs may be limited by spacecharge effects (which may already
reduce performance at the highestη at LHC). Experience from LHC operation is necessary to make an
informed judgement.

5.3.2 Trigger

The design of the trigger will need a significant upgrade to cope with the increased intensity. In particular,
rejection ability considerations will force the trigger tobe driven at the increased bunch-crossing rate of
80 MHz. Different considerations apply to the different detector technologies:
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Fig. 24: Upper: the neutron fluxes (cm
−2

s
−1) in the low radius, highη-region of the CMS endcap muon detector forη < 2.4

and present LHC shielding1034
cm

−2
s
−1. Lower: same, for forη < 2 and possible shielding for SLHC1035

cm
−2

s
−1.
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• For intrinsically fast detectors (i.e. with signal generated with time jitter< 12.5 ns), where the
trigger decision is taken asynchronously (or over-sampling above 40 MHz) (e.g.: the ATLAS
RPCs), part of the existing trigger might be usable at SLHC.

• For fast detectors with trigger logic effectively driven bythe LHC 40 MHz bunch-crossing rate
(e.g. ATLAS TGCs, CMS Drift Tubes); the trigger logic would need to be redesigned to operate
at 80 MHz.

• For slow detectors, with signal time jitter comparable or above 12.5 ns (e.g. the ATLAS TGCs
in the largestη region: for tracks at large incidence angle); a different detector technology, or at
minimum a more sophisticated electronics, might have to be considered in order to operate in these
regions.

5.3.3 Read out

The detector read out would have to cope with increased bandwidth, due to higher background rates, and
possibly to higher trigger rate. The actual read out speed may or may not need to be upgraded (e.g., the
drift tubes could presumably be read out with the same speed and memory depth).

There may be sufficient impact on power dissipation in certain detectors to require an upgraded
cooling system. Even if most existing detector elements areusable at luminosities around1035 cm−2s−1,
the time taken to replace on-board electronics and cooling may be a major contribution to the shutdown
length needed to re-configure experiments for SLHC.

5.3.4 Beam optics and radio-activation

The increase in luminosity would be achieved in part by doubling the bunch-crossing rate, in part by an
increase in the bunch intensity and in part by decreasing thebeam cross section (η∗). A new design of
the beam optics might require moving the quadrupole tripletcloser to the interaction point or installing
a D1,3Q,D2 configuration with the last dipole very close to the interaction point. Either may imply a
major re-design of the collimators/shielding, and would affect the detector layout at the largeη limit. For
ATLAS, this would add reasons for reducing the angular acceptance, and for modifying the design of the
forward quadrupoles. For CMS, this would probably force integration of the forward calorimeter within
the forward muon region and might force a further reduction in the acceptance.

Activation of shielding and supports might limit the access-time to the detectors, placing con-
straints on installation and maintenance scenarios.

5.3.5 Conclusion on the muon systems

The modifications needed for the SLHC to the muon systems of ATLAS and CMS should be determined
by a cost-benefit analysis depending on the perceived physics potential in the light of results from LHC at
1034 cm−2s−1. Benchmarking of background simulations from actual LHC experience is also important
in deciding how to proceed. In general the choice to be made isbetween maintaining high-η acceptance
using new, super-robust, low maintenance detectors, or accepting a reduced high-η acceptance limit due
to additional shielding that permits the existing LHC muon detector technologies to survive in most
locations. The forced re-design of other sub-systems may inany case, ultimately determine the effective
high-η region accessible for muon detection.

Depending on the exact configuration (particularly high-η cut-off) changes in technology might
be needed in certain specific regions (eg first forward stations), but the aim should be to use technologies
already developed and applied for high-rate tracking at LHC.

To cope with the 80Mhz bunch-crossing rate, much of the on-board trigger and readout electronics
and cooling will have to be replaced, even without change in detector technology. This task may be a
major contribution to the re-fit time for SLHC.
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5.4 Trigger and Data Acquisition

The consequences are considered for trigger and data-acquisition (TDAQ) systems if LHC is upgraded to
have higher luminosity (in the following we assume1035 cm−2s−1) and a reduced bunch-crossing (BC)
period to 12.5 ns. After discussing some issues related to the detectors that also affect TDAQ, we outline
the programme of R&D on TDAQ systems that would be needed for the successful exploitation of such a
machine. Finally, we give an indication of the thresholds that might be possible with a first-level (level-1)
trigger at SLHC.

