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iii) there is no stable solution at the minimum of the potential and the system decays into

a set of branes.

Keywords: Superstrings and Heterotic Strings, D-branes, Tachyon Condensation.

c© SISSA/ISAS 2002 http://jhep.sissa.it/archive/papers/jhep052002042/jhep052002042.pdf

mailto:bellido@mail.cern.ch
mailto:Raul.Rabadan@cern.ch
http://jhep.sissa.it/stdsearch?keywords=Superstrings_and_Heterotic_Strings+D-branes+Tachyon_Condensation


J
H
E
P
0
5
(
2
0
0
2
)
0
4
2

Contents

1. Introduction 1

2. Discussion of the models 3

2.1 Moduli of complex structures 3

2.2 Description of the system 4

2.3 R-R Tadpoles 4

2.4 NS-NS tadpoles 5

2.5 The evolution of the complex structure moduli fields 6

2.6 Lines of marginal stability 7

2.7 Critical points 8

3. The two-dimensional torus 8

4. The four-dimensional torus 11

5. The six-dimensional torus 13

6. Stabilising complex structure moduli. Examples 20

6.1 At the boundary 20

6.2 At a point in the interior 21

7. Conclusions and applications 22

1. Introduction

Branes at angles [1] provide a very rich framework for the construction of compactifications

with a chiral spectrum of a very similar structure to the one of the standard model [2]–

[7]. Generically these models are non-supersymmetric, although some supersymmetric

constructions can also be obtained [4]. These configurations are T-dual pictures of branes

carrying non trivial bundles wrapping the compact space [8, 9, 2, 10].

There are two types of closed string tadpoles, the Neveu-Schwarz–Neveu-Schwarz (NS-

NS) and the Ramond-Ramond (R-R) tadpoles. The cancellation of the R-R tadpoles

is a necessary condition for the consistency of the theory. In particular, R-R tadpole

cancellation conditions guarantee the absence of chiral anomalies in the low-energy effective

theory [1, 2]. However, even if the R-R tapdoles cancel, when supersymmetry is not

preserved the NS-NS tadpoles may appear. The system seems to be consistent, but some

potentials for the NS-NS fields are generated, signalling that the configuration is not in

a stable vacuum, and the string vacuum has to be redefined. This problem has been

addressed in several papers [11, 7].

– 1 –
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We analyse this problem of the uncancelled NS-NS tadpoles in the context of inter-

secting branes models, see also ref. [5]. Given a cycle Γ of a homology class on an arbitrary

compactification space, we can wrap a brane on it. The system will try to minimise the

volume of the brane, inducing a variation of the metric moduli space. When the D-branes

wrap a half homology cycle, one can see that the potential depends only on the complex

structure moduli. Another way to see it is through the appearance of a NS-NS tadpole

term that enters in the effective action as a potential for the complex structure moduli

field. One can check that this potential is proportional to the modulus of the periods:

|ZΓ| =
∣

∣

∣

∣

∫

Γ
Ω

∣

∣

∣

∣

, (1.1)

where Ω is the normalised n-form in a general complex n-dimensional manifold, and Γ is a

cycle in that class. This form specifies the complex structure of the manifold. Sometimes,

depending on the complex structure, this brane is unstable against its decay into other

branes.

In this paper we have concentrated on tori of different (even) dimensions, and an

arbitrary number of branes. The questions we address here are the following: given a

homology class, where is the complex structure moduli going to? Is there a minimum? Is

the brane that wraps this cycle stable at the minimum? This problem is analogous to that

studied by Moore [12] and Denef [13], in their case related to the construction of stable BPS

black holes. We have realised that the minima in both cases are exactly the same. Here we

analysed some of the results of ref. [12] and extrapolated the analysis of the minima to our

case. Different phenomena can take place in the flow of these complex structure moduli,

like crossing lines of marginal stability that make some branes decay into others [13], etc.

We give here our main conclusions, and leave the description of the details for the fol-

lowing sections. For the 2-dimensional torus the complex structure moduli fields are driven

to the boundary of moduli space. In the 4-dimensional torus we find a well differentiated

behaviour depending on the wrappings of the branes around the homology cycles. In this

case, we analysed a large number of examples, although a general description is absent,

as we will discuss below. The most interesting case, however, is the 6-dimensional torus,

where we find three different types of behaviours: i) A stable minima can be localised in

the interior of the manifold of the complex structure moduli. This will only happen if the

cycle is not factorizable.1 ii) In the case there is only one factorizable cycle, the complex

structure moduli are stabilised at some points on the boundary. iii) When the cycle can

be decomposed into two factorizable cycles, one can easily see that the minimum is at

some point in the interior of the moduli space, but the brane has decayed into a pair of

factorizable cycles. However, one can get stable configurations in the interior of the moduli

space if one considers more than one factorizable brane. Examples of all the different types

of behaviours will be constructed. Note that we have not imposed here the R-R tadpole

cancellation conditions, although the dynamics will not be affected if we impose them, as

we will discuss later.

1A 3-cycle is called factorizable if it can be decomposed into the product of three 1-cycles, each one

wrapping a two dimensional torus. That is the case of most of the D-brane models mentioned above.
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When Ramond-Ramond tadpole conditions are imposed, there are, in addition to

the vacua where all branes annihilate, some specific vacua where the non-supersymmetric

sectors decouple. A trivial example where this happens is that of a pair brane-antibrane at

distant points in a compact space. If the distance is larger than the string scale there will be

no tachyonic modes. The potential due to the NS-NS tadpoles is proportional to the inverse

of the volume of the compact space, and arises from the sum over the winding modes. This

means that the potential will be minimised when the volume tends to infinity and the two

D-branes are very far from each other. That is what we already know: tadpoles appear

in compact spaces, but when the volume goes to infinity its effect is like in a non-compact

space. Of course, this is only a tree-level result and quantum corrections are expected.

For example, at one-loop, there is an interaction between the pair due to the exchange of

massless string excitations. Tree-level and one-loop interactions give two competing effects

that can change the direction of the flow.

Moreover, this uncancelled tadpoles could have very interesting physical applications.

For instance, the scalar potentials arising from dynamical variations of internal compactifi-

cation spaces (i.e. complex structures) could be used as inflaton potentials for cosmological

inflationary scenarios from strings [14].

