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Abstract

A search for the pseudoscalar meson ηb is performed in two-photon interactions at
LEP 2 with an integrated luminosity of 699 pb−1 collected at e+e− centre-of-mass
energies from 181GeV to 209GeV. One candidate event is found in the six-charged-
particle final state and none in the four-charged-particle final state, in agreement
with the total expected background of about one event. Upper limits of

Γγγ(ηb)×BR(ηb → 4 charged particles) < 48 eV
Γγγ(ηb)×BR(ηb → 6 charged particles) < 132 eV

are obtained at 95% confidence level, which correspond to upper limits of 9.0% and
25% on these branching ratios.
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G. Bagliesi, T. Boccali, L. Foà, A. Giammanco, A. Giassi, F. Ligabue, A. Messineo, F. Palla,
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1 Introduction

The bb̄ ground state, the ηb meson, has not yet been observed. Because of their initial
state, two-photon collisions are well suited for the study of pseudoscalar mesons, for which
JPC = 0−+. The high γγ cross section and the high LEP luminosity and energy, as well
as the low background from other processes, make LEP 2 a good environment to search
for this meson.

Theoretical estimates (from pertubative QCD and lattice nonrelativistic QCD) of the
mass difference, ∆m, between the ηb and the Υ (mΥ = 9.46GeV/c2) are summarized in
Table 1 and those of the partial decay width of the ηb into two photons, Γγγ(ηb), in Table 2.
For the former, values ranging from ∆m = 34 MeV/c2 to 141 MeV/c2 are obtained. For
the latter, a value of Γγγ(ηb) = 557 ± 85 eV, chosen in this letter, is obtained from the
average of the first order estimates (488 eV) shifted by 69 eV at the second order in αs.
It yields an exclusive ηb production cross section of 0.304 ± 0.046 pb in e+e− collisions
at

√
s = 197GeV. The branching ratios of the ηb into four and six charged particles are

estimated as in Ref. [1] to be 2.7% and 3.3% respectively. (The same estimate gives 9.9%
for the ηc decay branching fraction into four charged particles, in agreement with the
measured value of 9.3±1.8% [2].) Six and seven exclusive ηb are therefore expected to be
produced in the 699 pb−1 of data collected by ALEPH above the WW threshold, in the
four- and six-charged-particle final states, respectively.

A measurement of the ηb mass and of its decay modes would therefore provide a test
of pQCD and NRQCD [3, 4, 5]. Searches have already been conducted by the CUSB and
CLEO Collaborations in the cascade decay of the Υ(3S): the CUSB Collaboration finds
for the product of the branching ratios BR(Υ(3S) → ππhb) × BR(hb → γηb) < 0.45%
at 90% C.L. for an Υ-ηb splitting between 50 MeV/c2 and 110 MeV/c2 [6]. The CLEO
Collaboration has published a 90% C.L. upper limit on the product of the branching
ratios BR(Υ(3S) → π+π−hb) × BR(hb → γηb) of about 0.1% for the ηb mass range from
9.32 GeV/c2 to 9.46 GeV/c2 with a photon energy ranging from 434 MeV to 466 MeV and
the hb mass restricted to 9.900 ± 0.003 GeV/c2 [7].

In this letter, a search is presented for the ηb meson via its decay into four and six
charged particles. The search is performed in quasi-real two-photon interactions where
the meson is produced exclusively. This letter is organized as follows. A description of the
ALEPH detector is given in Section 2. The data analysis with event selection, efficiency
calculation, background estimate and systematic uncertainty determination is described
in Section 3. The results of the search are presented in Section 4. Finally, in Section 5 a
summary is given.

2 ALEPH Detector

A detailed description of the ALEPH detector and its performance can be found in
Ref. [19]. The central part of the ALEPH detector is dedicated to the reconstruction
of the trajectories of charged particles. The trajectory of a charged particle emerging
from the interaction point is measured by a two-layer silicon strip vertex detector
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Table 1: Estimates for the mass splitting ∆m = m(Υ) − m(ηb) from QCD calculations.

∆m [ MeV/c2] Ref.
lattice NRQCD 45 − 100 [3, 8, 9]
lattice potential 60 − 110 [10]
pQCD 36 − 55 [11]
1/m expansion 34 − 114 [12]
potential model 60 − 141 [13, 14, 15]

Table 2: Estimates for the two-photon width Γγγ(ηb).

Γγγ(ηb) [ eV] Ref.
estimates O(αs)

potential model 500 ± 30 [16]
potential model, Γe+e−(Υ) 490 ± 40 [16]
NRQCD 460 [17]
NRQCD, Γe+e−(Υ) 501 [18]

estimates O(α2
s )

NRQCD, Γe+e−(Υ) 570 ± 50 [18]

used in this letter 557 ± 85

(VDET), a cylindrical drift chamber (ITC) and a large time projection chamber (TPC).
The three tracking detectors are immersed in a 1.5 T axial magnetic field provided by
a superconducting solenoidal coil. Together they measure charged particle transverse
momenta with a resolution of δpt/pt = 6 × 10−4pt ⊕ 0.005 (pt in GeV/c). The TPC also
provides a measurement of the specific ionization dE/dxmeas. An estimator may be formed
to test a particle hypothesis, χh = (dE/dxmeas−dE/dxexp,h)/σexp,h, where dE/dxexp,h and
σexp,h denote the expected specific ionization and the estimated uncertainty for the particle
hypothesis h, respectively.