5.4.1 Higher luminosity

The obvious consequences of raising the luminosity of LHC are higher detector occupancy, increased
trigger rates at fixed transverse-momentum thresholds (or higher thresholds for fixed rates), and larger
levels of radiation that could damage or perturb the detectors and the on-detector electronics.

a) Occupancy
Increased occupancy has two important consequences for theTDAQ system: degraded performance of
trigger algorithms due to the increase in pile-up, and a larger event size to be read out. Examples of
the degradation of the trigger performance include reducedrejection at fixed efficiency from isolation
requirements on electron/photon candidates, and increased muon-trigger background rates arising from
accidental coincidences between radiation-induced “noise” hits in the muon detectors.

b) Trigger rates
The increased event size reduces the maximum allowed level-1 rate for fixed readout bandwidth. This
suggests that one should perhaps try at least to avoid increasing level-1 rate beyond the maximum of
100 kHz presently envisaged in ATLAS and CMS. Such a strategyappears to be possible, as discussed
later, but implies raising the transverse-momentum thresholds on candidate electrons, photons, muons,
etc., and using less inclusive triggers. The increase in thethresholds has to compensate for the larger
interaction rate, and also for the degradation in algorithmperformance due to the higher occupancy (less
rejection for fixed efficiency).

c) Radiation damage
The increased levels of radiation at SLHC could cause problems in terms of damage to detectors and
to the on-detector electronics (either permanent damage orsingle-event-upset effects). Note that part
of the level-1 trigger electronics in both ATLAS and CMS is mounted on the detectors. The radiation
tolerance of this electronics, as well as the front-end electronics of the detector systems, would need to
be assessed in view of increased radiation levels at SLHC. However, it should be kept in mind that the
actual radiation levels are presently uncertain (“safety factors” are applied in qualifying the electronics),
and will only be known with precision after LHC starts operation.

5.4.2 Reduced BC period (12.5 ns)

A reduction of the BC period below its present value of 25 ns has important consequences for the level-
1 trigger and the detector front-end electronics. The present trigger systems are pipelined processors
driven by the 25-ns period (40 MHz) LHC machine clock; they select events indicating exactly which
BC produced the interaction of interest. In the following weassume a BC period of 12.5 ns (80 MHz
frequency). Frequencies higher than this would amount to almost continuous beam given the rise times
of signals from the detectors and the timing resolution achievable in the detector and trigger electronics.
The present strategies for timing-in and time monitoring ofthe experiments rely on using the bunch
structure of the machine. This may simply not be possible forBC intervals of less than about 12.5 ns.

From the point of view of performance, it would be advantageous to rebuild the level-1 processor
systems to work with data sampled at 80 MHz (internally some data movement and/or processing are
already done at 80 MHz and above in both the ATLAS and CMS systems). This would optimise the
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performance of the algorithms (rate versus efficiency) by limiting the effects of pile-up that become
more important at SLHC. This provides the best chance to holdthe level-1 output rate below 100 kHz,
leading to cost savings elsewhere by avoiding replacement of the front-end and readout electronics, and
avoiding an increase in bandwidth and processing power in the high-level trigger and DAQ systems. It is
the only way to identify with 12.5 ns precision the BC that caused the trigger.

In some cases the so-called “trigger primitive” information from the detectors (e.g. energy in
calorimeter trigger towers) could still be derived from existing detector front-end systems. For example,
the trigger primitive generation electronics that prepares the trigger tower data from the CMS digital
calorimeter front-end electronics could possibly be modified to calculate the energy deposited in each
12.5 ns BC period from the time sequence of measurements madeat 40 MHz frequency.