In the following sections we will give an introduction to complex structures and moduli

spaces, in order to understand the classification of such scalar potentials. We will also give

the necessary stability criteria that may help determine phenomenological consequences

like inflation. The outline of the paper is the following: in section 2 we give a general

discussion of toroidal compactifications; sections 3, 4 and 5 discuss some remarkable cases

for the two, four and six-dimensional tori, respectively. In the last two sections we review

the work of Moore [12], and give the stability criteria around the various critical points, as

well as the general solution for the 6-dimensional torus.

2. Discussion of the models

2.1 Moduli of complex structures

Consider a the 2n-dimensional tori and define a holomorphic n-form Ω0, written as Ω0 =

dz1 ∧ · · · ∧ dzn, where the complex coordinates z depend on real coordinates x and y as

dzi = dxi + τijdyi. The τij are complex numbers that specify the complex structure of the

manifold. The flat metric on the torus can be written in terms of the complex coordinates

as ds2 = dzdz̄, and the Kähler form is ω = dz ∧ dz̄. The volume of the manifold can be

written in terms of the Ω0 form as:

Vol = (−1)n(n−1)/2in
∫

Ω0 ∧ Ω̄0 . (2.1)

One can always define a normalised n-form such that its total volume is normalised to 1,

i.e. Ω ≡ eK/2Ω0. The volume (2.1) defines a Kähler potential for the complex structure

moduli, K = − ln(Vol), and an induced Kähler metric, gIJ = ∂I∂JK, which normalises the

complex structure kinetic terms,

e−2φgIJ∂µZ
I∂µZJ , (2.2)
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where I, J are coordinates in the complex structure moduli, the τij for instance. These

kinetics terms are obtained from the reduction of the Hilbert-Einstein action on the par-

ticular manifold. The dependence on the dilaton comes from the closed-string tree-level

amplitude.

2.2 Description of the system

We will consider only D6-branes of type-IIA string theory,2 wrapping 3-cycles on the 6-

dimensional compact space, and expanding along the other 4-dimensional Minkowski co-

ordinates. The D6-brane will try to minimise its volume within the same homology class.

Depending on the point on the moduli space, the D-brane system can be stable or unsta-

ble to the decay to other D-branes whose sum belongs to the same class. The complex

structure moduli will vary due to the potential of the NS-NS tadpoles, triggering different

effects along their evolution. This can be generalised to T-dual configurations of type-I

theory by including orientifold planes and the orientifold images of the branes. We will

briefly discuss this case in relation to the R-R tadpole conditions, but we will not analyse

it in detail given the huge number of objects involved.

In this section we will review how to obtain these NS-NS tadpoles, the R-R tadpole can-

cellation conditions, the evolution of complex structure moduli due to the NS-NS tadpoles,

the possible decays of D-branes through the lines of marginal stability and a discussion

about the stability of the critical points of the potential.

2.3 R-R Tadpoles

In order to obtain a consistent compactification one has to impose the cancellation of all

the Ramond-Ramond tadpoles. In particular, they guarantee that the low energy chiral

spectrum is anomaly free. These tadpole conditions tell us that the sum of the R-R charges

of all branes must be equal to zero in the case of type-IIA compactifications, or equal to

the orientifold charge in the case of T-dual compactifications of type-I string theory. These

charges are specified by the homology class of the cycles where the branes are wrapped,

∑

a

Γa = 0 , (2.3)

for type-IIA theory, and
∑

a

Γa = qoΓo , (2.4)

for the dual of type-I theory, where qo is the R-R charge of the orientifold plane and Γo is

the cycle where it is wrapped. These conditions tell us that, whatever the combinations and

decays of branes, the system must have a total R-R charge equal to zero (in the type-IIA

case) or equal to qoΓo (in the T-dual of type I).

In this paper we will analyse configurations where the R-R tadpole conditions are not

explicitly satisfied. Only in the last part of the paper we will comment about a way to

cancel them by including other branes and antibranes.

2Through T-dualities one can easily generalise to other Dp-branes within type-IIA string theory. How-

ever, one should then realise that we have to take into account both Kähler and complex structure moduli.
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The idea is to study the flows of the complex structure fields in these systems for a small

set of branes, extracting some general features, and then try to impose these constraints

in a more complicated system where the number of branes is substantialy increased and

the analysis is not as straightforward. One can always consider adding to one of these

simple models some branes, with the charges necessary to cancel the R-R tadpoles, but

which are kept as spectators. For example, if we put a brane in a cycle we can always put

an antibrane in the same cycle3 but at large distances from the brane so that they do not

develop a tachyonic mode. The R-R tadpoles are immediately cancelled but the NS-NS are

added, giving just a factor two in the potential for the complex structure. The difference

will appear at one-loop in the open string description (D-brane interaction), but we only

consider the disk (tree-level) term. Higher order terms will change the structure of the

minima, as we will discuss later. Note that these conditions do not need to be imposed if

there are some non-compact coordinates transverse to the branes, as happens in the dyonic

black hole constructions of ref. [15].

2.4 NS-NS tadpoles

Let us turn now to the more dynamical NS-NS tadpoles. These tadpoles can be written

as the volume of the cycle where the D-brane is wrapped, divided by the squared root

of the whole volume of the manifold. This can be obtained directly by identification of

the tadpole from the cylinder amplitude. In the general case, one obtains these terms by

integration of the D-brane action in the compact space. If the NS-NS tadpoles are not

cancelled, potential terms will appear in the effective action.

We will consider that each D-brane is volume-minimising and that it preserves some

supersymmetry. In our particular case, this means that the brane is wrapping a special

lagrangian manifold. Then the modulus of the period where a BPS D-brane is living gives

its volume, and the NS-NS tadpole can be easily written as:

Va(φ, τ) = e−φ|ZΓa | = e−φ
∣

∣

∣

∣

∫

Γa

Ω

∣

∣

∣

∣

, (2.5)

where Γa is the cycle on which the brane wraps. If there is more than one BPS brane the

potential becomes

V (φ, τ) =
∑

a

Va = e−φ
∑

a

∣

∣

∣

∣

∫

Γa

Ω

∣

∣

∣

∣

. (2.6)

In the T-dual description of type-I theory one should also take into account the contribution

from the 29−p orientifold p-planes. Each of these planes has a tension and a R-R charge

equal to −2p−4 times the tension and the R-R charge of the brane (counting the orientifold

images of the brane as independent). For the case of O6-planes, there are 8 of them, with a

tension and R-R charge −4 times the brane’s. That gives, independently of the dimension

of the O-planes, a contribution to the NS-NS tadpoles [5]:

V (φ, τ) = −32
∣

∣

∣

∣

∫

Γo

Ω

∣

∣

∣

∣

. (2.7)

3In order to separate the brane from the antibrane, we assume that the moduli space of special la-

grangians for a given homology class is not a point.
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The NS-NS tadpoles are always positive definite. This is obvious for the type-IIA case,

where the tadpoles are the sum of a set of positive real numbers, which means that for this

case the absolute minimum of the potential will be the vacuum, a system where all the

branes have been annihilated (like in the brane-antibrane case), or when the cycles where

the D-branes are wrapped have degenerated to zero volume, in the boundary of moduli

space. Indeed, as we will see, depending on the starting point, the system can evolve to

the complete absence of branes or towards points where the volume of the branes vanish.

