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Following a self-contained review of the basics of the theory of cosmological perturbations, we
discuss why the conclusions reached in the recent paper by Kaloper et al. [1] are too pessimistic
estimates of the amplitude of possible imprints of trans-Planckian (string) physics on the spectrum of
cosmic microwave anisotropies in an inflationary Universe. It is shown that the likely origin of large
trans-Planckian effects on late time cosmological fluctuations comes from nonadiabatic evolution of
the state of fluctuations while the wavelength is smaller than the Planck (string) scale, resulting in
an excited state at the time that the wavelength crosses the Hubble radius during inflation.
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I. INTRODUCTION

It has recently been emphasized that the predictions
of inflationary cosmology for the spectrum of density
fluctuations and Cosmic Microwave Background (CMB)
anisotropies may not be robust against effects of trans-
Planckian (string) physics [2]. This trans-Planckian prob-

lem can easily be seen from the space-time sketch in
Fig. 1. Essentially all current realizations of the infla-
tionary scenario are based on weakly interacting fields,
in which context the Fourier modes of the field repre-
senting cosmological fluctuations evolve independently
from the initial time (e.g. the beginning of inflation)
until their amplitude reaches order 1 in the recent past.
Most models also have a period of inflation greatly in
excess of the minimal number required to solve the cos-
mological problems of standard cosmology [3, 4]. Pro-
vided that the period of inflation lasts more than about
70 e-foldings, then the physical wavelength of comov-
ing scales responsible for present CMB anisotropies was
smaller than the Planck (string) scale at the beginning
of inflation. Hence, to study the evolution of fluctuations
from the time they are formed until the time their wave-
length becomes larger than the Planck (string) scale, the
effects of trans-Planckian (string) physics cannot be ne-
glected.

The possible effect of trans-Planckian physics on the
spectrum of cosmological perturbations was first studied
in detail in Ref. [5] (see also Ref. [6]) by means of re-
placing the standard free field theory dispersion relation
by some ad hoc dispersion relations. The same method
and dispersion relations were used in [7] and [8] in the
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context of an analysis of possible trans-Planckian effects
on black hole radiation. It was found that if the evolu-
tion of the modes is non-adiabatic in the initial stages,
then significant effects on the spectrum of cosmological
fluctuations are possible [9, 10]. Subsequently, the possi-
bility of measurable effects of trans-Planckian physics on
observables such as CMB anisotropies and power spec-
tra of scalar and tensor metric fluctuations was stud-
ied [11, 12, 13, 14, 15, 16] in models where the trans-
Planckian physics is based on stringy space-time uncer-
tainty relations, and in some examples large effects were
found.

Very recently, a paper has appeared [1] which claims
to show using general effective field theory techniques
that trans-Planckian effects on CMB anisotropies in an
inflationary Universe must be suppressed by a factor of
(Hinf/M)2, where Hinf is the Hubble constant during in-
flation, and M is the scale of trans-Planckian physics.
This result implies that trans-Planckian effects are not
observable. This conclusion appears to be in conflict with
the analyses of Refs. [13, 15, 16].

The purpose of this note is to point out that the con-
clusions of Ref. [1] are too pessimistic concerning the po-
tential observability of trans-Planckian (string) physics
in the spectrum of CMB anisotropies. The key point is
that in Ref. [1], the effect of trans-Planckian physics on
the amplitude of fluctuations of a particular Fourier mode
of the fluctuating field is estimated at the time the mode
crosses the Hubble radius during inflation, and assuming
that the state of this mode is the local vacuum state at
that time. Recall that in an expanding background, the
vacuum state of a scalar field on this background - and
the fields which characterize cosmological perturbations
are such scalar fields - is not uniquely defined. In par-
ticular, a state which at early times is empty of particles
in the comoving frame will in general appear to contain
many particles at a later time [17, 18]. The effect de-
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scribed in Ref. [1] is indeed usually very small. However,
the more important effect of trans-Planckian physics is
to open the possibility of a non-adiabatic evolution of the
initial local vacuum (the local vacuum at the initial time,
e.g. the beginning of inflation) on trans-Planckian scales,
thus leading to a state of the fluctuation mode at the time
of Hubble radius crossing which is highly excited [5], or
to lead to other effects which can be characterized as
changing the initial conditions on the state at the time
when the fluctuation mode crosses the Hubble radius.