An alternative would be to keep some of the level-1 trigger processor electronics clocked at 25 ns.
Here the trigger-primitive information from the detectors(e.g. energy in calorimeter trigger towers) from
pairs of BCs would be assigned to 25 ns intervals. This would still require modifications to the front-end
part of the level-1 trigger, but part of the processing chaincould be retained as is. The trigger would then
identify pairs of BCs to be read out (and where appropriate with data from surrounding BCs) forming
so-called time-frames. The data from these time-frames could then be used to reconstruct the hit time in
the higher-level triggers and offline - note that for many detectors the resolution is better than 12.5 ns.
Drawbacks of this approach are increased pile-up (since theactivity from pairs of BCs is combined at
least at the level of the trigger processing), and a larger event size (since the size of time-frame has to be
enlarged to allow for the ambiguity in the BC that caused the trigger).

5.4.3 Comments on detectors (for 12.5 ns BC interval)

The inner-tracking detectors will have to be replaced for operation at SLHC along with their front-end
electronics (radiation damage, occupancy). The new detectors and associated electronics with 12.5 ns
sampling period can benefit from a level-1 trigger that identifies the BC with 12.5 ns precision.

Although it may be possible to retain the existing calorimeters, it may be necessary to re-optimize
the shaping time of the analogue electronics. It might be possible to retain the existing front-end and
readout electronics, provided the analysis can be done withdata sampled at 25 ns period. The time of
deposition of the energy in the calorimeter can be reconstructed with high precision using data from a
series of measurements in time. With the digital calorimeter readout in CMS, the digital processing that
prepares the level-1 trigger tower data would have to be modified to calculate the energy in each 12.5 ns
BC period. ATLAS has a separate system of ADCs for the trigger. Of course, the survival and operability
of the on-detector electronics in the higher radiation environment would need to be checked.

For the muon spectrometers, it may be possible to retain (some of) the detectors and associated
front-end and readout electronics. In some cases (e.g. ATLAS TGCs), the time resolution of the de-
tectors may be marginal to trigger unambiguously on bunch crossings separated by 12.5 ns. As for the
calorimeters, the survival and operability of the on-detector electronics in the higher radiation environ-
ment would need to be checked. The rate of spurious triggers induced by radiation in the cavern would
also need to be checked.

5.4.4 Trigger menu

Three types of triggers will most likely be needed at a SLHC:

• Triggers for very high-pT discovery physics. These do not cause big rate problems since thresholds
can be as high as several hundreds of GeV.

• Triggers to complete the LHC physics programme, e.g. precise measurements of the Higgs sector.
These require thresholds on leptons/photons/jets as low asthose used at the LHC. However, since
the final states to be studied are known, one can use exclusivemenus (e.g. one lepton plus two
b-jets plus missing energy) targeted to the final states thatneed to be studied.
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• Control/calibration triggers with low thresholds, selecting, e.g., W, Z and top events. These can be
pre-scaled.

A first, very preliminary, study has been made to determine the expected rate of some basic inclusive
triggers at level-1. An illustrative set of selection criteria is as follows:

• inclusive single muonpT > 30 GeV (rate∼ 25 kHz);

• inclusive isolatede/γ ET > 55 GeV (rate∼ 20 kHz);

• isolatede/γ pair ET > 30 GeV (rate∼ 5 kHz)4

• muon pairpT > 20 GeV (rate∼ few kHz?);

• jet ET > 150 GeV .AND.Emiss
T > 80 GeV required in coincidence (rate∼ 1-2 kHz);

• inclusive jet triggerET > 350 GeV (rate∼ 1 kHz);

• inclusiveEmiss
T > 150 GeV (rate <

∼ 1 kHz);

• a multi-jet trigger with thresholds determined by the affordable rate (still to be evaluated).

The rates are very preliminary estimates based on scaling rates from the ATLAS and CMS level-1 trigger
TDRs, not allowing for the degradation in performance of isolation, etc. due to the higher level of pile-up
at SLHC. This is particularly true for the muon rates, which do not take into account the degradation in
performance of the trigger withpT (i.e. the threshold is less sharp at higherpT ), or the possibility of large
rates from the increased background due to radiation in the cavern (which could be a serious problem
for the inclusive muon trigger in ATLAS). We guess there might be some chance to lower the dimuon
threshold, but we err on the safe side for now.

There will certainly be triggers in addition to the above, for example a trigger requiring a muon-
electron pair with apT threshold of about 20-30 GeV for each lepton is likely to havean affordable
rate.