For the T-dual picture of type-I theory one can easily prove that the NS-NS tadpoles,

V (φ, τ) =
∑

a

Va = e−φ
[

∑

a

∣

∣

∣

∣

∫

Γa

Ω

∣

∣

∣

∣

− qo

∣

∣

∣

∣

∫

Γo

Ω

∣

∣

∣

∣

]

, (2.8)

are always positive definite, by using the triangle inequality and the R-R tadpole condi-

tions (2.4). This means that an absolute minimum of this configuration will occur when the

periods of the branes have the same phases and the same charges as those of the orientifold

plane, i.e. all the branes will try to be parallel to the orientifold plane ref. [5]. The system

will be supersymmetric in this case. Of course, another possibility, analogous to the one

in the type-II case, is that in which the branes evolve to a system where some cycles can

degenerate, or more complicated possibilities if bound states are considered. In this paper

we will not analyse configurations with orientifold planes, but is definitely worth studying

the extrapolation of our analysis to that case.

2.5 The evolution of the complex structure moduli fields

Here we will discuss the dynamics of the moduli fields. From the point of view of the

effective four dimensional theory, the action for the complex structure moduli fields is of

the form

L4 = e−2φgIJ∂µZ
I∂µZJ − V (φ,ZI) . (2.9)

This effective action has been obtained by dimensional reduction of the 10-dimensional

one, where the total volume factors have been absorved in the redefinitions of the fields.

From this action, we will see that the complex structure moduli Z I will evolve towards

some critical points of the moduli space, which we will characterise below.

Since the variations of the complex structure moduli fields are area-preserving, the

Planck constant in the Hilbert-Einstein term does not vary, and therefore the analysis of

the stability of the critical points of these potentials V (φ,Z I) can be done in the ZI , i.e. the

τij coordinates. The stability criteria will not change under the redefinition of Z I , needed

for obtaining canonically normalised kinetic terms in the lagrangian (2.9), only the speed

of approach to the critical points. Therefore, in all the figures below, we have drawn the

potential V (φ, τ) in the τij coordinates. We have also assumed that the dilaton is fixed.

Note that, when correctly normalised, the tree-level potential will be proportional to the

string coupling constant, gs = eφ. Now, since this potential is always positive, the dilaton

will evolve towards weak coupling.

– 6 –
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2.6 Lines of marginal stability

Two branes that are intersecting can have tachyonic modes in the spectrum of open string

excitations between them. The presence of tachyons is related to the possibility of the decay

of the system to another one with the same charges but with a lower volume. Locally these

intersecting branes can be seen as two planes. Depending on the dimension of these planes,

they can minimise their area [16, 17]. Something similar happens in general Calabi-Yau’s

where branes can decay to more stable systems by changing their complex structure [18].

This is a geometrical condition known as the angle criterion [16], that coincides with

the computation of the lowest string mode in the NS-NS sector. For every pair of branes

intersecting at a point one can define some angles following the procedure given in refs. [19,

16]. This procedure gives m angles for m-dimensional planes intersecting at a point in a

2m-dimensional space. These angles are called characteristic angles.

We will briefly describe here the six-dimensional

θ

θ

3

1

θ

2

1/2

1/2

1/2

1/4
1/4

1/8

1/8

Figure 1: Angle parameter space for a

system of two branes wrapping 3-cycles

on T 6.

toroidal case for factorizable branes. See also refs. [3,

10]. There are 4 scalar fields that can become tachy-

onic, with masses,

α′m2
1 =

1

2π
(−θ1 + θ2 + θ3) ,

α′m2
2 =

1

2π
(θ1 − θ2 + θ3) ,

α′m2
3 =

1

2π
(θ1 + θ2 − θ3) ,

α′m2
4 = 1− 1

2π
(θ1 + θ2 + θ3) , (2.10)

where the angles θi ∈ [0, π]. The above masses are

related to stability conditions for the pair of branes.

If there is no tachyon (notice that only one of the scalar fields can be tachyonic at a time)

the two brane system is stable, made of two BPS branes breaking all the supersymmetries.

If one of the scalars becomes massless then the system becomes supersymmetric, with the

number of supersymmetries related to the number of scalar fields that become massless

at the same time. These conditions can be represented in a three dimensional figure in

the angle space.4 The conditions bound a tetrahedron where the different regions are split

into:

• Non-supersymmetric and non-tachyonic (inside the tetrahedron),

• N = 1 supersymmetric (faces of the tetrahedron),

• N = 2 supersymmetric (edges of the tetrahedron),

• N = 4 supersymmetric (vertices of the tetrahedron),

• Non-supersymmetric and tachyonic (outside the tetrahedron).

4See the discussion and figures of ref. [3, 10].
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Lower dimensional cases can be derived from this one by taking one (four-dimensional

torus) or two (two-dimensional torus) angles to zero. In the two-dimensional case the sys-

tem is always tachyonic, signalling the instability of the system to the decay to a lower

volume brane. In the four-dimensional case, the system can be supersymmetric or unsta-

ble, without the possibility of getting a configuration of two branes that can be volume

minimising.

2.7 Critical points

In the 2-dimensional case, the minima of the potential (2.6) can be studied directly. In

the 4-dimensional case, most of the configurations can also be analysed directly. The most

interesting case is the 6-dimensional torus. As we have already mentioned, the stable points

of the NS-NS potential coincide with the final points of the flow of the attractor equations

considered in refs. [15, 13, 12]. We will follow the analysis of these equations done by Moore

in ref. [12].

