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iii) there is no stable solution at them ininum of the potential and the system decays into
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1. Introduction

B ranes at angles [| | provide a very rich fram ew ork for the construction of com pacti cations
w ith a chiral spectrum ofa very sim ilar structure to the one of the standard m odel E,H,H,
E,,D]. G enerically these m odels are non-supersym m etric, although som e supersym m etric
constructions can also be obtained [@ ]. These con gurations are T -dual pictures of branes
carrying non trivial bundles w rapping the com pact space , E, E,E].
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T here are tw o types of closed string tadpoles, the N eveu-Schw arz{N eveu-Schwarz (N S—
NS) and the Ram ondRam ond (R-R) tadpoles. The cancellation of the R-R tadpoles
is a necessary condition for the consistency of the theory. In particular, RR tadpole
cancellation conditions guarantee the absence of chiralanom alies in the low energy e ective
theory El, E]. However, even if the R-R tapdoles cancel, when supersymm etry is not
preserved the NSNS tadpolesm ay appear. T he system seem s to be consistent, but som e
potentials for the NSNS elds are generated, signalling that the con guration is not In
a stable vacuum , and the string vacuum has to be rede ned. This problem has been
addressed in several papers @,ﬂ].

W e analyse thisproblam of the uncancelled N SN S tadpoles in the context of intersect-
ing branes m odels, see also R ef. E]. G ven a cycle of a hom ology class on an arbitrary
com pacti cation space, we can wrap a brane on it. The systam will try to m inin ise the
volum e of the brane, Inducing a variation of the m etric m oduli space. W hen the D branes
wrap a half hom ology cycle, one can see that the potential depends only on the com plex
structure m oduli. Another way to see it is through the appearance of a NSNS tadpole
term that enters in the e ective action as a potential for the com plex structure m oduli

eld. O ne can check that this potential is proportional to the m odulus of the periods:

Z
¥ J= ; 1.1)

where isthe nom alised n-form in a general com plex n-din ensionalm anifold,and isa
cyclk in that class. This form speci es the com plex structure of the m anifold. Som etin es,
depending on the com plex structure, this brane is unstable against its decay into other
branes.

In this paper we have concentrated on tori of di erent (even) din ensions, and an
arbitrary num ber of branes. The questions we address here are the follow ing: given a
hom ology class, where is the com plex structure m oduli going to? Is theream ininum ? Is
the brane that w raps this cycle stable at them inimum ? T his problem is analogous to that
studied by M oore land D enef ], In their case related to the construction of stable BP S
black holes. W e have realised that the m inin a in both cases are exactly the sam e. Here
we analysed som e of the results of R ef. ] and extrapolated the analysis of them inin a
to our case. D1 erent phenom ena can take place in the ow of these com plex structure
m oduli, lke crossing lnes of m arginal stability that m ake som e branes decay into others
], etc.

W e give here ourm ain conclusions, and leave the description of the details for the fol-
Jow Ing sections. For the 2-dim ensional torus the com plex structurem oduli elds are driven
to the boundary of m oduli space. In the 4-dim ensional toruswe nd a welldi erentiated
behaviour depending on the w rappings of the branes around the hom ology cycles. In this
case, we analysed a large num ber of exam ples, although a general description is absent,
as we w il discuss below . The m ost interesting case, how ever, is the 6-dim ensional torus,
where we nd three di erent types of behaviours: i) A stable m inin a can be localised in
the interior of the m anifold of the com plex structure m oduli. T hisw ill only happen if the
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cycle is not factorizable !. i) In the case there is only one factorizable cycle, the com plex
structure m oduli are stabilised at som e points on the boundary. iil) W hen the cycle can
be decom posed into two factorizable cycles, one can easily see that the m inInum is at
som e point In the interior of the m oduli space, but the brane has decayed into a pair of
factorizable cycles. H ow ever, one can get stable con gurations in the interior of them oduli
space if one considersm ore than one factorizable brane. Exam ples of all the di erent types
of behaviours w ill be constructed. Note that we have not in posed here the R-R tadpole
cancellation conditions, although the dynam ics will not be a ected if we in pose them , as
we w il discuss later.

W hen Ram ond-Ram ond tadpole conditions are In posed, there are, in addition to
the vacua where all branes annihilate, som e speci ¢ vacua w here the non-supersym m etric
sectors decouple. A trivialexam ple w here this happens is that of a pair brane-antibrane at
distant points in a com pact space. Ifthedistance is larger than the string scale there w illbe
no tachyonicm odes. T he potentialdue to the N SN S tadpoles is proportional to the nverse
of the volum e of the com pact space, and arises from the sum over the w ndingm odes. T his
m eans that the potentialw illbem Inin ised when the volum e tends to In nity and the two
D branes are very far from each other. That is what we already know : tadpoles appear
In com pact spaces, but when the volum e goes to in nity its e ect is lke In a non-com pact
space. O f course, this is only a treedevel result and quantum corrections are expected.
For exam ple, at one-loop, there is an interaction between the pair due to the exchange of
m assless string excitations. Treedevel and one-loop interactions give two com peting e ects
that can change the direction of the ow .

M oreover, this uncancelled tadpoles could have very interesting physical applications.
For Instance, the scalar potentials arising from dynam icalvariations of intemal com pacti —
cation spaces (ie. com plex structures) could beused as in aton potentials for coan ological
In ationary scenarios from strings [@].