5.4.5 Data Acquisition

In spite of the continuous and extraordinary evolution of the computing and communication technologies,
a research and development programme is necessary in the following domains:

a) Readout network: implementation has to follow the LHC machine luminosity thus exploiting
the parallel evolution of technologies The main building block of any LHC data acquisition system is
the network interconnecting the data sources (detector digitizers) to the processing nodes (event filters).
While processor farms are becoming off-the-shelf commercial components, the same is not yet true for
the interconnection technologies whose progress, even if impressive, started more recently than the one
in the field of computing. For example today a full commercialnetwork system with the performance
required to build a LHC data acquisition network is not yet available in the market (i.e. a switch with
thousand ports, non-blocking, 1 Terabit/s aggregate bandwidth etc.). Therefore implementations of the
event builders at LHC will be made via subsequent upgrades following both the machine luminosity and
(we hope in phase) the evolution of the communication technologies.

The network technologies should be tracked. The new implementations should be applied in the
running data acquisition readout systems. In particular the integration of the 10 Gb/s Ethernet and the
emerging Infiniband technologies should be tested to interconnect large farms of processors (e.g. the
farms foreseen for the LHC computing and the Grid projects can provide suitable test beds).

b) Complexity handling, critical at the start of the experiment, because the management of such
a large system is a real new problem (’opening a new airport syndrome’ e.g. Malpensa) The online
computing systems will most likely have more than 10000 CPUs. In addition to the hardware boxes
(CPUs) there will be millions of software boxes (jobs) to be managed and controlled. These numbers are
sufficiently large that the designers will have to confront reliability problems not seen in any previous

4The isolatede/γ pair trigger with anET threshold of 30 GeV on each cluster could be replaced by a trigger with two
different thresholds, e.g. 40 GeV and 25 GeV, which could be more efficient for studies involving channels such asH− > γγ.
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laboratory setup or slow control system. Moreover the experiment control and information systems will
need to be accessible to multiple users with different profiles, expertise and therefore access privileges.
The hardware and software management of such a large complexis similar to that found in the present
Internet Service Provider centers (e.g. 6000 CPUs in google.com search engine).

Modern technologies should be studied to control distributed computing and exploit the Web tools,
currently used in the e-commerce world, to implement the experiment high level controls and user in-
terfaces. Under the new run control the handling of future experiments will not be very different from
that of an e-commerce company (same problems: security, remote access, databases, world wide access,
knowledge data bases, on-line orders etc.). The exploitation of the immense developments ongoing in
the domain of e-commerce will open new ways to operate large collaborations and large set of distributed
processors.

5.4.6 Main R&D issues

The main R&D issues for the level-1 trigger relate to the reduction in the BC period. Data movement is
probably the biggest issue for processing at 80-MHz sampling rate. Interconnection issues (links, back-
planes, etc.) already drive the design of the level-1 processors in ATLAS and CMS with 40-MHz BC rate.
Triggers for SLHC would need higher bandwidth and/or more use of zero suppression, data compression,
etc. Processing at higher frequencies and with higher input/output data rates to the processing elements
also needs to be investigated, although technological advances (FPGAs, etc.) will help here.

Synchronisation (using the TTC system, etc.) becomes an issue for short BC periods. Present
strategies for timing-in and time monitoring of the experiments that rely on using the bunch structure of
the machine may have to be reviewed. Finally, some detectorscurrently used in the trigger may be too
slow for 12.5 ns timing precision, requiring R&D on alternatives.

Concerning the high-level triggers and DAQ, the main issue is how to handle the larger bandwidth
(rate times event size) at SLHC. Bandwidth is an issue both for readout and for event building. Processing
power is likely to be less of an issue assuming continued growth in the performance/price ratio.