Photons are identified in the electromagnetic calorimeter (ECAL), situated between
the TPC and the coil. The ECAL is a lead/proportional-tube sampling calorimeter
segmented in 0.9◦×0.9◦ projective towers read out in three sections in depth. It has a total
thickness of 22 radiation lengths and yields a relative energy resolution of 0.18/

√
E+0.009,

with E in GeV, for isolated photons. Electrons are identified by their transverse and
longitudinal shower profiles in ECAL and their specific ionization in the TPC.

The iron return yoke is instrumented with 23 layers of streamer tubes and forms the
hadron calorimeter (HCAL). The latter provides a relative energy resolution of charged
and neutral hadrons of 0.85/

√
E, with E in GeV. Muons are distinguished from hadrons

by their characteristic pattern in HCAL and by the muon chambers, composed of two
double-layers of streamer tubes outside HCAL.

The information from the tracking detectors and the calorimeters are combined in an
energy-flow algorithm [19]. For each event, the algorithm provides a set of charged and
neutral reconstructed particles, called energy-flow objects in the following.
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3 Analysis

3.1 Event Selection

The search is performed in the four- and six-charged-particle modes, where four (or six)
charged energy-flow objects with a net charge zero are required. In order to keep the
efficiency high, loose selection cuts are chosen. No attempt is made to reconstruct KS

mesons at this stage. The dE/dx measurement, when available, must be consistent with
the pion or kaon hypothesis (χ2

π,K < 9); the more likely hypothesis is used for mass
assignment. When no dE/dx information is available the pion mass is assigned to the
particle. No neutral energy-flow object with E > 1 GeV must be present within 20◦ of the
beam axis. No muon and no electron (as defined by the ECAL) must be observed. Events
are also excluded if a photon conversion is detected, where the electron and positron are
identified by requiring χ2

e < 9, and the pair invariant mass is smaller than 25 MeV/c2.
The total transverse momentum of charged particles in the event (

∑
~pt,i) must be

smaller than 250 MeV/c. The energy-flow objects in the event are boosted into their
centre-of-mass frame and the thrust is computed in this frame. The thrust axis must
form an angle θthrust larger than 45◦ with respect to the beam axis to reject events from
the γγ continuum background. The γγ → τ+τ− background is reduced to a negligible
fraction by the rejection of events in which both hemispheres, as defined by the thrust
axis, have a net charge of ±1 and an invariant mass less than 1.8 GeV/c2.

3.2 Signal Efficiency

Selection and reconstruction efficiencies are studied with events generated with PHOT02
[20] in which the ηb mass is set to 9.4 GeV/c2 and the total width to 7 MeV/c2. The width
is calculated under the assumption that the two-gluon decay is dominant [2, 21, 22]. Four
samples of 2500 events each are generated for the final state with four charged particles
(2(π+π−), π+π−K+K−, 2(K+K−), KSK

+π−). Four other samples of 2500 events each
are generated for the final state with six charged particles (3(π+π−), 2(π+π−)K+K−,
π+π−2(K+K−), 3(K+K−)). For the decays, it is assumed that the momenta are distributed
according to phase space. The event samples are passed through the detector simulation
and reconstruction programs. The mass resolution of the selected events is about
0.14 GeV/c2 and is dominated by wrong mass assignment from π-K misidentification. A
signal region between 9.0 GeV/c2 and 9.8 GeV/c2 is chosen. The event selection efficiencies
averaged over the four decay channels are found to be 16.7% and 9.3% for the four- and
six-charged-track channels, respectively.

3.3 Systematic Uncertainties

The lack of knowledge of the decay modes and kinematics of the ηb meson is the source of
the dominant systematic uncertainties in the analysis. The uncertainty on the selection
efficiency due to the unknown decay mode of the ηb meson is estimated from the spread
of the efficiencies of the four simulated decay modes. The relative uncertainty is 7.5%

3



and 20.4% for the four- and six-charged-particle final states. In order to check the effect
of the selection efficiency due to the assumption of phase space decays, the ηb is forced
to decay into a pair of φ mesons, each giving two charged kaons. In this case a relative
increase of 10% in the detection efficiency is found.

Further studies are performed without the final cut on neutral energy or with modified
cuts on

∑
~pt,i, θthrust, and hemisphere mass. An uncertainty of 5.5% is estimated. The

limited statistics of simulated events contribute an uncertainty of 2.4% and 3.2% for the
two decay modes, respectively.