To make these points clear, it is important to dispel the

myth that in current models of inflation, based on weakly
coupled fields, the fluctuations are generated at the time
they cross the Hubble radius. Thus, in the following
section we will give an overview of the quantum theory of
the generation and evolution of cosmological fluctuations,
hopefully providing a pedagogical introduction to this
subject. In Sec. III, we then compare the analysis of [1]
with the studies which have shown that trans-Planckian
physics may leave imprints in physical quantities such
as CMB anisotropies which are observable. Finally, in
Sec. IV, we present our conclusions.

FIG. 1: Space-time sketch of the evolution of a comoving length scale with comoving wavenumber k in an inflationary Universe.
The coordinates are physical distance and cosmic time t. At very early times, the wavelength is smaller than the Planck scale
ℓPl (Phase I), at intermediate times it is larger than ℓPl but smaller than the Hubble radius H−1 (Phase II), and at late times
during inflation it is larger than the Hubble radius (Phase III).

II. THEORY OF COSMOLOGICAL

PERTURBATIONS

In the following we give an overview of the quantum
theory of cosmological perturbations. The reader is re-
ferred to [19] for details and references to the original
literature (see for example Ref. [20]. A modern text-
book treatment can also be found in [21]. Since gravity
is a purely attractive force, and since the fluctuations
on scales of the CMB anisotropies were small when the
anisotropies were generated, the fluctuations had to have

been very small in the early Universe. Thus, a linearized
analysis of the fluctuations is justified. In this case, the
Fourier modes of the cosmological fluctuations evolve in-
dependently.

The basic idea of the theory of cosmological perturba-
tions (which includes the theory of gravitational waves)
is to quantize the linear fluctuations about a classical
background cosmology described by a homogeneous and
isotropic Friedmann cosmology with metric

ds2 = a2(η)
(

dη2 − dx2
)

. (1)
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Here, η is conformal time related to the physical time t
via dt = a(η)dη, and we have considered for simplicity
the case of a spatially flat Universe. The coordinates x

are comoving coordinates. The starting point is the full
action of gravity plus matter

S =

∫

d4x
√−gR + Sm, (2)

where the first term is the usual Einstein-Hilbert action
for gravity, R being the Ricci scalar and g the determi-
nant of the metric, and Sm is the matter action. For the
sake of simplicity, and since it is the usual assumption in
simple inflationary Universe models, we take matter to
be described by a single minimally coupled scalar field
ϕ. Then, we separate the metric and matter into clas-

sical background variables g
(0)
µν , ϕ(0) which depend only

on time, and fluctuating fields hµν , δϕ which depend on
space and time and have vanishing spatial average:

gµν = g(0)
µν (η) + hµν(η,x), ϕ = ϕ(0)(η) + δϕ(η,x) .

(3)

There are two kinds of metric perturbations of interest in
early Universe cosmology: the scalar and tensor fluctua-
tions 1. At the level of the linearized equations of motion
there is no coupling between scalar and tensor modes,
and thus they can be quantized independently.

Let us first consider tensor fluctuations. Tensor fluctu-
ations correspond to gravitational waves. The perturbed
metric only has non-vanishing space-space components
hij(η,x),

ds2 = a2(η)[dη2 − (δij + hij)dxidxj ], (4)

which can be expanded in terms of the two basic traceless
and symmetric polarization tensors e+

ij and e×ij as

hij(η,x) = h+e+
ij + h×e×ij (5)

where the space and time dependence is in the coefficient
functions h+ and h×. When the Einstein action is ex-
panded to second order in the metric fluctuations about
a Friedmann-Robertson-Walker (FRW) background (1),
the action for h+ and h× reduces to that of a free, mass-
less, minimally coupled scalar field h in the FRW back-
ground. To obtain the correct normalization, the metric
must be multiplied by the normalization factor mPl/

√
2,

where mPl is the four-dimensional Planck mass. In order
to obtain the equation of motion, we expand the action
to second order in the fluctuating fields (the terms in
the action linear in the fluctuating fields vanish if the
background is taken to be a solution of the equations of
motion). In Fourier space, the action is

δSg =

∫

dη
a2

2

(

h′
−kh′

k − k2h−khk

)

. (6)

1 Vector fluctuations are redshifted in expanding cosmological

backgrounds and hence are not usually considered.

This leads to the equation of motion

h′′
k + 2

a′

a
h′
k + k2hk = 0 . (7)

The Hubble friction term can be eliminated via a change
of variables µk ≡ ahk , yielding the equation of motion

µ′′
k +

(

k2 − a′′

a

)

µk = 0 . (8)

One recognizes the equation of motion of a parametric os-
cillator, an oscillator with a time-dependent fundamental
frequency.