5.5 Electronics for SLHC

Electronics Technology has consistently developed at a rate described by an empirical relationship,
known as ’Moores Law’. This relationship predicts that the minimum feature size in silicon micro-
electronics circuits will decrease by a factor of two every five years. This trend has proved to be true
since the early 1970s. The smallest feature size commercially available today is 0.13µ and Intel has
recently demonstrated a 0.03µ transistor in the research laboratory. The significance of this continuing
trend is that the number of usable logic gates in a microelectronics chip increases by a factor of 4 every
5 years with a corresponding increase in speed and decrease in power dissipation. In addition the time
taken for research developments to become viable commercial products is ten years. Hence we can pre-
dict with certainty that the trend will continue for at leasta further ten years, but that new technology
developments will be required to maintain the growth in the electronics industry in the period from ten
to twenty years.

The Particle Physics experiments presently in construction for the CERN LHC would not have
been possible without the extensive use of microelectronics technology. This technology was developed
for the worldwide computer and telecommunications industries. The successful application of these
technologies to the requirements of Particle Physics experiments was the result of an intensive R&D pro-
gramme approved by the CERN DRDC. Without this programme thepresent generation of experiments
would not have been possible.

For SLHC it will be necessary to build on the expertise and infrastructure that has been established
for LHC, both at CERN and at the network of collaborating Institutions throughout the international
Particle Physics research community.
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5.5.1 Proposed R&D Projects

One of the major successes of the LHC development programme was the demonstration that commer-
cially available 0.25µ CMOS technology can be radiation hard [60]. This technologyis now used
extensively in LHC applications with very significant performance and financial gains.

Many radiation-hard circuits for the LHC experiments have been, or are being, converted into
DSM technology. Radiation effects can be divided into two categories: total dose effects and single
event effects.

Total dose effects in CMOS are mainly associated with charging-up of oxides. During irradiation
electrons and holes are generated in the oxides. While the electrons are evacuated rapidly (within ns)
holes accumulate in traps leading to transistor threshold shifts. As the oxides get thinner the charging
decreases in proportion to the volume of the oxide. Hence thinner oxides are inherently more radiation
hard. As the oxide thickness falls below 10 nm the reduction in the radiation induced threshold voltage
becomes even more pronounced [61]. Therefore for deep sub-micron processes (a 0.25µm process has a
gate oxide thickness of 5 nm) radiation induced threshold voltage shift becomes negligible even at very
high radiation doses. However there is still the possibility of leakage paths from drain to source and from
one transistor to another that have to be eliminated by special layout techniques [62].

Single event effects will perhaps be the ones that cause the most difficulty for the tracker electron-
ics at SLHC. The effects comprise:

• single event gate rupture that only manifests itself above acritical threshold electric field and
should not be an issue for deep sub-micron CMOS circuits.

• single event latch-up that can probably be avoided by the useguard rings that are also used to limit
total dose effects.

• single event upsets that cause the logical level of the node to switch state. This effect occurs above
a threshold LET. The threshold LET tends to decrease for smaller feature sizes and is a real concern
for deep sub-micron circuits.

The more recently available technologies (0.13µ and beyond) will require characterisation for SLHC
applications and the development of the new design techniques and the required libraries. Understanding
the limits, and applicability, of DSM electronics should bethe subject of vigorous R&D for SLHC and
for the upgrades of LHC experiments.

Data rates in SHLC detectors will scale with luminosity. This raises the issue of whether to process
data at the detector and reduce data volumes before transferto Off-Detector electronics, or whether to
invest in advanced data link technology to minimise the riskto electronics on the detector.

The development of intelligent architectures to reduce thevolume of data transferred off the detec-
tor; especially in the case of high granularity detectors (Tracker and Pixel Systems) will require common
development projects.

The development of very high-speed data links for Particle Physics applications, based on the com-
mercial developments is a common development project. Commercial developments are not optimised
for extreme environments found in LHC experiments.

Another consequence of the very high data rates anticipatedat Super LHC is the power dissipated
in the CMOS electronics in the detectors. There are alternative technologies that could be considered
(for example Si-Ge), but the LHC research community has little experience of designing in these tech-
nologies. In addition, the advantages of working with a modern commercial process may be lost.

The understanding of the issues involved in using alternative technologies will require substantial
work. In addition, more work on power removal techniques in the environment found at LHC will be
required.

In the development of electronics for LHC the most pressing problems were those of developing
electronics that would operate inside the LHC detectors. Asa result of the DRDC programme, these
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problems were solved, but in many cases the overall systems design issues did not receive the required
attention.