In the ollow ing sectionswe w illgive an Introduction to com plex structures and m oduli
spaces, In order to understand the classi cation of such scalar potentials. W e w illalso give
the necessary stability criteria that m ay help determm ine phenom enological consequences
like in ation. T he outline of the paper is the follow ing: in Section 2 we give a general
discussion of toroidal com pacti cations; Sections 3, 4 and 5 discuss som e ram arkable cases
for the two, four and six-din ensional tori, respectively. In the last two Sections we review
the work of M oore ], and give the stability criteria around the various critical points, as
well as the general solution for the 6-din ensional torus.

2. D iscussion of the m odels

2.1 M oduli of com plex structures

Consider a the 2n-din ensional tori and de ne a holom orphic nform o, written as ¢ =
dzy ~ " dz,, where the com plex coordinates z depend on real coordinates x and y as

'a 3—cycle is called factorizable if it can be decom posed into the product of three l—cycles, each one
wrapping a two din ensional torus. T hat is the case of m ost of the D brane m odels m entioned above.
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dz; = dx;+ i5dyi. The ;5 are com plex num bers that specify the com plex structure of the
manifold. The atm etric on the torus can be w ritten in tem s of the com plex coordinates
asds? = dzdz, and the Kahler form is ! = dz * dz. The volum e of the m anifold can be
written in temm s of the ( form as:
Z
Vol= ( 1)yp@® =2 0" o 21)

One can always de ne a nom alised n-form such that its total volum e is norm alised to 1,
ie. e¥=2 . The volum e @) de nes a K ahler potential for the com plex structure
modull,K = Ih(Vol),and an induced K ahlerm etric, gr5 = @;@;K , which nom alises the
com plex structure kinetic tem s,

e? gy zle z7; 22)

where I;J are coordinates In the com plex structure m oduli, the ;; for nstance. These
kinetics term s are obtained from the reduction of the H ibertF instein action on the par-
ticular m anifold. The dependence on the dilaton com es from the closed-string treedevel
am plitude.

2.2 D escription of the system

W e will consider only D 6-branes of Type IIA string theory/ wrapping 3-cycles on the
6-din ensional com pact space, and expanding along the other 4-din ensional M inkow ski
coordinates. The D 6-brane will try to m Inin ise its volum e w ithin the sam e hom ology
class. D epending on the point on the m oduli space, the D brane system can be stable or
unstable to the decay to other D branesw hose sum belongs to the sam e class. T he com plex
structure m oduliw ill vary due to the potential of the N SN S tadpoles, triggering di erent
e ects along their evolution. T his can be generalised to T -dual con gurations of Type I
theory by including orientifold planes and the orientifold im ages of the branes. W e will
brie y discuss this case in relation to the R-R tadpole conditions, but we w ill not analyse
it In detail given the huge num ber of ob fcts involved.

In this section wew illreview how to obtain these N SN S tadpoles, theR R tadpole can-—
cellation conditions, the evolution of com plex structurem odulidue to the NSNS tadpols,
the possible decays of D branes through the lines of m arginal stability and a discussion
about the stability of the critical points of the potential.

23 RR Tadpoles

In order to obtain a consistent com pacti cation one has to in pose the cancellation of all
the R am ond-R am ond tadpoles. In particular, they guarantee that the low energy chiral
spectrum is anom aly free. T hese tadpole conditions tell us that the sum ofthe R R charges
of all branes m ust be equal to zero in the case of Type IIA com pacti cations, or equal to

27 hrough T -dualities one can easily generalise to other D p-branes w ithin T ype ITA string theory. H ow —
ever, one should then realise that we have to take into account both K ahler and com plex structure m oduli.
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the ordentifold charge in the case of T dualcom pacti cations of T ype I string theory. T hese
charges are speci ed by the hom ology class of the cycles w here the branes are w rapped,

a=0; (2.3)

for Type TIA theory, and
a= Db o7 (24)

a
for the dual of Type I theory, where g, is the R-R charge of the orientifod plane and
is the cycle where it is w rapped. T hese conditions tell us that, w hatever the com binations
and decays of branes, the system m ust have a totalR R charge equalto zero (in the Type
IIA case) orequalto ¢, o (in the T dualof Type I).

In thispaper we w illanalyse con gurations where the R R tadpole conditions are not
explicitly satis ed. Only In the last part of the paper we w ill comm ent about a way to
cancel them by including other branes and antibranes.

T he dea isto study the ow softhe com plex structure eldsin these system sfora an all
set of branes, extracting som e general features, and then try to in pose these constraints
In a more com plicated system where the num ber of branes is substantialy increased and
the analysis is not as straightforward. One can always consider adding to one of these
sin ple m odels som e branes, w ith the charges necessary to cancel the R-R tadpoles, but
which are kept as spectators. For exam ple, f we put a brane in a cycle we can always put
an antbrane i the sam e cyclk® but at large distances from the brane so that they do not
develop a tachyonicm ode. TheR R tadpoles are Inm ediately cancelled but the NSNS are
added, giving just a factor two In the potential for the com plex structure. The di erence
w ill appear at one-loop iIn the open string description (D Jrane interaction), but we only
consider the disk (treeevel) term . H igher order temm s w ill change the structure of the
m inin a, as we w ill discuss later. N ote that these conditions do not need to be in posed if
there are som e non-com pact coordinates transverse to the branes, as happens in the dyonic
black hole constructions of R ef. L.

24 NSNS Tadpoles

Let us tum now to the m ore dynam ical NSNS tadpoles. T hese tadpoles can be w ritten
as the volum e of the cycle where the D brane is wrapped, divided by the squared root
of the whole volum e of the m anifold. This can be obtained directly by identi cation of
the tadpole from the cylinder am plitude. In the general case, one obtains these term s by
Integration of the D -brane action in the com pact space. If the NSNS tadpoles are not
cancelled, potential term s w ill appear in the e ective action.