Let us now turn the second type of cosmological per-
turbations: scalar perturbations. Scalar metric fluctua-
tions couple to matter, and give rise to the large-scale
structure of the Universe. The description of scalar met-
ric perturbations is more complicated than the analysis
of gravitational waves both because of the coupling to
matter and also because some perturbation modes cor-
respond to space-time reparametrizations of a homoge-
neous and isotropic cosmology. This is the issue of gauge
fixing. A simple way to address this issue is to work in a
system of coordinates which completely fixes the gauge.
A simple choice is the longitudinal gauge, in which the
metric takes the form [19]

ds2 = a2(η)
[

(1 + 2Φ)dη2 − (1 − 2Ψ)δijdxidxj
]

, (9)

where the space and time dependent functions Φ and Ψ
are the two physical metric degrees of freedom which de-
scribe scalar metric fluctuations The fluctuations of mat-
ter fields give additional degrees of freedom for scalar
metric fluctuations. In the simple case of a single scalar
matter field, the matter field fluctuation can be denoted
by δϕ. In the absence of anisotropic stress, it follows
from the Einstein equations that the two metric fluctu-
ation variables Φ and Ψ coincide. Due to the Einstein
constraint equation, the remaining metric fluctuation Ψ
is determined by the matter fluctuation δϕ. It is clear
from this analysis of the physical degrees of freedom that
the action for scalar metric fluctuations must be express-
ible in terms of the action of a single free scalar field v
with a time dependent mass (determined by the back-
ground cosmology). As shown in [22] (see also [23]), this
field is

v = a

(

δϕ +
ϕ′

0

H Ψ

)

= zR , (10)

where ϕ0(η) ≡ ϕ(0) denotes the background value of the
scalar matter field, H = a′/a,

z ≡ a
ϕ′

0

H , (11)

and R denotes the curvature perturbation in comoving
gauge [24]. The action for scalar metric fluctuations is
[25]

δSR =
1

2

∫

d4x

[

(v′k)2 − δijvk,ivk,j +
z′′

z
v2
k

]

, (12)



4

which leads to the equation of motion

v′′k +

(

k2 − z′′

z

)

vk = 0 , (13)

which under the change a → z is identical to the equa-
tion (8) for gravitational waves. Therefore, we obtain
again the equation of a parametric oscillator. Note that
if a(η) is a power of η, then ϕ′

0 and H scale with the same
power of η. The variable z is then proportional to a, and
thus the evolution of gravitational waves and scalar met-
ric fluctuations is identical. In this case, the solution can
be expressed in terms of Bessel functions.

Let us now analyze the behavior of the classical mode
functions µk(η) and vk(η). The equations (8) and (13)
are harmonic oscillator equations with a time-dependent
mass given by a′′/a and/or z′′/z. On scales smaller than
the Hubble radius, the mass term is negligible, and the
mode functions oscillate with constant amplitude. On
scales larger than the Hubble radius, however, the mass
term dominates and the k2 term can be neglected. The
mode functions no longer oscillate. In an expanding back-
ground, the dominant mode of µk(η) and vk(η) scales as
a(η). Thus, the role of the time of Hubble radius cross-
ing is to give the time when the classical mode functions
begin to increase in amplitude.

So far, all the considerations are classical. This is
sufficient to describe the evolution of the perturbations.
However, if one is interested in the source of the fluctua-
tions, then a quantum treatment becomes necessary. In
this framework, the state of each mode of the fluctuating
field is fixed at some initial time ti which (at least in the
context of cosmology described by the above action) is
independent of k and can be taken to be the beginning
of the period of inflation. Note that in the framework
currently used in inflationary cosmology it is wrong to
consider that fluctuations on scale k are generated at the
time tH(k) when that scale crosses the Hubble radius.

The quantum description can be discussed most easily
in the Heisenberg picture in which the states are time-
independent but the operators evolve. From the action
(12) it follows that the momentum canonically conjugate
to the field v is Πk = v′−k and this leads to the Hamil-
tonian

HR =

∫

d3x

(

Π2
k + δijvk,ivk,j −

z′′

z
v2
k

)

, (14)

We now canonically quantize this Hamiltonian, elevat-
ing v and Π to canonically conjugate operators v̂ and
Π̂, and imposing the Hamilton equations as equations of
motion. It then immediately follows that the operator v̂
satisfies the same equation of motion as the classical field
v. We can expand the operator v̂ into a basis of opera-

tors ĉk and ĉ†k which, at the initial time ηi, correspond to
the Minkowski field creation and annihilation operators.
Specifically,

v̂(η,x) =
1

(2π)3/2

∫

d3k[ĉk(η)eik·x + ĉ†k(η)e−ik·x] ,

(15)