A new R&D initiative should recognise this shortcoming and encourage the research community
to focus on the systems design issues from the outset. The ultimate performance of a detector system
is often limited by the noise that is generated by non-optimal grounding systems. Understanding all the
systems issues is the focus of another R&D project that will develop common solutions where possible.

5.5.2 Organisational Issues

When the initial DRDC projects were approved in 1989, most ofthe microelectronics were produced
on either 4 or 6 inch wafers. In addition most of the Particle Physics community could obtain access
to the best available design software tools through the Europractice programme which made these tools
available to the European Teaching and Research community at very low cost.

The 0.25µ CMOS technology used in many LHC experiments is now producedon 8 inch wafers
and the next technology to be used (0.13µ CMOS) will soon be produced on 12 inch wafers. In addition
the number of interconnection planes is also increasing to give the designer more freedom in connecting
the elements within the circuit.

The result of these developments is much more efficient chip designs and much cheaper chips for
the very large users (Computer and Telecommunication Industries) who have been driving the develop-
ment of the technology. Not only will the wafers be more expensive, but the number of masks used in the
processing will also increase, which in turn will increase the Non-Recurrent Engineering (NRE) costs.
The potential complexity of the designs will also increase together with the complexity of the techniques
required to layout and simulate the behaviour of the circuits. The commercial cost of the design soft-
ware will be very high (≫ 1M dollars), and hence it is crucial to maintain access to theEuropractice
programme.

The number of research organisations, world-wide, that will be able to access these technologies
will be very small and will probably be led by the major Particle Physics Laboratories, where CERN
has a leading role. Without the establishment of a world-wide network, involving both the Particle
Physics research community and commercial partners, to develop the next generation of electronics,
future Particle Physics experiments will not be possible.

Experience with the development required for the LHC implies that the time required to develop
the electronics for Super LHC will be∼ 8-9 years.

In the mid 1980s the CERN structure was changed to recognise the importance of co-locating a
critical mass of the best electronics engineers to develop the electronics required for LHC. The develop-
ments required for SLHC will also require an equivalent change in structure at CERN to provide not only
critical mass of engineers and the required infrastructure, but also the focus for the required world-wide
network within the research community.

If successful, not only will CERN provide the leadership of the international Particle Physics
community, but it will become the international focus for the development of multi-disciplinary advanced
instrumentation.

5.6 Conclusions: Experimental Challenges and the DetectorR&D

A luminosity upgrade of the LHC to1035 cm−2s−1 will require significant detectors R&D especially
for the inner tracking systems including that for radiation-hard front-end electronics and optical links.
CERN should launch a new R&D programme as soon as resources allow. This should be modeled on the
Detector R&D Committee programme of the 1990’s, but initially with most of the R&D targeted to the
needs for the SLHC.

In the immediate future the highest priority should be givento the completion of the current de-
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tectors and only a very limited R&D effort should be considered at CERN. However there are several
reasons to continue with minimal effort; outside CERN numerous groups are performing generic R&D.
The (S)LHC community will benefit from having a good contact with these groups; the SLHC chal-
lenges can provide guidelines for the R&D effort; CERN can provide test beam and irradiation facilities
for these groups and can be an important reference for these groups when they define their national
projects; finally this type of work attracts instrumentation students in general and also experts outside the
traditional HEP community.

A low-level of human and financial resources should be made available from CERN mainly for
co-ordination of several R&D programs financed by member states on a national basis. A significant
increase of activity and therefore resources should be planned for the years 2006 and beyond to give
an appropriate impetus for focused activities in view of an SLHC running in the early part of the next
decade. If the new R&D programme is successful, not only willCERN provide the leadership of the
international Particle Physics community, but it will become the international focus for the development
of multi-disciplinary advanced instrumentation.

Below we draw the conclusions for each of sub-detectors considered above.

5.6.1 Inner Tracking

The current ATLAS and CMS trackers have to be completely rebuilt for SLHC in order to withstand a
factor 10 higher luminosities. The general approach suggested is to:

a) further develop with industry the current silicon strip technology for use at radii> 60 cm.

b) further develop the current pixel technology that is expected to work at radii between 20 cm
and 60 cm.

c) for the vertex region (R< 20) new concepts and new materials are required to attain theneces-
sary speed and radiation hardness.