In particular, in a 6-dimensional space, Moore shows that if |ZΓ(z)| has a stationary

point in z∗(Γ) ∈M with |ZΓ(z∗)| 6= 0 then the 3-form dual to the cycle can be decomposed

as Γ = Γ3,0 + Γ0,3. This stationary point, if it is in the interior of the complex structure

moduli space, it must be a local minimum. Then, at the critical point, Γ3,0 should be

proportional to the Ω form, up to a phase, Γ3,0 = −iC̄Ω, where C is a complex number.

Since Γ ∈ H3(X,Z), then Γ0,3 = iCΩ̄. The splitting condition above thus translates into

2 Im(C̄Ω) = Γ . (2.11)

Choosing a symplectic basis forH3(X,Z), with internal product (αI , β
J ) =

∫

αI∧βJ = δ J
I ,

we can write the cycle Γ = pIαI − qJβ
J , where the coefficients pI , qJ are integers. The

form can be written as Ω = XIαI + FJβ
J , and the splitting condition becomes

C̄XI − CX̄I = ipI

C̄F I − CF̄ I = iqI , (2.12)

where XI and F I are the periods along the αI and βI cycles, respectively, XI =
∫

αI
Ω =

∫

Ω∧βI . These are b3 equations for b3 real variables (where b3 is the dimension number of

H3(X,R)), so we can expect the solutions to be isolated points in the complex structure

moduli space.

3. The two-dimensional torus

In the case of two-dimensional tori, the special lagrangian submanifolds are straight lines

in the covering space of the torus. There is one for each homology class {n[a] + m[b]}.
The moduli of these curves is MΣ = R and correspond to translations in the transverse

directions to the branes. They can be complexified if Wilson lines are taken into account,

see for instance ref. [13].

In this case, the holomorphic 1-form is Ω0 = dz, where dz = dx+ τdy, and Im τ > 0.

The metric on the torus is ds2 = dzdz̄ and the Kähler form is ω = dz ∧ dz̄. The volume of

– 8 –
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the torus then becomes

Vol = i

∫

T 2

Ω0 ∧ Ω̄0 = Im τ . (3.1)

The Kähler potential for the complex structures is then K = − ln(Vol) = − ln(Im τ). The

Kähler metric in the half plane of complex structures becomes

ds2 =
dτdτ̄

(Im τ)2
, (3.2)

and the normalised 1-form:

Ω ≡ eK/2Ω0 =
dx+ τdy√

Im τ
. (3.3)

The periods of the cycles where the D-branes are wrapped become

ZΓ =

∫

Γ
Ω , (3.4)

which has the interpretation of the volume of the cycle relative to the square root of the

volume of the whole torus.

The potential obtained from the NS-NS tadpoles is related to the periods of the brane

wrapping the cycle Γ by eq. (2.5). In this case we have

V (φ, τ) = e−φ
|n+ τm|√

Im τ
. (3.5)

In the two-dimensional torus we can distinguish two cases:

• if m = 0, i.e. a brane only wrapping the [a] cycle, the minimum is at Im τ →∞, see

figure 2.

• if m 6= 0 the minimum is at τ → −n/m, a real number, see figure 3.

In both cases the system is driven by this potential to the boundary of the complex

structure moduli space, where the volume of the cycle where the brane is wrapped goes to

zero. The brane is stable against decays into other type of branes.

The lagrangian for the complex structure moduli is of the form

L = e−2φ
∂µτ∂

µτ̄

(Im τ)2
− e−φ

|n+ τm|√
Im τ

. (3.6)

By performing a T-duality along the (1, 0) direction one can understand this flow as the

one responsible for the contraction of the manifold to a point when the D-brane wraps the

whole manifold, or its expansion, when T-duality takes the brane to a lower dimensional

one, as already mentioned in the introduction.
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Figure 2: Contour plot for the potential

generated by a brane wrapping the (1, 0) cy-

cle in a two dimensional torus.

Figure 3: Contour plot for the potential

generated by a brane wrapping the (0, 1) cy-

cle in a two dimensional torus.
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Figure 4: Plot of the potential generated

by a brane wrapping the (1, 0) cycle in a two

dimensional torus.

Figure 5: Plot of the potential generated

by a brane wrapping the (1, 0) cycle in a two

dimensional torus.
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4. The four-dimensional torus

In this case, the holomorphic 2-form of the 4-dimensional torus is Ω0 = dz1 ∧ dz2, where
dzi = dxi+τijdyi and τij is a 2×2 complex matrix that characterises the complex structure

of the torus. The metric on the torus is ds2 =
∑

i dzidz̄i, and the Kähler form, ω =
∑

i dzi ∧ dz̄i. The volume of the torus becomes

Vol =

∫

T 4

Ω0 ∧ Ω̄0 = det τ + det τ̄ − τ11τ̄22 − τ22τ̄11 + τ12τ̄21 + τ21τ̄12 . (4.1)

The Kähler potential for the complex structures is as usual, K = − ln(Vol). The Kähler

metric in the plane of complex structures, gij = ∂i∂jK. The normalised 2-form becomes

Ω ≡ eK/2Ω0. Now we have the 2-cycles dual to the forms dx1 ∧ dx2, dxi ∧ dyj, dy1 ∧ dy2
that form a basis of H2(X,R). Let us denote the wrapping numbers along these cycles by

q0, qij, q̃0. The periods of the cycles where the branes are wrapped are given by

ZΓ =

∫

Γ
Ω =

q0 + qijτij + q̃0 det τ√
Vol

, (4.2)

which has the interpretation of the volume of the cycle relative to the square root of the

volume of the whole manifold. The potential from the NS-NS tadpoles are related to the

periods by V (φ, τ) = e−φ|ZΓ|. Some interesting cases are:

a) If the metric factories into two 2-dimensional tori, i.e. τij = δijτi, then the volume is

Vol =
∏

i

Im τi , (4.3)

and the potential takes a very simple form,

V (φ, τ) = e−φ
|q0 + τ1q11 + τ2q22 + τ1τ2q̃0|

∏

i

√
Im τi

. (4.4)

Note that in this case we are in a point in the complex structure moduli space where

some cycles have zero volume, those with coordinates q12 and q21. Now let us consider

the following subcases:

a.1) If the cycle is also factorizable into two 1-cycles, each one wrapping a two-

dimensional torus, then we can denote these 1-cycles by (r1, s1) and (r2, s2).