W e w ill consider that each D Jborane is volum e inim ising and that it preserves som e
supersymm etry. In our particular case, this m eans that the brane is wrapping a special
Lagrangian m anifold. T hen them odulus of the period wherea BP S D brane is living gives

*In order to separate the brane from the antibrane, we assum e that the m oduli space of special La-
grangians for a given hom ology class is not a point.
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its volum e, and the NS-N S tadpole can be easily w ritten as:
Val 7 )=e % _j=-¢e ; (2.5)

where . isthe cycle on which the brane wraps. If there ism ore than one BP S brane the

potential becom es 7
X X

Vi(; )= Va= e : (26)
a a a
In the T -dualdescription of T ype I theory one should also take into account the contribution
from the 2° P orfentifold p-planes. Each of these planes has a tension and a R-R charge
equalto 2P * tim esthe tension and theR R charge of the brane (counting the orientifold
In ages of the brane as Independent). For the case of O 6-planes, there are 8 of them ,w ith a
tension and RR charge 4 tin es the brane’s. T hat gives, Independently of the din ension
of the O planes, a contribution to the NSNS tadpoles [E]:
Z
V()= 32 : (2.7)

TheNS-N S tadpoles are always positive de nite. T his isobvious for the T ype I1A case,
w here the tadpoles are the sum of a set of positive realnum bers, w hich m eans that for this
case the absolute m Ininum of the potential w ill be the vacuum , a system where all the
branes have been annihilated (lke in the braneantibrane case), or when the cycles w here
the D branes are w rapped have degenerated to zero volum e, in the boundary of m oduli
space. Indeed, as we w ill see, depending on the starting point, the system can evolve to
the com plete absence of branes or tow ards points w here the volum e of the branes vanish.

For the T dualpicture of T ype I theory one can easily prove that the NSNS tadpoles,

n #
X X Z Z

V()= Vo= e %D i (2.8)
a a a o

are alw ays positive de nite, by using the triangle inequality and theR R tadpole conditions
(24). This m eans that an absolute m ininum of this con guration w ill occur when the
periods of the branes have the sam e phases and the sam e charges as those of the ordentifold
plane, ie. allthe branesw ill try to be parallel to the orientifold plane R ef. E]. T he system
w ill be supersym m etric In this case. O £ course, another possibility, analogous to the one
In the Type II case, is that in which the branes evolve to a systam where som e cycles can
degenerate, or m ore com plicated possibilities if bound states are considered. In this paper
we w ill not analyse con gurations w ith orientifold planes, but is de nitely worth studying
the extrapolation of our analysis to that case.

2.5 The evolution of the com plex structure m oduli elds

Here we will discuss the dynam ics of the m oduli elds. From the point of view of the
e ective four din ensional theory, the action for the com plex structure m oduli elds is of
the form

Ly=e? gze@ziez? v(;zh): (29)
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This e ective action has been obtained by din ensional reduction of the 10-din ensional
one, where the total volum e factors have been absorved in the rede nitions of the elds.
From this action, we will see that the com plex structure m oduli Z T will evolve towards
som e critical points of the m oduli space, w hich we w ill characterise below .

Since the variations of the com plex structure m oduli elds are area-preserving, the
P lanck constant in the H ibertF instein term does not vary, and therefore the analysis of
the stability of the critical points of these potentials V ( ;Z ') can be done in the z 1, ie.
the iy coordinates. The stability criterda will not change under the rede nition of Z 1,
neaded for obtaining canonically nom alised kinetic term s in the Lagrangian ), only
the speed of approach to the critical points. T herefore, in all the gures below , we have
drawn the potentialV ( ; ) in the j; coordinates. W e have also assum ed that the dilaton
is xed. Note that, when correctly nom alised, the treelevel potential w ill be proportional
to the string coupling constant, gs = e . Now , since this potential is always positive, the
dilaton w ill evolve tow ards weak coupling.

2.6 Lines of m arginal stability

T wo branes that are Intersecting can have tachyonic m odes in the specttum of open string
excitations between them . T he presence of tachyons is related to the possibility of the decay
of the system to another one w ith the sam e charges butw ith a lower volum e. Locally these
intersecting branes can be seen as two planes. D epending on the din ension of these planes,
they can m inin ise their area [@,]. Som ething sin ilar happens In general CalabiYau’s
w here branes can decay to m ore stable system s by changing their com plex structure @].
This is a geom etrical condition known as the angle criterion ], that coincides w ith
the com putation of the lowest string m ode in the NSNS sector. For every pair of branes
Intersecting at a point one can de ne som e angles follow ing the procedure given in R efs. [@,
]. T his procedure gives m angles for m -dim ensional planes intersecting at a point in a
2m -din ensional space. T hese angles are called characteristic angles.

W e will brie y describe here the six-din ensional toroidal case for factorizable branes.
See also Refs. [§,[L0). There are 4 scalar elds that can becom e tachyonic, w ith m asses,

Om%=2i( 1+ 2+ 3);
Om%=2i(1 2t 3);
2 1 (2.10)
Mi=F01+ 2 3);
O{ni:l ZL(]_"‘ 2+ 3)!

where the angles ; 2 [0; ]. The above m asses are related to stability conditions for the
pair of branes. If there is no tachyon (notice that only one of the scalar elds can be
tachyonic at a tim e) the two brane system is stable, m ade of two BP S branes breaking
all the supersym m etries. If one of the scalars becom esm assless then the system becom es
supersym m etric, w ith the num ber of supersym m etries related to the num berof scalar elds
that becom e m assless at the sam e tin e. T hese conditions can be represented in a three
din ensional gure in the angle space. The conditions bound a tetrahedron where the