The difference with the case of a free field is that, due
to the interaction of the field v̂(η,x) with the classical
background, the time dependence of the creation and an-
nihilation operators is no longer given by e±iωη. This is
a manifestation of the fact that particles creation is now

possible. The operators ĉk(η) and ĉ†k(η) obey the usual
creation and annihilation operator algebra

[ĉk(η), ĉ†p(η)] = δ(k − p) . (16)

This relation is of course valid for any time η. As initial
state, we choose the state which is empty of particles
from the point of view of the local comoving observer at
the initial time ηi. This state |0〉 is defined by

ĉk|0〉 = 0 . (17)

Since due to the time dependence of the background there
is nontrivial mixing between creation and annihilation
operators at different times, this state is in general not
the vacuum at later times. Since the mode equation for
fixed k has exactly two independent solutions, the cre-
ation and annihilation operators at time η > ηi must
be related to the creation and annihilation operators at
initial time ηi via a Bogoliubov transformation

ĉk(η) = αk(η)ĉk(ηi) + βk(η)ĉ†−k(ηi) , (18)

ĉ†k(η) = α∗
k(η)ĉ†k(ηi) + β∗

k(η)ĉ−k(ηi) , (19)

where the Bogoliubov coefficients αk and βk satisfy the
normalization condition

|αk|2 − |βk|2 = 1 . (20)

This relation guarantees that the commutation relations
are preserved in time. The time dependence of the
quantum field can now be written as ĉk(η) = (αk +
β∗

k)(η)ĉk(ηi) ≡ vk(η)ĉk(ηi). The temporal function vk(η)
is solution of the classical mode equation and should be
chosen to be pure positive frequency at the time ηi, with
vacuum normalization

vk(ηi) =
1√
2k

, v′k(ηi) = i

√

k

2
. (21)

This amounts to choosing v
(in)
k (η) ∼ e−ik(η−ηi)/

√
2k.

The Bogoliubov transformation exhibited in Eqs. (18),
(19) gives the most general time evolution of the quan-
tum field v̂(η,x). In particular, it is not necessary that
the “out” region be flat. If this is the case, then the most
general mode function in the “out” region is a linear com-
bination of positive and negative frequency plane waves,
i.e.,

v
(out)
k (η) = akv

(in)
k (η) + bkv

(in)∗
k (η) , (22)

v
(out)∗
k (η) = a∗

kv
(in)∗
k (η) + b∗kv

(in)
k (η) . (23)

Inserting these relation into the canonical decomposi-
tion of the field v̂(out)(η,x), see Eq. (15) [using that
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ck(η) = vk(η)ck(ηi)], and comparing with the equation
obtained using Eqs. (18), (19), one immediately reaches
the conclusions that the coefficients ak and bk are in fact
given by

ak = αk, bk = β∗
k . (24)

The “number operator” (using language appropriate to
a scalar field on a given background) which measures the
number of particles of comoving momentum k from the
point of view of the comoving observer at time η is

N̂k(η) = ĉ†k(η)ĉk(η) . (25)

In the state |0〉, the expectation value of this number
operator is

〈0|N̂k|0〉 = |βk|2 . (26)

The Bogoliubov coefficients βk thus measure the number
of particles from the point of view of the comoving ob-
server at time η > ηi in the state which at time ηi is the
local vacuum state. Translated to field language, these
Bogoliubov coefficients measure the magnitude of the two
point field correlation function in momentum space at
later times in the initial vacuum state. Let us notice
that the Bogoliubov coefficient can also be determined
by the overlap integral

βk = 〈v(in)
k , v

(out)∗
k 〉 , (27)

where 〈a, b〉 stands here for the usual Klein-Gordon scalar
product.

The quantum mechanical interpretation of the two
phases t < tH(k) and t > tH(k) is the following: on
sub-Hubble scales we have oscillating quantum vacuum
fluctuations and the Bogoliubov coefficients βk vanish.
There is no particle production on these scales. Once the
scales cross the Hubble radius, the mode functions begin
to grow and the fluctuations get frozen. By (27) this im-
plies a growth of the Bogoliubov coefficients βk which is
proportional to the amplitude of vk(η). The initial vac-
uum state then becomes highly squeezed at t ≫ tH(k).
In the case of gravitational waves, this physics was first
discussed in [26]. For a free scalar field on a cosmological
background, the squeezing of the initial quantum vacuum
state corresponds to particle production [18]. Applied
to the fields representing cosmological fluctuations, the
squeezing leads to the generation of effectively classical
cosmological perturbations.