Furthermore, there is a need for engineering studies related to materials, power distribution, cool-
ing and development of radiation hard electronics togetherwith a full readout scheme

5.6.2 Calorimetry

The calorimetry in the barrel regions of ATLAS and CMS shouldbe able to withstand the ten times
higher luminosities. However careful attention has to be paid to the endcap and forward regions.

For liquid argon calorimetry the issues to be investigated are space charge effects and current
induced voltage drops amongst others. Operation using different liquids, such as krypton, or even dense
cold gases should be evaluated.

For the CMS lead tungstate crystal calorimeter a programme of irradiations emulating SLHC
conditions has to be carried to evaluate the performance of the crystals, photodetectors and the front-end
electronics.

For the CMS endcap HCAL, short of using a novel technique, methods should be developed for
mitigating the effects of higher radiation levels. These could include a combination of a) individual
readout of scintillator layers, b) periodic replacement ofscintillators, and c) development of a more
radiation-tolerant scintillator. For the CMS forward calorimeter replacement of the plastic-clad quartz
fibres by quartz-clad quartz fibres has to be envisaged. Development of new techniques should also be
pursued.

5.6.3 Muon Systems

The LHC experiment muon systems have been designed according to conservative assumptions in the
background rates (factor 3 to 5 safety margin above estimates from simulations). The real safety margin
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can only be established from measurements once LHC operates. The simplest viable modification for
SLHC is to increase shielding around the beam-pipe at high-η. The penalty is a cut in the high-η accep-
tance. The modifications to the ATLAS & CMS muon systems needed for SLHC should be determined
by a cost-benefit analysis depending on the perceived physics potential in the light of results from LHC
at 1034 cm−2s−1. In general the choice to be made is between maintaining high-η acceptance using
new, robust, low maintenance detectors, or accepting a reduced high-η acceptance limit due to additional
shielding that permits the existing LHC muon detector technologies to survive in most locations. In
the worst case the first forward muon stations might need to bereplaced by a different design concept.
However, technologies can be used that are already proven atLHC in a worse environment, eg those that
were candidates for central tracking.

5.6.4 Trigger and Data Acquistion

A reduction of the BC period below its present value of 25 ns has important consequences for the level-
1 trigger and the detector front-end electronics. From the point of view of performance, it would be
advantageous to rebuild the level-1 processor systems to work with data sampled at 80 MHz. Concerning
the high-level triggers and DAQ, the main issue is how to handle the larger bandwidth (rate and event size)
at SLHC. Bandwidth is an issue both for readout and for event building. In spite of the continuous and
extraordinary evolution of the computing and communication technologies, a research and development
programme is necessary in the domains of readout network andcomplexity handling. The network
technologies should be tracked. Modern technologies should be studied to control distributed computing
and exploit the Web tools.

5.6.5 Electronics

The successful application of microelectronics technologies to the requirements of Particle Physics ex-
periments was the result of an intensive R&D programme approved by the CERN DRDC. One of the
major successes of the LHC development programme was the demonstration that commercially avail-
able 0.25µ CMOS (DSM) technology can be radiation hard. This technology is now used extensively
in LHC applications with very significant performance and financial gains. The more recently available
technologies (0.13µ and beyond) will require characterisation for SLHC applications and the develop-
ment of the new design techniques and the required libraries. The 0.13µm CMOS will be produced on
12 inch wafers. In addition the number of interconnection planes is also increasing to give the designer
more freedom in connecting the elements within the circuit.The Non-Recurrent Engineering (NRE)
and the costs of the design software will be very high, and hence it is crucial to maintain access to the
Europractice programme. Understanding the limits, and applicability, of DSM electronics should be the
subject of vigorous R&D for SLHC and for the upgrades of LHC experiments. Another vital subject for
R&D is the development of very high-speed data links for Particle Physics applications, based on the
commercial developments.

All of the new R&D initiatives should encourage the researchcommunity to focus on the systems
design issues from the outset.