“See the discussion and gures of R ef. [E,E].
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di erent regions are split Into:

N on-supersym m etric and non-tachyonic
(Inside the tetrahedron), 02 12

N = 1 supersymm etric
(faces of the tetrahedron), vz 18

N = 2 supersymm etric

(edges of the tetrahedron), 8 v
14
N = 4 supersymm etric 0,

(vertices of the tetrahedron),

N on-supersym m etric and tachyonic 05
(outside the tetrahedron).
12

Lower din ensional cases can be derived F igure 1: Angle param eter space for a system
from thisoneby taking one (four-din ensional Of two branes wrapping 3-cycleson T°.
torus) or two (two-din ensional torus) angles
to zero. In the two-din ensional case the sys-
tem is always tachyonic, signalling the instability of the system to the decay to a lower
volum e brane. In the fourdin ensional case, the system can be supersym m etric or unsta—
ble, w ithout the possibility of getting a con guration of two branes that can be volum e
m Inin ising.

2.7 C ritical points

In the 2-din ensional case, the m inin a of the potential ) can be studied directly. In
the 4-dim ensional case, m ost of the con gurations can also be analysed directly. Them ost
Interesting case is the 6-din ensionaltorus. A swe have already m entioned, the stable points
of the NSNS potential coincide w ith the nalpoints of the ow of the attractor equations
considered in Refs. @,, ]. W e will ollow the analysis of these equations done by
M oore In Ref. @].

In particular, in a 6-din ensional space, M oore show s that if ¥ (z)jhas a stationary
pointinz ( )2 M with ¥ (z )j& 0 then the 3-form dualto the cycle can be decom posed
30+ 08 This stationary point, if it is in the interior of the com plex structure
m oduli space, it must be a ocalm nmum . Then, at the critical point, 30 shoud be
proportional to the fom ,up to a phase, °? = iC ,whereC isa com plex num ber.
Since 2 H 3(x ;72), then 08 = iC . The splitting condition above thus translates into

as =

2Im (C )= : (211)

R
Choosing a sym plectic basis forH ° (X ;% ),w ith intermalproduct ( 1; 7 )= =7,
we can write the cycle = p! 1 q Y, where the coe cients p 1;q; are integers. The

form can bewrittenas = X ' {+ Fy; Y, and the splitting condition becom es

cxt cxt= it
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crt crl=1i; (212)

R
J here X I and F! are the periods along the 1 and ! cycles, respectively, X I = .=
1. These are by equations for by realvariables (where bs is the din ension num ber of
H>X ;R)), 50 we can expect the solitions to be isolated points in the com plex structure

m oduli space.

A

3. The two-din ensional torus

In the case of two-din ensional tori, the special Lagrangian subm anifolds are straight lines
in the covering space of the torus. There is one for each hom ology class fnla]l+ m [bl.
Them oduliof these curves isM = R and correspond to transhtions in the transverse
directions to the branes. They can be com plexi ed ifW ilson lines are taken into account,
see for instance Ref. [L3].

In this case, the holom orphic 1-form is = dz,wheredz= dx+ dy,and Im > O.
Them etric on the torus isds? = dzdz and theK ahler form is ! = dz ” dz. T he volum e of
the torus then becom es Z

Vol= i o/\ o= Im H (3.1)
T2

The K ahler potential for the com plex structures is then K = nvol) = In(In ). The
K ahler m etric in the half plane of com plex structures becom es

d d

ds” = 32
T 7 (32)
and the nom alised 1-fomm :
K =2 dx + dy
e 0= P—— ¢ (3.3)
Im
T he periods of the cycles w here the D branes are w rapped becom e
Z
7 = ; (34)

which has the interpretation of the volum e of the cycle relative to the square root of the
volum e of the whole torus.
T he potential obtained from the N SN S tadpoles is related to the periods of the brane
wrapping the cycle by Eqg. (E). In this case we have
N+ mj
V(; )=e —p—m— : (3.5)

In the two-din ensional torus we can distinguish two cases:

ifm = 0, ie. a brane only wrapping the [a]lcycle, them nimum isatm ! 1 ,see
Fi.[.
ifm 6 0 them ninum isat ! n=m ,a realnumber,seeFng3.
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In both cases the systam is driven by this potential to the boundary of the com plex
structure m oduli space, w here the volum e of the cycle w here the brane is w rapped goes to
zero. T he brane is stable against decays into other type of branes.

T he Lagrangian for the com plex structure m oduli is of the form

, @ @ i+ mJ

L=c¢e¢ e <

36
(Im ¥ Tm :6)

By perform ing a T -duality along the (1;0) direction one can understand this ow as the
one regponsible for the contraction of them anifold to a point when the D brane w raps the
whole m anifold, or its expansion, when T duality takes the brane to a lower din ensional
one, as already m entioned in the introduction.