The potential is now

V (φ, τ) = e−φ
∏

i

|ri + siτi|√
Im τi

. (4.5)

The problem of analysing this potential reduces to that of the two-dimensional

torus. The system is then driven to the boundaries of the complex structure

moduli where the 1-cycles collapse.
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Figure 6: Contour plot of the potential gen-

erated by a brane wrapping the q0 = −1,
q = 0, q̃0 = 1 cycle in a four dimensional fac-

torizable torus with the same complex struc-

ture in the two 2-tori.

Figure 7: Three dimensional representation

of the potential generated by a brane wrap-

ping the q0 = −1, q = 0, q̃0 = 1 cycle in a

four dimensional factorizable torus with the

same complex structure in the two 2-tori.

a.2) We do not consider the cycle factorizable but we keep the same complex structure

in both two-dimensional tori, i.e. τ1 = τ2 = τ . Let us define q ≡ q11+q22. Then

the potential becomes

V (φ, τ) = e−φ
|q0 + τq + τ 2q̃0|

Im τ
. (4.6)

The behaviour of this potential is determined by the sign of the discriminant,

∆ = q2 − 4q0q̃0, of the polynomial:

p(τ) = q0 + τq + τ 2q̃0 . (4.7)

The different cases are:

a.2.i) If ∆ > 0, then the two roots are real and are at the boundary. The minimum

is in a line joining the two roots. The value of the minimum of the potential

is different from zero, V0(φ) = e−φ∆/q̃20 . See figures 6 and 7. Note that the

factorizable cycle cases are of this type.

a.2.ii) If ∆ = 0, then the two roots are real and coincide. The minimum is at the

root, in the boundary. The value of the minimum of the potential is at zero.

See figures 8 and 9.
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Figure 8: Contour plot of the potential gen-

erated by a brane wrapping the q0 = 0, q = 0,

q̃0 = 1 cycle in a four dimensional factoriz-

able torus with the same complex structure

in the two 2-tori.

Figure 9: Three dimensional representation

of the potential generated by a brane wrap-

ping the q0 = 0, q = 0, q̃0 = 1 cycle in a four

dimensional factorizable torus with the same

complex structure in the two 2-tori.

a.2.iii) If ∆ < 0, then the two roots are complex conjugates. The minimum is at

the root, in the interior of the moduli space of complex structures. The

value of the minimum of the potential is at zero. Following the analysis of

Moore [12], it seems that there is no BPS state at this point. We will see

in some specific examples that this is indeed the case. When ∆ < 0 the

system will cross a line of marginal stability and the brane is expected to

decay into another system. Note that this will never be the case when the

cycle is factorizable. See figures 10 and 11. We will analyse examples of

line-crossing in the more interesting case of 6-dimensions.

b) The general case in which the complex structure part of the metric does factorise will

not be analysed here. Naive extrapolation from the 6-dimendional analysis (T 6 =

T 4 × T 2) indicates that the system is driven to the boundary (∆ = 0). This was

expected, since there is a 2-dimensional torus that has always this behaviour.

5. The six-dimensional torus

In this case, the holomorphic 3-form is Ω0 = dz1 ∧ dz2 ∧ dz3, where dzi = dxi + τijdyi.

The metric on the 6-torus is defined by ds2 =
∑

i dzidz̄i and the Kähler form becomes
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Figure 10: Contour plot of the potential

generated by a brane wrapping the q0 = 1,

q = 0, q̃0 = 1 cycle in a four dimensional fac-

torizable torus with the same complex struc-

ture in the two 2-tori.

Figure 11: Three dimensional representa-

tion of the potential generated by a brane

wrapping the q0 = 1, q = 0, q̃0 = 1 cycle in a

four dimensional factorizable torus with the

same complex structure in the two 2-tori.

ω =
∑

i dzi ∧ dz̄i. The volume of the torus is

Vol = i

∫

T 6

Ω0 ∧ Ω̄0 = i [det τ − det τ̄ + tr(τ Cof τ̄)− tr(τ̄ Cof τ)] , (5.1)

where the cofactor of a matrix is CofA = detA (A−1)T . The Kähler potential for the

complex structures is K = − ln(Vol). The Kähler metric in the plane of complex structures,

gij = ∂i∂jK. The normalised 3-form: Ω ≡ eK/2Ω0. Now we have the 3-cycles dual to the

following forms, which form a basis of H3(T 6,R),

α0 = dx1 ∧ dx2 ∧ dx3 ,
αij =

1

2
εilm dxl ∧ dxm ∧ dyj ,

βij =
1

2
εjlm dxi ∧ dyl ∧ dym ,

β0 = −dy1 ∧ dy2 ∧ dy3 , (5.2)

which satisfy the relation:
∫

T 6

αI ∧ βJ = δ J
I . (5.3)
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The wrapping numbers along these cycles are q0, Qij, P
ij, p0, respectively. And the periods

of the cycles where the branes are wrapped can be written as

ZΓ =

∫

Γ
Ω =

q0 +Qij τ
ij + P ij Cof τij − p0 det τ√

Vol
, (5.4)

which has the interpretation of the volume of the cycle relative to the square root of the

volume of the whole manifold. The potential from the NS-NS tadpoles are related to the

periods by V (φ, τ) = e−φ|ZΓ|. Particular cases are:

a) If the metric factories into three 2-dimensional tori, i.e. τij = δijτi, then the volume

is

Vol =
∏

i

Im τi , (5.5)

and the potential takes a very simple form,

V (φ, τ) = e−φ
∣

∣q0 +
∑

iQii τ
i + 1

2

∑

i P
iiεijkτ

jτk − poτ1τ2τ3
∣

∣

∏

i

√
Im τi

. (5.6)

Note that in this case we are at a point in the complex structure moduli space where

some cycles have zero volume, those with coordinates Qij and P ij, with i 6= j. Now

let us consider the following subcases:

a.1) If the cycle is also factorizable into two 1-cycles, each one wrapping a two di-

mensional torus. Let us denote these 1-cycles by (r1, s1)(r2, s2)(r3, s3). The

potential is now:

V (φ, τ) = e−φ
∏

i

|ri + siτi|√
Im τi

. (5.7)