6 CONCLUSIONS

The physics potential of an upgraded LHC running at a luminosity of 1035 cm−2s−1 can be summarised
as follows:

• The measurement of some of the TGC’s will reach an accuracy comparable with the size of EW,
and possibly SUSY, virtual corrections.

• New rare decay modes of the SM Higgs boson will become accessible, e.g. H→µ+µ− and
H→Zγ. The determination of the Higgs couplings to bottom and top quarks, as well as to EW
gauge bosons, will reach precisions of 10% or better, over a good fraction of themH < 200 GeV
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mass range. In the MSSM, the region of SUSY parameter space where at least two Higgs bosons
will be observed is significantly enlarged relative to the LHC reach.

• The first observation of SM Higgs pair production may be possible in the170 < mH < 200 GeV
mass range, with a determination of the Higgs self-couplingλHHH at a level of 19% (25% ) for
mH = 170 GeV (mH = 200 GeV), after background subtraction. The precise size of theback-
grounds has however large theoretical uncertainties. The use of data control samples will be nec-
essary to fully pin down these uncertainties and to strenghten the estimates of the significance of
theHH signal.

• In the absence of a Higgs signal, studies of resonant and non-resonant scattering of electroweak
vector boson pairs at high mass will benefit from the larger statistics, which should give access
to a larger variety of channels and in general to more convincing signals than at the LHC. These
conclusions, however, depend upon the possibility of maintaining adequate forward jet tagging
performances.

• The FCNC decay modes of the top quarkt→γ/Zq may be accessible if their BR is of order10−6.
This range is of relevance for some theories beyond the Standard Model.

• The mass reach for squarks and gluinos will be extended from∼ 2.5 TeV (standard LHC) to
∼ 3 TeV (SLHC). In addition, some exclusive SUSY channels which are rate-limited at the stan-
dard LHC could be studied in detail with a tenfold increase instatistics, thereby providing addi-
tional information about the underlying theory.

• The mass reach for new gauge bosons, or for signatures of Extra-dimension models, will be ex-
tended by approximately 30% relative to the LHC; in the case of compositeness, the sensitivity
to deviations from the expected behaviour of quarks in the SMwill be extended from a scale
Λ = 40 TeV toΛ = 60 TeV.

All of the above can be obtained at a moderate extra cost relative to the overall initial LHC investment,
extending the lifetime of the LHC complex, completing its physics potential, and bridging the time gap
with future activities.

With the exception of final states containing very energeticobjects (e.g. jets, photons or muons
with transverse energies in the TeV range), the feasibilityof the above physics programme requires
detector upgrades able to maintain the performances expected at the standard1034 cm−2s−1 luminosity.
In many of the examples discussed in this document, the performance of the LHC detectors is affected
not only by the high-luminosity environment, but also by theintrinsic detector limitations in terms of
detection efficiency and measurement accuracies. Future studies should therefore aim at identifying an
optimal technological and financial balance between luminosity upgrade and detector upgrades, with the
goal of maximising the overall physics performance.

The foreseen detector upgrades will require significant detector R&D, especially for the inner
tracking systems (including radiation-hard front-end electronics and optical links). CERN should launch
a new R&D programme as soon as resources allow. This should bemodeled on the Detector R&D
Committee programme of the 1990’s. We believe that a vigorous R&D activity for the SLHC will
entail general and significant progresses in the area of particle detector developments, and therefore will
ultimately have impacts on future machines (e.g. a VLHC) andon particle physics in general.

Acknowledgements

We thank M. Battaglia, C. Da Via, E. Heijne, R. Horisberger, P. Jarron, B. McElrath, M. Moll, T. Rizzo,
P. Weilhammer and R. Wunstorf for their contributions to this document.

References

[1] ATLAS Collaboration, “Detector and physics performance Technical Design Report”,
CERN/LHCC/99-15.

56



[2] CMS Collaboration, Technical Proposal, CERN/LHCC 94-38.

[3] A. De Roeck, J. R. Ellis and F. Gianotti, hep-ex/0112004.

[4] G. Azuelos et al., “Physics in ATLAS at a possible upgraded LHC”, ATLAS Internal Note ATL-
PHYS-2001-002.

[5] U. Bauret al., hep-ph/0201227.
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