4. The four-dmm ensional torus

In this case, the holom orphic 2-form of the 4-din ensional torus is o = dz; * dz,, where
dz; = dx;+ ydy;and 45 isa 2x2 com plex m atrix ’df)at characterises the com plex structure

<E)>f the torus. The metric on the torus is ds® = ;dzidz;, and the Kahlr form , ! =
;dz; * dzi. The volum e of the torus becom es
Z
Vol= 0" o=det + det 1122 2211+ 1221+t 21 12° (41)
T4
The K ahler potential for the com plex structures is as usual, K = nh(Vol). TheKahler

m etric in the plane of com plex structures, g;; = @;@4K . The norm alised 2-form becom es

T /N |

2.6

254 | / \ ‘
2.4+ ‘ / \ ‘

221 21 \ | \ \

1.89

1.6

1.4+

N\ \.
\ \ \ [

\ \

\ ;\\\\\

-3 2 a1 0 1 2 3 -3 2 1 2 3

1.24

X X

Figure 2: Contour plt for the potential Figure 3: Contour plt for the potential
generated by a brane w rapping the (1;0) cy—- generated by a brane w rapping the (0;1) cy—
cle In a two din ensional torus. cle In a two dim ensional torus.
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eX=2 . Now we have the 2-cycles dual to the form s dx! » dx?, dx'» dy3, dy* ~ dy?
that form a basis of H (X ;R ). Let us denote the w rapping num bers along these cycles by
T+ Gijr % - T he periods of the cycles where the branes are w rapped are given by
Z

7 _ Dt Gy it gpdet

r/—
Vol

; (4.2)

w hich has the interpretation of the volum e of the cycle relative to the square root of the
volum e of the whole m anifold. T he potential from the NSNS tadpoles are related to the
periodsby V ( ; )= e F 7 Some interesting cases are:

a) If the m etric factordes into two 2-dim ensional tord, ie. ;5= i i, then the volum e is

Y
Vol= In ;; (4.3)

and the potential takes a very sin ple form ,

(44)

Fo+ 14yt 2%2t 1 2]

V(; )=e q]é P :
i i

Note that in this case we are In a point in the com plex structure m oduli space where

som e cycles have zero volum e, those w ith coordinates ¢, and g1 . Now let us consider the
follow Ing subcases:

Figure 4: Plot of the potential generated Figure 5: Plot of the potential generated
by a brane w rapping the (1;0) cycle In a two by a brane w rapping the (1;0) cycle in a two
dim ensional torus. din ensional torus.
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a.l) If the cycl is also factorizable into two 1—cycles, each one w rapping a two-din ensional
torus, then we can denote these 1cycles by (r;;s1) and (rz;sy). T he potential is now

Y i+ s 4]
Vi(;)=e Eém—“j: (4.5)
i

i

T he problem of analysing this potential reduces to that of the two-din ensional torus. T he
system isthen driven to the boundaries of the com plex structurem oduliw here the 1cycles
collapse.

a.2) W e do not consider the cycle factorizable but we keep the sam e com plex structure in

both two-din ensionaltori, ie. 1= , = .Letusde neq g1+ ¢gy. Then thepotential
becom es
, 2 .
+ +
V(i )=e Fo g9 qO]: 46)
Im
T he behaviour of this potential is detem ined by the sign of the discrin nant, = g2
4gpep , of the polynom ial:
p( )=q+ g+ ‘o 4.7)

T he di erent cases are:

a2d) If > 0, then the two roots are real and are at the boundary. The m inin um
is In a line pining the two roots. The value of the m Inim um of the potential is di erent

from zero,Vo( )= e =g;.SeeFis.f and[]. Note that the factorizable cycl cases are
of this type.
a2l If = 0,then the two roots are realand coincide. Them ininum is at the root,

in the boundary. The value of them inin um of the potential is at zero. See Figs.§ and E

a2dil) If < 0, then the two roots are com plex conjugates. Them Inmum is at the

root, In the interior of the m oduli space of com plex structures. T he value of them Inm um

of the potential is at zero. Follow Ing the analysis of M ocore [@], it seem s that there is no
BPS state at thispoint. W e w ill see In som e speci ¢ exam ples that this is indeed the case.
W hen < 0 the system will cross a line of m arginal stability and the brane is expected

to decay into another system . Note that this will never be the case when the cyclk is
factorizable. See F gs. and . W e will analyse exam ples of line<crossing in the m ore
Interesting case of 6-din ensions.

b) The general case In which the com plex structure part of the m etric does factorise w ill
not be analysed here. N aive extrapolation from the 6-din endionalanalsis (T® = T* T?)
indicates that the systam is driven to the boundary ( = 0). This was expected, since
there is a 2-din ensional torus that has always this behaviour.
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5. The six-dim ensional torus

In this case, the holom orphic 3form is o = dz
The%)n etric on the 6-torus is de ned by ds? =
I = ;dz; * dzi. The volum e of the torus is

Z

Vol= i 0/\
T6

~dzp; © dzz, where dz; = dx; +  i5dyi.
,dz;dz; and the Kahler form becom es

o= 1ildet det + tr( Cof ) tx( Cof )]; (5.1)
where the cofactor of a matrix is CofA = detA & ' )T. The Kahlr potential for the
com plex structuresisK =  In(Vol). TheK ahlerm etric in the plane of com plex structures,
gij = @;@5K . The nom alised 3-form : eX=2 . Now we have the 3—<ycles dual to the

follow iIng form s, which form a basis of H 3(T6;R ),

5= 3 um dxTdx™ N dyT;

02 . (52)
lj:%j]m dxl/\dyl/\dym ;
o= dy'"“dy*"dy’;
which satisfy the relation: 7
oA J _ IJ (523)
T6

2501

200

150

100

50+

==
2 1 0 1 2

F igure 6: Contour plot of the potentialgen—
erated by a brane wrapping the ¢ = 1,
ag= 0, = 1cyclk in a ourdin ensionalfac-
torizable torus w ith the sam e com plex struc—
ture in the two 2-tori.