For cosmological applications, it is particularly inter-
esting to calculate the two-point correlation functions
of gravitational waves and density perturbations. For
gravitational waves, the power spectrum of gravitational
waves in the vacuum state |0〉 can be written in terms of
the new field µk as

Pg(k) = 2
k3

2π2a2
|µk|2 . (28)

The two point function appearing in (28) is that of a free
canonically normalized massless scalar field multiplied by
2/m2

Pl. The factor 2 comes from the fact that gravita-
tional waves have two independent states of polarization.
In analogy to (28), the power spectrum of the curvature
fluctuation R is

PR(k) =
k3

2π2z2
|vk|2 . (29)

This last quantity can be estimated very easily. From
the fact that on scales larger than the Hubble radius the
mode functions are proportional to a(η), we find

PR(k) ≃ k3

2π2

1

2k

1

a2[ηH(k)]
, (30)

where ηH(k) is the conformal time of Hubble radius cross-
ing for the mode with comoving wavenumber k. Note
that the second factor on the r.h.s. of (30) represents the
vacuum normalization of the wavefunction.

III. WHY SIGNIFICANT EFFECTS OF

TRANS-PLANCKIAN PHYSICS ON CMB

ANISOTROPIES ARE POSSIBLE

Let us now return to the main topic of this Letter,
namely the question of why significant effects of trans-
Planckian (string) physics on CMB anisotropies are pos-
sible. They key point is that in most current models of
inflation, the duration of the phase of quasi-exponential
expansion is so long that at the beginning of this period,
the time when the initial conditions for the fluctuations
are set, the physical wavelengths of modes responsible
for the CMB anisotropies are smaller than the Planck
(string) scale. Let us illustrate this point with a concrete
example. In a single-field model of inflation, the number
of e-folds is given by the formula

N = − 8π

m2
Pl

∫ ϕe

ϕi

dϕV (ϕ)

(

dV

dϕ

)−1

, (31)

where ϕi is the value of the scalar field at the beginning
of inflation and ϕe is the value at the end of inflation,
i.e., when −Ḣ/H2 = 1 (a dot means a derivative with
respect to cosmic time t). Let us consider the prototyp-
ical model of inflation, namely chaotic inflation with a
scalar field potential which is given by V (ϕ) = (λ/4!)ϕ4

with λ ≃ 10−15. In this case ϕe = mPl/
√

π. The integral
in Eq. (31) can be easily performed and we get

N =
π

m2
Pl

ϕ2
i − 1 . (32)

In chaotic inflation the initial conditions are fixed ac-
cording to the rule V (ϕi) ≃ m4

Pl which amounts to

ϕi ≃ (24/λ)1/4mPl. As a consequence, we deduce that

N ≃ 2π
√

6/λ−1 ≃ 4.9×108. This means that the Hub-
ble radius today, ℓH = 1061ℓPl (h = 0.5), where ℓPl is the
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Planck length, was equal to ≃ e−108

ℓPl ≃ 10−4.7×107

ℓPl

at the beginning of inflation, i.e., very well below the
Planck length indeed. On these scales, it is clear that the
framework of standard quantum field theory described in
the previous section and used in order to establish what
the predictions of inflation are most likely breaks down.

This simple example raises the following question: do
the predictions of inflation depend on physics on scales
shorter than the Planck length? In trying to answer this
question we immediately face the problem that the trans-
Planckian physics is presently unknown and that, as a
consequence, it is impossible to study its impact on the
inflationary predictions. To circumvent this difficulty,
one studies the robustness of inflationary predictions to
ad-hoc (reasonable) changes in the standard quantum
field theory framework supposed to mimic the modifi-
cations caused by the actual theory of quantum gravity.
If the predictions are robust to some reasonable changes,
then it seems likely that they will be robust to the modi-
fications induced by the true theory of quantum gravity.
On the other hand, if the predictions are not robust, the
knowledge of the exact theory is required in order to pre-

dict exactly what the changes are. However, one can still
study what is the origin of these modifications and try
to use the currently available data to put constraints on
the unknown theory of quantum gravity.

Let us now describe what are the possible ad-hoc mod-
ifications that can be considered. So far, four different
possibilities have been studied. The first one consists
in replacing the standard dispersion relation ω = k by
some ad-hoc relations. This proposal was first made in
Refs. [7, 8] in the context of black hole physics and is
based on an analogy with condensed matter physics. It is
known that the dispersion relation starts departing from
the linear relation ω = k on scales of the order of the
atomic separation: the mode feels the granular nature
of matter. In the same way, one can expect the disper-
sion relation to change when the mode starts feeling the
discreteness of space-time on scales of the order of the
Planck (string) length. Some of the dispersion relations
studied so far in the literature are displayed in Fig. 2.
We will come back to this possibility below.