The problem of analysing this potential reduces to the two dimensional torus

problem. The system is then driven to the boundaries of the complex structure

moduli where the 1-cycles collapse.

a.2) We do not consider a factorizable cycle, but we keep the same complex structure

in all two-dimensional tori, i.e. τi = τ . Let us define 3q ≡ ∑

iQii and 3p ≡
∑

i P
ii. Then the potential becomes

V (φ, τ) = e−φ
|q0 + 3qτ + 3pτ 2 − p0τ3|

(Im τ)3/2
. (5.8)

The behaviour of this potential is determined by the sign of the discriminant,

∆ = 12p2q2 − (3pq + p0q0)
2 + 4(p0q3 − q0p

3), of the polynomial:

p(τ) = q0 + 3qτ + 3pτ 2 − p0τ3 . (5.9)

The discriminant gives the number and the type of solutions to p(τ). As in the

four dimensional case, there are 3 subcases:
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Figure 12: Contour plot of the potential

generated by a brane wrapping the q0 = 0,

q = 1/3, p = 0, p0 = −1 cycle in a six di-

mensional factorizable torus with the same

complex structure in the three 2-tori.

Figure 13: Three dimensional representa-

tion of the potential generated by a brane

wrapping the q0 = 0, q = 1/3, p = 0,

p0 = −1 cycle in a six dimensional factoriz-

able torus with the same complex structure

in the three 2-tori.

a.2.i) if ∆ > 0, there are three real roots, all different. The minimum is in

the interior of the complex structure moduli space. The minimum of the

potential is not vanishing. Following the interpretation of Moore [12], this

means that the corresponding BPS state must exist. See figures 12 and 13.

Note that this possibility can be achieved with a factorizable cycle. The

analysis seems to be in contradiction with the case a.1). But now we are

doing a partial analysis by considering all the complex structures equivalent.

However one can get this kind of configurations by taking three factoriz-

ables cycles. For example, take (−1, 0)(1, 0)(1, 0), (0,−1)(0, 1)(0, 1) and

(1, 1)(1, 1)(1, 1). We will see this example in detail in the last section.

a.2.ii) if ∆ = 0, there are three real roots, but two of them are equal. The minimum

is at the boundary. The potential goes to zero at that point in the boundary.

See figures 14 and 15. Notice that this possibility can be achieved with a

factorizable cycle.

a.2.iii) if ∆ < 0, there is one real root and two complex conjugates. The minimum

is in the interior of the complex structure moduli. The potential goes to zero

at that point. See figures 16 and 17. Note that this possibility cannot be

achieved with a factorizable cycle. Following Moore we can suspect that the

BPS state does not exist. One interesting case when precisely this happens

is if we take the combination of two factorizable cycles: (1, 0)(1, 0)(1, 0) and
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Figure 14: Contour plot of the potential

generated by a brane wrapping the q0 = 0,

q = 0, p = 1/3, p0 = −1 cycle in a six di-

mensional factorizable torus with the same

complex structure in the three 2-tori.

Figure 15: Three dimensional representa-

tion of the potential generated by a brane

wrapping the q0 = 0, q = 0, p = 1/3,

p0 = −1 cycle in a six dimensional factoriz-

able torus with the same complex structure

in the three 2-tori.

(0, 1)(0, 1)(0, 1). It is easy to check that the minimum is when the two states

do not form a bound state. The minimum is at τ = i, where the two branes

have angles θi = π/2, i.e. at the centre of the tetrahedron defined by the

masses of the scalars that can become tachyons, see figure 1. They cannot

decay into a bound state.

b) If the metric is factorisable in two tori, one 4-dimensional, the other 2-dimensional,

T 6 = T 4 × T 2, we recover the previous lower-dimensional cases, and the system will

be driven to the boundary. An specific example of this behaviour is to consider that

the 3-cycles are factorised into 2-cycles wrapping the 4-dimensional torus and only

1-cycle in the 2-dimensional torus. Then, from the general analysis to be discussed

below, one can see that ∆ = 0.

c) If the metric cannot be factorised. In this case we have to study the general solution,

as described in ref. [12]. As we have seen above, the central charge can be taken to

be in this case
∫

Γ
Ω0 = q0 +Qijτ

ij + P ijCof τij − p0 det τ , (5.10)

i.e. the period with Ω0. The equations for the critical points (2.11) become:

Im(2C̄) = p0 ,
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Figure 16: Contour plot of the potential

generated by a brane wrapping the q0 = 1,

q = 0, p = 0, p0 = −1 cycle in a six di-

mensional factorizable torus with the same

complex structure in the three 2-tori.

Figure 17: Three dimensional representa-

tion of the potential generated by a brane

wrapping the q0 = 1, q = 0, p = 0, p0 = −1
cycle in a six dimensional factorizable torus

with the same complex structure in the three

2-tori.

Im(2C̄ τ ij) = P ij ,

Im(2C̄ Cof τij) = −Qij ,

Im(2C̄ det τ) = q0 . (5.11)

Note that there are b3 = 20 equations and 3 × 3 + 1 = 10 complex unkowns. The

solution of this system of equations is described in ref. [12]. Defining,

R ≡ Cof P + p0Q ,

M ≡ 2 detP + (p0q0 + tr(PQ))p0 ,

D ≡ 2[(trPQ)2 − tr(PQ)2]− (p0q0 + trPQ)2 + 4(p0 detQ− q0 detP ) , (5.12)

the solution exists for detR 6= 0, and D > 0. The result for a general cycle is given

by [12]

τ =
1

2R

[

2PQ− (p0q0 + tr(PQ)) +
i

2

√
D

]

,

2C̄ =
M√
D

+ ip0 . (5.13)

The value of the potential at the critical point is:

V0(φ) = e−φ
√
D . (5.14)

There are three different cases:
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– D > 0. There is a relation between p, M and detR, i.e. 4 detR = M 2 + p2D.

So in this case D > 0⇒ detR > 0. There is a solution and the brane exists at

the minimum.

– D = 0. We are in a boundary of the moduli space, Im τ = 0.

– D < 0. There is no BPS state with these charges in the minimum. The system

will decay into a set of branes.