F igure 7: T hree din ensional representation
of the potential generated by a brane wrap-
pihgthegp = 1,g= 0, = lcyckin a
four dim ensional factorizable torus w ith the
sam e com plex structure In the two 2-tori.
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T hew rapping num bersalong these cyclesareqy,Q i5,P 3,0°, respectively. And the periods
of the cycles w here the branes are w rapped can be w ritten as
P+ Q ij 4 plcof i p° det

7, = = Pp— ; (54)
Vol

which has the interpretation of the volum e of the cycle relative to the square root of the
volum e of the whole m anifold. T he potential from the NSNS tadpoles are related to the
periodsby V ( ; )= e F 7 Particular cases are:

a) If the m etrdic factordes into three 2-din ensional tord, ie. 5= i i, then the volum e is

Y
Vol= In ;; (5.5)

and the potential takes a very sin ple form ,
P i lP
D + lQJ_'L + PN
RS2
oI

Pji_,kjk p0123
V(; )=e¢e =

(5.6)

Note that in this case we are at a point in the com plex structure m oduli space where
som e cycles have zero volum e, those w ith coordinates Q ;5 and P T, with 16 j.Now letus
consider the follow Ing subcases:

300+

200

100

F igure 8: Contour plot of the potentialgen— Figure 9: T hree din ensional representation
erated by a branew rapping thegy = 0,g= 0, of the potential generated by a brane wrap-
o = 1 cycle in a four din ensional factoriz— pingtheqgy = 0,g= 0,5 = 1 cyclke In a four
able torus w ith the sam e com plex structure din ensional factorizable torusw ith the sam e
in the two 2-tori. com plex structure in the two 2-tori.
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a.l) If the cycle is also factorizable into two 1—<ycles, each one w rapping a two dim ensional
torus. Let us denote these 1cycles by (r;;51) (2 ;S )(r3;53). The potential is now :
Y i+ s 43
i i 1] (5.7)

V(; )=e =
Im

i
T he problem of analysing this potential reduces to the two din ensional torus problam .

The system is then driven to the boundaries of the com plex structure m oduli where the
1l-cycles collapse.

a.2) W e do not consider a factorizable cycle, but we keethhe sam e com p]e:f) structure in
all two-din ensional tord, ie. ;= . Let usde ne 3gq ;Q3i and 3p ini. T hen
the potential becom es

o+ 33 +3p? P’

(In P2

V(; )=e¢e

T he behaviour of this potential is detem ined by the sign of the discrin fnant, = 12p 2
GBea+ PP ) + 4©°c  qp’), of the polynom ial:

p( )=+ 39 +3p2 pO 3. (5.9)

Figure 10: Contour plt of the potential Figure 11: Three din ensional representa—
generated by a brane wrapping the gy = 1, tion of the potential generated by a brane
g= 0, = 1lcyclk i a urdin ensionalfac- wrappihgtheqgy= 1,9= 0, = lcyckeina
torizable torus w ith the sam e com plex struc-— four dim ensional factorizable torus w ith the
ture in the two 2-tori. sam e com plex structure In the two 2-tori.

{15¢



T he discrin inant gives the num ber and the type of solutions to p( ). As in the four

din ensional case, there are 3 subcases:

a2d) if > 0, there are three real roots, alldi erent. Them inin um is in the interior
of the com plex structure m oduli space. The m ininum of the potential is not vanishing.
Follow ing the interpretation of M oore ], this m eans that the corresponding BP S state
must exist. See Figs. [[J and [[J. Note that this possbility can be achieved with a
factorizable cycle. T he analysis seem s to be In contradiction w ith the case a.l). But now
we are doing a partial analysis by considering all the com plex structures equivalent.

However one can get this kind of con gurations by taking three factorizables cycles.
For exam pl, take ( 1;0)(1;0)(1;0), (0; 1)(0;1)(0;1) and (1;1)(1;1)(1;1). W e will see
this exam ple in detail in the last section.

a2dl) if = 0, there are three real roots, but two of them are equal. Them inin um
is at the boundary. T he potential goes to zero at that point in the boundary. See F igs.
and E N otice that this possibility can be achieved w ith a factorizable cycle.

a2 dii) if < 0, there is one real root and two com plex conjugates. Them ininum is
in the interjor of the com plex structure m oduli. T he potential goes to zero at that point.
See Figs. and . N ote that this possibility cannot be achieved w ith a factorizable

v

NETSS ;' ;“"“‘:“:‘:“‘:::
RSSO IS SIS SSNSSK
S SSESSSSSSSSSISSES
SOTSS <SISS
CSSISSSISSISS
<> “::‘“

Figure 12: Contour plt of the potential
generated by a brane wrapping the oy = O,
g=1=3,p= 0,p° = 1cycle i a six di-
m ensional factorizable torus with the sam e
com plex structure In the three 2-tori.

Figure 13: Three din ensional representa—
tion of the potential generated by a brane
wrapping the 9y = 0, g = 1=3,p = O,
P’ = 1 cyck in a six dim ensional factoriz—
able torus w ith the sam e com plex structure
In the three 2-tori.
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cycle. Follow Ing M oore we can suspect that the BP S state does not exist. O ne interesting
case when precisely this happens is if we take the com bination of two factorizable cycles:
(1;0)(1;0)(1;0) and (0;1)(0;1)(0;1). It iseasy to check that them IniInum iswhen thetwo
states do not form a bound state. Them inimum isat = i, where the two branes have
=2, ie. at the centre of the tetrahedron de ned by the m asses of the scalars
that can becom e tachyons, see Fig.[ll. They cannot decay into a bound state.

angles ;=

b) If the m etric is factorisable in two tord, one 4-dim ensional, the other 2-din ensional,
driven to the boundary. An speci ¢ exam ple of this behaviour is to consider that the 3-

T?, we recover the previous lower-din ensional cases, and the systan w ill be

cycles are factorised Into 2-cycles w rapping the 4-din ensional torus and only 1cycle in the
2-din ensional torus. Then, from the general analysis to be discussed below , one can see
that = 0.

c) If the m etric cannot be factorised. In this case we have to study the general solution,
as describbed in Ref. f[]. A s we have seen above, the central charge can be taken to be in
this case

podet ;

0= D+ Qij Y4 plcof i (5.10)

1.4+

1.2
140000
120000
100000
08 80000
60000

0.6 40000 1

0.4+

0.27

B

05 0 05 1 15

Z——\

X

Figure 14: Contour plt of the potential
generated by a brane wrapping the oy = O,
g=0,p= 1=3,p° = 1 cycle in a six di-
m ensional factorizable torus with the sam e
com plex structure In the three 2-tori.