The second proposal is to modify the standard com-
mutation relations.

FIG. 2: Various dispersion relations considered in the literature (see Refs. [7, 8, 27], and also Ref. [28] for another dispersion
relation not displayed on the plot). For kphys ≪ k

C
= k

Pl
, all the dispersion relations are linear, ωphys ≃ kphys, which guarantees

that the laws of physics on scales below the Planck scale are the standard ones. On the other hand on very small scales, for
kphys ≫ k

C
, the dispersion relations deviate from the standard one.

The modification envisaged in Refs. [29, 30, 31, 32] amounts to choose

[x̂, p̂] = i~(1 + βp̂2), (33)
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which introduces a short distance cut-off. Its implications
for the wave equation were studied in Ref. [11]. It has
been argued that this commutation relation could be a
generic prediction of string theory. It has been shown
in Refs. [12, 13, 14] that significant effect on the power
spectrum are possible in this case.

The third proposal consists in assuming that the quan-
tum state in which the cosmological perturbations are
placed is no longer the vacuum but some excited state.
In this case, it has been shown in Ref. [15] that a pos-
sible observable signature is the modification of the con-
sistency relations between the spectral indices of scalar
and tensor fluctuations in inflation. Proposals 2 and 3
are not necessarily unrelated. For example, in the work
of Ref. [13], the modified commutation relation leads to a
state at Hubble radius crossing which is not the adiabatic
vacuum.

Very recently, a fourth possibility has been suggested in
Ref. [1] using general effective field theory techniques. In
this case, it has been demonstrated that trans-Planckian
effects on CMB anisotropies in an inflationary Universe
are suppressed by a factor of (H/M)2, where H is the
Hubble constant during inflation, and M is the scale of
trans-Planckian physics. If we take into account that the
value of H during inflation is bounded from above due
to the observational bounds on the spectrum of gravita-
tional waves [33], then - in models in which the string
scale is close to the usual four-dimensional Planck scale -
this suppression factor render the signatures of this kind
of trans-Planckian physics far too small to be observed
in the near future. On this basis, the authors of Ref. [1]
conclude that short distance physics cannot be observed
in the CMB. However, this conclusion clearly rests on the
type of modifications chosen by the authors and is not
true in general.

To demonstrate that a priori significant changes in the
inflationary predictions are possible, let us come back
to the case where the standard dispersion is modified.
The method is to replace the linear dispersion relation
ω

phys
= kphys by a non standard dispersion relation

ω
phys

= ω
phys

(k). In the context of cosmology, it has

been shown in Ref. [5] that this amounts to replacing k2

appearing in (13) with k2
eff(n, η) defined by

k2 → k2
eff(k, η) ≡ a2(η)ω2

phys

[

k

a(η)

]

. (34)

For a fixed comoving mode, this implies that the dis-
persion relation becomes time-dependent. Therefore, the
equation of motion of the quantity vk(η) takes the form

v′′k +

[

k2
eff(k, η) − a′′

a

]

vk = 0 . (35)

Let us remark that a more rigorous derivation of this
equation, based on a variational principle, has been pro-
vided in Ref. [34], see also Refs. [35, 36].

The evolution of modes thus must be considered sep-
arately in three phases, see Fig. 1. In Phase I the

wavelength is smaller than the Planck scale, and trans-
Planckian physics is expected to play an important role.
In Phase II, the wavelength is larger than the Planck scale
but smaller than the Hubble radius. In this phase, trans-
Planckian physics is expected to have a negligible effect
(and the work of [1] makes this statement quantitative).
Hence, by the analysis in Section II, the wavefunction of
fluctuations is oscillating in this phase,

vk = B1 exp(−ikη) + B2 exp(ikη) (36)

with constant coefficients B1 and B2. In the stan-
dard approach, the initial conditions are fixed in this re-
gion and the usual choice of the vacuum state leads to
B1 = 1/

√
2k, B2 = 0 (see the previous section). Phase

III starts at the time tH(k) when the mode crosses the
Hubble radius. During this phase, the wavefunction is
squeezed and is given by

vk = C1z(η) + C2z(η)

∫ η dτ

z2(τ)
. (37)