Let us now compare with the factorizable cycles we are familiar with. Consider gener-

ically three 1-cycles (n1,m1)(n2,m2)(n3,m3). Then

Qij = diag(n2n3m1, n1n3m2, n2n1m3) ,

P ij = diag(m2m3n1,m1m3n2,m2m1n3) ,

q0 = n1n2n3 ,

p0 = −m1m2m3 . (5.15)

It is easy to check that in this case, D = 0 and detR = 0, so there is no solution inside the

complex structure moduli space, but only at the boundaries. This agrees with the previous

results that for factorizable cycles the minimum of the potential is at the boundary.

Let us now consider the sum of the (1, 0)(1, 0)(1, 0) and (0, 1)(0, 1)(0, 1) cycles. In

this case q = −p = 1, and Q = P = 0. Then D = −1 is a negative number, which

indicates that the bound state will decay into two states. It is easy to prove that for a

pair a factorizable branes D = −I, where I is the number of intersections between the two

branes, a topological number. Then we can say that the bound state of two branes is always

unstable and will decay to a two brane system. If the complex structure is factorizable one

can easily check that this happens when the angles are (π/2, π/2, π/2), i.e. at the centre

of the tetrahedron of figure 1. The proof is easy, applying SL(2,Z)3 transformations

one can take a general two brane factorizable configuration to a : (1, 0)(1, 0)(1, 0) and

b : (n1,m1)(n2,m2)(n3,m3). The minimum, as we have said, will be a two-state system.

Then the potential is proportional to the sum of the norms of the periods on these cycles.

If the complex structure is factorizable, the minimum will be at:

miRe τi + ni = 0
∏

i

|mi| Im τi = 1 . (5.16)

The angles θi are defined through

tan θi =
mi Im τi

miRe τi + ni
,

such that at the factorizable minimum they all become θi = π/2. The potential at the

minimum is precisely V0 = 2e−φ
√

|I|.
Note that by adding more factorizable branes we will never recover a general cycle

because Qij = Pij = 0, for i 6= j. That is, factorizable cycles only span diagonal Q and P

matrices.
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Figure 18: Contour plot of the potential

generated by a brane wrapping the q0 = 0,

Q = 1, P = 1, p0 = 0 cycle in a six di-

mensional factorizable torus with the same

complex structure in the three 2-tori.

Figure 19: Three dimensional representa-

tion of the potential generated by a brane

wrapping the q0 = 0, Q = 0, P = 0, p0 = −1
cycle in a six dimensional factorizable torus

with the same complex structure in the three

2-tori.

Another very interesting example is the following: three factorizable cycles:

(−1, 0)(1, 0)(1, 0), (0,−1)(0, 1)(0, 1) and (1, 1)(1, 1)(1, 1) combine into a general cycle: q0 =

p0 = 0, Q = P = 1. Following the same procedure, one can see that D = 3 > 0, such

that the initial brane configuration decays to the combined system in the minimum. The

minimum has a complex structure τ = (− 1
2 + i

√
3
4 )

�
. See figure 18, where the potential

is plotted keeping the complex structure diagonal and equal for the two dimensional tori.

The value of the potential at the minimum is, as expected, V0(φ) = e−φ
√
3.

6. Stabilising complex structure moduli. Examples

In the above examples we have seen different types of behaviours. The evolution of the

complex structure fields can drive them to the boundary of the moduli space, to a point in

the interior of the moduli space, or can make the brane system to decay by crossing lines

of marginal stability. We will described these three very distinct behaviours in this section,

with specific examples.

6.1 At the boundary

The simplest example one can construct with this kind of behaviour is a brane wrapping

a (0, 1) cycle in a two dimensional torus. To cancel the Ramond-Ramond tadpoles one

can put an antibrane on the same cycle but far away from the other in such a way that

– 20 –



J
H
E
P
0
5
(
2
0
0
2
)
0
4
2

there is no tachyonic mode between them. Of course, the one-loop corrections in the open

string description (tree-level in the closed string) will make these two branes approach one

another. However, at large distances it is sufficient to analyse only the tree-level potential.

Within this aproximation, we find that the effective scalar potential is of the form

V (φ, τ) = e−φ
|τ |√
Im τ

. (6.1)

The minimum of this potential is at τ → 0, i.e. at the boundary. Since there is one brane

that is always minimising the volume, the D-brane will never decay to another system, but

the brane and antibrane will separate, while the area is kept fixed.

Analogously, a brane wrapping a (1, 0) cycle and an antibrane wrapping the same cycle

in the opposite side of the torus will cancel the R-R tadpoles and produce a potential of

the form

V (φ, τ) = e−φ
1√
Im τ

. (6.2)

Minimisation of this potential drives the brane to Im τ → ∞, which means that the two

branes will separate and the tachyon will never appear.

This is a very interesting behaviour that contrasts with the one-loop correction re-

sponsible for the interaction between the two branes. By adding this interaction, we find

two competing effects: NS-NS tadpoles will take branes far apart from eachother, while

the D-brane interaction will bring them closer and closer. There is a limiting case in which

the two D-branes are just in opposite places in the compact space. The one-loop effect

is vanishing (it is a critical but unstable point) and the two branes will separate, never

decaying into the vacuum. Alternatively, one can imagine the branes at a distance such

that the two effects compensate eachother: the NS-NS tadpole potential, at tree-level, be-

ing momentarily cancelled by the one-loop interaction. An interesting physical application

of this unstable equilibrium is precisely that which may drive a relatively long period of

inflation [14].

6.2 At a point in the interior

The simplest system with this kind of behaviour is a six-dimensional torus with a bound

state of two D6-branes, (1, 0)(1, 0)(1, 0) and (0, 1)(0, 1)(0, 1). As we have seen in the previ-

ous section, the minimum is at the interior of the complex structure moduli space, where

the bound state has decayed to the two-brane system. This system is T-dual to a D9

D3-brane system.

Another system, described above, is the bound state of D6-branes: (−1, 0)(1, 0)(1, 0),
(0,−1)(0, 1)(0, 1) and (1, 1)(1, 1)(1, 1). In this case the bound state is stable in the minimum

of the potential. Of course, this system does not satisfy the Ramond-Ramond tadpole

conditions. However, we can always put an antibrane wrapped on the same cycle, but far

away in the compact space, as we have already discussed above.
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7. Conclusions and applications

In this paper we have applied some previous results of Moore [12], derived in the context

of BPS quantum black holes, to the analysis of stability of the critical points of the scalar

potential due to the NS-NS tadpoles in the context of non-supersymmetric toroidal com-

pactifications, when supersymmetry is broken by the presence of the D-branes. By studying

the structure of the potential for some set of branes we have found that the minima can

be located at the boundary or at a point in the interior of the complex structure moduli

space. Yet another possibility is that, in the evolution to the minimum, the system decay

to another one, across lines of marginal stability.