Figure 15: Three dim ensional representa—
tion of the potential generated by a brane
wrapping the 9 = 0, g = 0, p = 1=3,
P’ = 1 cyclk in a six dim ensional factoriz—
able torus w ith the sam e com plex structure
In the three 2-tori.
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ie. the period with . T he equations for the critical points (2.11]) becom e:

T (2C) = p°;

m(2c 9)=pY;
(5.11)
In (2C Cof )= Q575
In (2Cdet )= :

Note that there are by = 20 equationsand 3 3+ 1= 10 com plex unkowns. T he solution
of this systam of equations is described in R ef. ]. De ning,

R CofP + pOQ ;
M 2detP + (p’qp+ tr(® Q) ;
D 2[(ePQ)? wPQ)?] g+ oPQ )+ 4’de

(5.12)
JpdetP ) ;

the solution exists fordetR 6 0,and D > 0. The result for a general cycle is given by @]

_ L o e+ weon+ =D ;
= oR P 2 ’
M . 0
2C = p=+ Ip : (5.13)
D
T he value of the potential at the critical point is:
P
Vo( )= e D : (5.14)

T here are three di erent cases:

\

250

200

1501

100+

50+

Figure 16: Contour plt of the potential
generated by a brane wrapping the op = 1,
g=0,p= 0,p" = 1cyck hn a six di=
m ensional factorizable torus with the sam e
com plex structure In the three 2-tori.

Figure 17: Three din ensional representa—
tion of the potential generated by a brane
wrappihg theqy = 1,9= 0,p= 0,p° = 1
cycle In a six din ensional factorizable torus
w ith the sam e com plex structure in the three
2-ori.
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D > 0. There is a relation between p, M and detR , ie. 4detR = M? + p?D . So
in thiscase D > 0 ) detR > 0. There is a solution and the brane exists at the

minhinum .
D = 0.W e are In a boundary of them oduli space, In = 0.

D < 0. There isno BPS state w ith these charges in them ininum . The system will
decay into a set of branes.

Let usnow com pare w ith the factorizable cycles we are fam iliar w ith . C onsider gener—
ically three 1cycles (ng;m1)(ny;m 5 )(ns;m3). Then

Qij = diag(nznsm 1 ;ninsm p;nenim 3) ;
pl = djag(m oM 317 ;M 1M 3N ;M oM 11"13) ;
D

0 _ .
p’= mm,ms3:

(5.15)

ninznsy

It is easy to check that in thiscase,D = 0 and detR = 0, so there is no solution inside the
com plex structurem oduli space, but only at the boundaries. T his agrees w ith the previous
results that for factorizable cycles the m inin um of the potential is at the boundary.

Let us now consider the sum of the (1;0)(1;0)(1;0) and (0;1)(0;1)(0;1) cycles. In

thiscaseg= p= 1l,and Q = P = 0. Then D = 1 is a negative num ber, which
Indicates that the bound state will decay Into two states. It is easy to prove that for a
pair a factorizable branesD = I,whereI isthe num ber of intersections between the two

branes, a topologicalnum ber. T hen we can say that thebound state oftwo branes isalways
unstable and w ill decay to a two brane system . If the com plex structure is factorizable
one can easily check that this happens when the angls are ( =2; =2; =2), ie. at the
centre of the tetrahedron ofF:'g.El. T he proof is easy, applying SL (2;7Z )° transform ations
one can take a general two brane factorizable con guration to a : (1;0)(1;0)(1;0) and
b:(ni;mqi)ny;my)ns;ms). Them ininmum , as we have said, w ill be a two-state systam .
T hen the potential is proportional to the sum of the nom s of the periods on these cycles.
If the com plex structure is factorizable, them inimum w illbe at:

r‘}iRe i+ ni=0

]ﬂljﬁ'ﬂ i=1: (5.16)
i
The angles ; are de ned through
m;Im
tan 1= ;;
miRe ;+ nj
such that at the bctoﬁzab]em}j%ljmum they allbecome ; = =2. The potential at the
m inin um is precisely Vo = 2e 3.

N ote that by adding m ore factorizable branes we w ill never recover a general cycle
because Q 5= Pi;= 0, for 16 j. That is, factorizable cycles only span diagonalQ and P
m atrices.
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A nother very interesting exam ple is the follow ing: T hree factorizable cycles:
( 1;0)(1;0)(1;0), (0; 1)(0;1)(0;1) and (1;1)(1;1)(1;1) combine into a generalcycle: ¢y =
o= 0,0 = P = 1. Follow ing the sam e procedure, one can see that D = 3 > 0, such
that the Initial brane con guration decays to thepopm bined system in them ininum . The
m Inmmum has a complex structure = ( % + iT3)]L See Fjg.,where the potential
is plotted keeping the com plex structure diagonal and equal for the twopdjm ensional tori.

T he value of the potential at them InIn um is, as expected, Vo( )= e 3.