The source of trans-Planckian effects on observations
studied in [5] is the possible non-adiabatic evolution of
the wavefunction during Phase I. If this occurs, then it is
possible that the wavefunction of the fluctuation mode is
not in its vacuum state when it enters Phase II and, as
a consequence, the coefficients B1 and B2 are no longer
given by the standard expressions above. In this case,
the wavefunction will not be in its vacuum state when it
crosses the Hubble radius, and the final spectrum will be
different. In general B1 and B2 are determined by the
matching conditions between phase I and II. If the dy-
namics is adiabatic throughout (in particular if the a′′/a
term is negligible), the WKB approximation holds and
the solution is always given by

vk(η) ≃ 1
√

2keff(k, η)
exp

[

−i

∫ η

ηi

keffdτ

]

, (38)

where ηi is some initial time. Therefore, if we start with
a positive frequency solution only and uses this solution,
one finds that no negative frequency solution appears.
Deep in the region II where keff ≃ k the solution becomes

vk(η) ≃ 1√
2k

exp(−iφ − ikη), (39)

i.e. the standard vacuum solution times a phase which
will disappear when we calculate the modulus. The phase
φ is given by φ ≡

∫ η1

ηi
keffdτ , where η1 is the time at which

keff ≃ k. By focusing only on trans-Planckian effects
on the local vacuum wave function at the time tH(k),
the authors of [1] miss this important potential source of
trans-Planckian signals in the CMB.

It is possible to give the conditions for violation of
adiabaticity and to quantify exactly the accuracy of the
WKB approximation. Given an equation of the form
µ′′ + ω2µ = 0 (in the present context, one has ω2 =
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k2
eff−a′′/a), the WKB approximation is valid if the quan-

tity |Q/ω2| ≪ 1, where the quantity Q is defined by the
following expression

Q =
3(ω′)2

4ω2
− ω′′

2ω
. (40)

This standard criterion can be obtained in the following
manner. The WKB solution, µwkb, satisfies the equation
µ′′

wkb + µwkb(ω2 − Q) = 0 exactly. Therefore, one has
µ ≃ µwkb if |Q/ω2| ≪ 1. To obtain a modification of the
inflationary spectrum, it is sufficient to find a dispersion
relation such that |Q/ω2| ≫ 1 in phase I.

Let us now present some concrete examples where a
change in the inflationary spectrum has been obtained.
The first dispersion relation for which these effects were
found is

k2
eff(k, η) = k2 − k2|bm|

[

ℓ
C

λ(η)

]2m

, (41)

where λ(η) = 2πa(η)/k is the wavelength of a mode. For
this case, it was found that the spectral index is modified

and that superimposed oscillations appear. However, im-
portant concerns regarding the previous conclusion can
be raised. For example, the dispersion relation (41) used
leads to complex frequencies in the context of an infla-
tionary model with a long period of superluminal expan-
sion. Furthermore, the initial conditions for the Fourier
modes of the fluctuation field have to be set in the region
where the evolution is non-adiabatic and the use of the
usual vacuum prescription can be questioned. For this
reason, the previous example is not satisfactory [37].

Examples where a modification can be obtained with-
out the previous difficulties can nevertheless be obtained.
In Ref. [34] such an example has been explicitly con-
structed with the dispersion relation

ω2
phys = k2

phys + 2b11k
4
phys − 2b12k

6
phys. (42)

The coefficients b11 and b12 can be chosen such the disper-
sion relation has a maximum around k

C
and a minimum

at a scale smaller than k
C
. This minimum can be chosen

to be smaller than the Hubble parameter during phase I.
This is the case in Fig. 3.

FIG. 3: Example of a dispersion relation where the WKB approximation can be violated during phase I.

In this example, ωphys always remains real, the initial
conditions can be fixed in a region where the WKB ap-
proximation is valid (as a consequence, the initial state

can be chosen as the minimal energy state [38]) and where
the mode function vk oscillates. Since there is a phase
during which the WKB approximation is not valid, the
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final spectrum is modified. It has been calculated ex-
plicitly in Ref. [34]. The difficulties described previously
can also be avoided by considering the evolution of fluc-
tuations in a bouncing cosmology in which the initial
conditions can be set in the asymptotically flat past, and
focusing on modes for which the frequency never becomes
complex [39]. For all the examples where everything can
be done consistently, the coefficients B1(k) and B2(k),
see Eq. (36), in phase II are found to be of the form

B1(k) =
1√
2k

[1 + ǫξ1(k) + O(ǫ2)] , (43)

B2(k) = ǫξ2(k) + O(ǫ2) , (44)

where the functions ξ1(k) and ξ2(k) have been explicitly
calculated in Refs. [34, 39]. In the previous relations, ǫ
is a small parameter which is basically the time that the
mode has spent in the region where the WKB approxi-
mation is violated. The advantage of expanding the two
coefficients in the parameter ǫ is that general equations
can be obtained. But this does not mean that the cor-
rection has to be proportional to a small parameter and
large non perturbative effects can also be obtained if the
time spent by the mode in the region where WKB is not
valid is large.