As we have seen in the last section, sometimes the minimum of the potential is not

in the vacuum for type-II strings as one would expect, but at a point where the non-

supersymmetric spectra decouple. This is analogous to a system of D-branes located at far

away points in the compactified space, as in the example mentioned in the introduction.

NS-NS tadpoles induce a potential that drives the system to the decompactification limit.

That is the usual runaway behaviour for non-supersymmetric compactifications.

It is also interesting to analyse how the flow is corrected by higher loop effects. For

instance, the interaction between two branes due to the exchange of closed string modes is

a one-loop effect (in the open string description) and can change drastically the behaviour

of the system. One can imagine some points where the attraction of a brane-antibrane

system (a one loop effect) is compensated by the disk potential (the NS-NS tadpole). This

competing effects can have very interesting applications for cosmological scenarios, see for

instance refs. [14].

Some studies for factorizable cycles and metric have been carried out recently for the

type 0’ in ref. [7], where the system seems to be driven to a point in the interior of the

complex structure moduli space and for type I string theory in ref. [5]. It would be very

interesting to analyse the general structure of the minima, i.e. for non-factorisable cycles

and metrics, within the context of non-supersymmetric strings and also for the type I,

where some complex moduli fields are projected out by the orientifold projection.
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[7] R. Blumenhagen, B. Körs and D. Lüst, Moduli stabilization for intersecting brane worlds in

type-0’ string theory, Phys. Lett. B 532 (2002) 141 [hep-th/0202024].

[8] C. Bachas, A way to break supersymmetry, hep-th/9503030.

[9] C. Angelantonj, I. Antoniadis, E. Dudas and A. Sagnotti, Type-I strings on magnetised

orbifolds and brane transmutation, Phys. Lett. B 489 (2000) 223 [hep-th/0007090];

C. Angelantonj and A. Sagnotti, Type-I vacua and brane transmutation, hep-th/0010279.

[10] R. Rabadán, Branes at angles, torons, stability and supersymmetry, Nucl. Phys. B 620

(2002) 152 [hep-th/0107036].

[11] W. Fischler and L. Susskind, Dilaton tadpoles, string condensates and scale invariance, Phys.

Lett. B 171 (1986) 383;

Dilaton tadpoles, string condensates and scale invariance, 2, Phys. Lett. B 173 (1986) 262

E. Dudas and J. Mourad, Brane solutions in strings with broken supersymmetry and dilaton

tadpoles, Phys. Lett. B 486 (2000) 172 [hep-th/0004165];

R. Blumenhagen and A. Font, Dilaton tadpoles, warped geometries and large extra dimensions

for non-supersymmetric strings, Nucl. Phys. B 599 (2001) 241 [hep-th/0011269].

[12] G.W. Moore, Arithmetic and attractors, hep-th/9807087; Attractors and arithmetic,

hep-th/9807056.

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C209
http://xxx.lanl.gov/abs/hep-th/9908130
http://jhep.sissa.it/stdsearch?paper=01%282000%29040
http://xxx.lanl.gov/abs/hep-th/9912204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB593%2C127
http://xxx.lanl.gov/abs/hep-th/0008250
http://jhep.sissa.it/stdsearch?paper=10%282000%29006
http://xxx.lanl.gov/abs/hep-th/0007024
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C49%2C591
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C49%2C591
http://xxx.lanl.gov/abs/hep-th/0010198
http://jhep.sissa.it/stdsearch?paper=02%282001%29030
http://jhep.sissa.it/stdsearch?paper=02%282001%29030
http://xxx.lanl.gov/abs/hep-th/0012156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C3103
http://xxx.lanl.gov/abs/hep-th/0011073
http://jhep.sissa.it/stdsearch?paper=02%282001%29047
http://xxx.lanl.gov/abs/hep-ph/0011132
http://jhep.sissa.it/stdsearch?paper=11%282001%29002
http://xxx.lanl.gov/abs/hep-th/0105155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB615%2C3
http://xxx.lanl.gov/abs/hep-th/0107166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C2018
http://xxx.lanl.gov/abs/hep-th/0107143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB616%2C3
http://xxx.lanl.gov/abs/hep-th/0107138
http://xxx.lanl.gov/abs/hep-th/0201205
http://xxx.lanl.gov/abs/hep-th/0203160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB532%2C141
http://xxx.lanl.gov/abs/hep-th/0202024
http://xxx.lanl.gov/abs/hep-th/9503030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB489%2C223
http://xxx.lanl.gov/abs/hep-th/0007090
http://xxx.lanl.gov/abs/hep-th/0010279
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C152
http://xxx.lanl.gov/abs/hep-th/0107036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB171%2C383
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB171%2C383
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB173%2C262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB486%2C172
http://xxx.lanl.gov/abs/hep-th/0004165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB599%2C241
http://xxx.lanl.gov/abs/hep-th/0011269
http://xxx.lanl.gov/abs/hep-th/9807087
http://xxx.lanl.gov/abs/hep-th/9807056


J
H
E
P
0
5
(
2
0
0
2
)
0
4
2

[13] F. Denef, (Dis)assembling special lagrangians, hep-th/0107152; Supergravity flows and

D-brane stability, J. High Energy Phys. 08 (2000) 050 [hep-th/0005049]; On the

correspondence between D-branes and stationary supergravity solutions of type II Calabi-Yau

compactifications, hep-th/0010222.

[14] G.R. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483];

C.P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh and R.-J. Zhang, The

inflationary brane-antibrane universe, J. High Energy Phys. 07 (2001) 047 [hep-th/0105204];

G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, hep-th/0105203;

G. Shiu and S.H. Tye, Some aspects of brane inflation, Phys. Lett. B 516 (2001) 421

[hep-th/0106274];

C. Herdeiro, S. Hirano and R. Kallosh, String theory and hybrid inflation/acceleration, J.

High Energy Phys. 12 (2001) 027 [hep-th/0110271];

B. S. Kyae and Q. Shafi, Branes and inflationary cosmology, Phys. Lett. B 526 (2002) 379

[hep-ph/0111101];
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