6. Stabilising com plex structure m oduli. E xam ples.

In the above exam ples we have seen di erent types of behaviours. T he evolution of the
com plex structure eldscan drive them to the boundary of them oduli space, to a point in
the interior of the m oduli space, or can m ake the brane system to decay by crossing lines
ofm arginal stability. W e w illdescribed these three very distinct behaviours in this section,
w ith speci ¢ exam ples.

6.1 At the boundary

T he sin plest exam ple one can construct w ith this kind of behaviour is a brane w rapping
a (0;1) cycle n a two din ensional torus. To cancel the Ram ond-R am ond tadpoles one
can put an antibrane on the sam e cycle but far away from the other in such a way that

Figure 18: Contour plt of the potential Figure 19: Three din ensional representa—

generated by a brane wrapping the oy = O, tion of the potential generated by a brane

Q =1,P = 1,p" = 0 cycke in a six d= wrmappihgtheq = 0,0 =0,P =0,p°= 1

m ensional factorizable torus with the sam e cycle In a six din ensional factorizable torus

com plex structure In the three 2-tori. w ith the sam e com plex structure in the three
2-ori.
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there is no tachyonic m ode between them . O £ course, the one-loop corrections in the open
string description (treedevel In the closed string) w illm ake these two branes approach one
another. H owever, at Jarge distances it is su cient to analyse only the treedevel potential.

W ithin this aproxin ation, we nd that the e ective scalar potential is of the form

V(; J)=e p=—1: (6.1)
Im
Them ninum of thispotentialisat ! 0, ie. at the boundary. Since there is one brane

that isalwaysm inin ising the volum e, the D brane w ill never decay to another system , but
the brane and antibrane w ill separate, while the area is kept xed.

A nalogously, a branew rapping a (1;0) cycle and an antibrane w rapping the sam e cycle
in the opposite side of the torus w ill cancel the R-R tadpoles and produce a potential of
the form

1
Im
M inin isation of this potential drives the brane to In. ! 1 , which m eans that the two

branes w ill separate and the tachyon w ill never appear.

This is a very interesting behaviour that contrasts w ith the one-loop correction re—
soonsible for the interaction between the two branes. By adding this Interaction, we nd
two com peting e ects: NSNS tadpoles w i1l take branes far apart from eachother, while
the D -brane interaction w ill bring them closer and closer. T here isa 1im iting case In which
the two D Joranes are just In opposite places In the com pact space. The oneloop e ect
is vanishing (it is a critical but unstable point) and the two branes w ill separate, never
decaying into the vacuum . A fematively, one can in agine the branes at a distance such
that the two e ects com pensate eachother: the NSNS tadpole potential, at treelevel, be-
ing m om entarily cancelled by the one-loop interaction. A n interesting physical application
of this unstable equilbrium is precisely that which m ay drive a relatively long period of
in ation [@].

6.2 Atapoint in the interior

T he sin plest system w ith this kind of behaviour is a six-din ensional torus w ith a bound
state of two D 6-branes, (1;0)(1;0)(1;0) and (0;1)(0;1)(0;1). Aswe have seen In the previ-
ous section, the m iInim um is at the interior of the com plex structure m oduli space, w here
the bound state has decayed to the twobrane system . This systam is T-dualto a D9
D 3-brane systam .

A nother systam , described above, is the bound state of D 6-branes: ( 1;0)(1;0)(1;0),
(0; 1)(0;1)(0;1)and (1;1)(1;1)(1;1). In thiscase thebound state is stable in them nin um
of the potential. O f course, this systam does not satisfy the Ram ond-R am ond tadpole
conditions. H owever, we can always put an antibrane w rapped on the sam e cycle, but far
away In the com pact space, as we have already discussed above.
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7. Conclusions and applications

In this paper we have applied som e previous results of M oore [@ ], derived in the context
of BPS quantum black holes, to the analysis of stability of the critical points of the scalar
potential due to the NSNS tadpoles in the context of non-supersym m etric toroidal com —
pacti cations, when supersym m etry is broken by the presence of the D -branes. By studying
the structure of the potential for som e set of branes we have found that the m Inim a can
be located at the boundary or at a point In the interior of the com plex structure m oduli
space. Yet another possibility is that, in the evolution to them inin um , the system decay
to another one, across lines of m arginal stability.

Aswe have seen in the last section, som etim es the m Inin um of the potential is not
in the vacuum for Type II strings as one would expect, but at a point where the non-
supersym m etric spectra decouple. T his is analogous to a system of D ‘branes located at far
away points in the com pacti ed space, as In the exam ple m entioned in the introduction.
NSNS tadpoles induce a potential that drives the system to the decom pacti cation lim it.
T hat is the usual runaw ay behaviour for non-supersym m etric com pacti cations.

It is also interesting to analyse how the ow is corrected by higher loop e ects. For
Instance, the interaction between two branes due to the exchange of closed string m odes is
a one-loop e ect (in the open string description) and can change drastically the behaviour
of the systam . O ne can in agine som e points where the attraction of a braneantibrane
systam (a one loop e ect) is com pensated by the disk potential (the NSNS tadpole). This
com peting e ects can have very interesting applications for coan ological scenarios, see for
Instance R efs. @].

Som e studies for factorizable cycles and m etric have been carried out recently for the
Type 0/ In Ref. [ﬂ],where the system seem s to be driven to a point in the interior of the
com plex structure m oduli space and for T ype I string theory in R ef. [E]. Tt woul be very
Interesting to analyse the general structure of the m inim a, ie. for non-factorisable cycles
and m etrics, w ithin the context of non-supersym m etric strings and also for the Type I,
where som e com plex m oduli elds are profcted out by the orientifold projction.
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