FIG. 4: Region in the (k
C
, Hinf) plan where a correction of order ǫ is expected with a back-reaction problem. The shaded region

indicates the region obtained for ǫ = 0.01. For larger epsilon the shaded region should be extended up to the corresponding
straight line indicated on the figure.

In this case, another concern [40, 41] is that the ex-
citations produced during Phase I might have an im-
portant back-reaction effect. This is because an excited
state leads to an energy density that could be larger that
the vacuum energy density causing inflation. The energy
density due to trans-Planckian effect is [34]

ρ ≃ O(ǫ2k4
C
). (45)

Therefore, there is no back-reaction problem if ρ <
m2

PlH
2
inf . Obviously, the smallest ǫ is, the less severe

the back-reaction problem is but, at the same time, the
less important the modification of the spectrum is. The
important point is that, by playing with the quantities
Hinf and k

C
, a window where the correction is significant

and where there is no back-reaction can be found. These
results are summarized in Fig. 4.

In the light of the work of Refs. [13, 14], another
way to think about the coefficients B1(k) and B2(k),
see Eqs. (43) and (44), is as phenomenological pa-
rameters which describe the effects of short distance
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physics. Trans-Planckian (stringy) physics can lead to
non-standard values of these coefficients at the earliest
time when the fluctuation modes can be described by
the usual actions for linearized gravitational fluctuations
discussed in Section II, and the work of Ref. [13] presents
a concrete model where values of B1(k) and B2(k) arise
which differ from the standard values enough to produce
measureable effects but for which the back-reaction of
the non-vacuum state at Hubble radius crossing is neg-
ligible (We thank Brian Greene for communications on
this point).

IV. DISCUSSION AND CONCLUSION

Based on a review of the theory of cosmological
fluctuations as applied to inflationary cosmology we
have discussed the main sources of expected trans-
Planckian (stringy) signatures on the spectrum of CMB
anisotropies. One important potential source [5] is the
fact that the evolution of the fluctuation modes can be
non-adiabatic when their wavelength is smaller than the
Planck (string) scale. This leads to an excited state of
the fluctuation modes at the time when the mode crosses
the Hubble radius at tH(k). Another way in which trans-
Planckian effects can lead to an excited state of the fluc-
tuation modes at tH(k) is that new physics [13, 14] will
generate non-trivial Bogoliubov coefficients B1(k) and
B2(k), see Eqs. (43) and (44), at the earliest time that
the modes can be adequately approximated by the usual
actions for linearized gravitational fluctuations.

The recent paper [1] does not address this issue. It fo-
cuses on the computation of the trans-Planckian (stringy)
corrections to the fluctuation amplitude in the local vac-
uum state at tH(k), and comes to the correct conclusion
that these corrections are usually negligible. If one were
to try to use the effective field theory techniques used in
[1] to address the evolution of the modes in Phase I, one
would not be able to integrate over degrees of freedom
with frequency larger than H . Since the frequencies of
the modes in Phase I are trans-Planckian, one is not al-

lowed to integrate out any sub-Planckian modes. From
this point of view one would reach the conclusion that one
is not in the regime of applicability of effective field the-
ory, and that therefore the corrections to results obtained
(like the standard results of inflation on the spectrum of
fluctuations) should be expected to be of order unity or
larger.

We hope that the review of the theory of cosmologi-
cal perturbations presented in Section II will be of use
to physicists not actively working on cosmological per-
turbations, and that it will dispel the myth that fluctua-
tions are generated at Hubble radius crossing. Note also
that in the modern version of the theory of cosmological
perturbations presented here, there is no need for ad hoc
ultraviolet subtractions, since the analysis is done consis-
tently in momentum space in linear perturbation theory.
A final caveat, however, is that if it were to turn out that
inflation is the result of some highly nonlinear theory at
a scale much smaller than the Planck scale (see e.g. the
model of [42]), then the theory of cosmological perturba-
tions presented in Section II would not apply on scales
smaller than the Hubble radius. One would then need to
calculate in terms of an effective field theory, and by the
analysis of [1] one would not expect any deviations from
the expected spectrum of scale-invariant fluctuations due
to trans-Planckian physics.
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