A total relative uncertainty of 9.7% (21.4%) on the selection efficiency is calculated
for the four- (six-) charged-track channel.

3.4 Background Estimate

The background estimate suffers from the low statistics of the simulated events selected
and from the poor description of the shape of the invariant mass spectra. The background,
dominated by γγ continuum production, is therefore estimated from data by means of a fit
to the ratio of the mass spectra after all cuts are applied and before the final cuts on

∑
~pt,i,

θthrust, and hemisphere mass are applied. The ratio is fitted with an exponential function
up to m = 6 GeV/c2 (m = 7 GeV/c2) for the four- (six-) charged-particle topology.
The average of the values of this function at m = 6 GeV/c2 (m = 7 GeV/c2) and at
m = 9.4 GeV/c2 is then multiplied by the number of events in the signal region before
the final cuts to obtain the background estimate. Half of the difference between these
two values is taken as the systematic uncertainty on the estimate. The background in
the signal region is determined to be 0.30 ± 0.25 (0.70 ± 0.34) events for the four- (six-)
charged-particle topology.

4 Results

Invariant mass spectra of the selected events are shown in Fig. 1. A total of 33727 (3432)
events is selected in the four- (six-) charged-particle final states. In the signal region, only
one event is found in the six-prong topology.

4.1 Cross Section Upper Limit

From the knowledge of the background b and the efficiency ε, the observed number of
events n is converted [23] into an upper limit on the signal events µ into a confidence level
α given by

1 − α =

∫
g(b)f(ε)

∑n
i=0 P (i | µε+ b)dεdb

∫
g(b)

∑n
i=0 P (i | b)db ,

where P (j | x) is the Poisson probability that j events be observed, when x are expected.
The probability density functions for the background g(b) and the efficiency f(ε) are
assumed to be Gaussian, but restricted to the range where b and ε are positive. Upper

4



limits of 3.06 (4.69) events at 95% confidence level are calculated for the four- (six-) prong
topology. This translates into the upper limits

Γγγ(ηb)×BR(ηb → 4 charged particles) < 48 eV
Γγγ(ηb)×BR(ηb → 6 charged particles) < 132 eV .

With a two-photon width of 557 ± 85 eV, upper limits on the branching ratios
BR(ηb → 4 charged particles) < 9.0% and BR(ηb → 6 charged particles) < 25% are
derived.

4.2 Mass of the Candidate

The raw reconstructed mass of the candidate, as obtained from the measured momenta of
the six charged particles and with masses assigned according to the dE/dx measurement,
is 9.45GeV/c2. The mass estimate can be refined with additional information visible
from the event display shown in Fig. 2. Two of the six tracks form a secondary vertex
compatible with the decay of a KS into π+π−. This hypothesis is supported by the presence
of a third track compatible with a K− (χ2

π = 6.0 and χ2
K = 3.8 × 10−5). The secondary

vertex is therefore fitted to this hypothesis, and the five particles (three charged pions,
one charged kaon and one KS) are forced to originate from a common primary vertex. A
mass of 9.30 ± 0.02 ± 0.02 GeV/c2 is derived from these constraints.

A control sample of ηc mesons is selected in the KSK
+π− decay mode, without the final

cuts but that on the total transverse momentum, which is relaxed to
∑
~pt,i < 500 MeV/c.

The analysis is repeated with this control sample for the study of the systematic
uncertainty on the mass determination. The mass of the ηc meson is fitted and is found
consistent with the world average value [2] within its statistical accuracy of 4.7 MeV/c2. A
systematic uncertainty of the same size is assigned. The total uncertainty is then rescaled
with the mass ratio m(candidate)/m(ηc) and a systematic uncertainty of 21 MeV/c2 is
obtained for the mass estimate of the ηb candidate. The ηc signal is shown in Fig. 3
together with the D0 signal as observed in its K−π+ decay mode. The fitted D0 mass
agrees with the world average value [2] within its statistical accuracy of 0.9 MeV/c2. The
number of observed ηc mesons is consistent with previous measurements [2, 22, 24].

5 Summary

With an integrated luminosity of 699 pb−1 collected at e+e− centre-of-mass energies
between 181 GeV and 209 GeV, the pseudoscalar meson ηb is searched for in its decays
to four and six charged particles. One candidate is retained in the decay mode into
six charged particles, while no candidate is found in the four-charged-particle decay
mode. The candidate ηb has a reconstructed invariant mass of 9.30± 0.02± 0.02 GeV/c2.
The observation of one event is consistent with the number of events expected from
background.

Upper limits on Γγγ(ηb)×BR of 48 eV and 132 eV, corresponding to limits on the
branching ratios BR(ηb → 4 charged particles)< 9.0% and BR(ηb → 6 charged
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particles)< 25%, are obtained at a confidence level of 95%.
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Figure 1: Invariant mass distribution of selected events for four- and six-charged-particle final
states (solid line: data). The dashed line represents the expected signal for a 100% branching
ratio into the mode under consideration. The signal region is indicated by the vertical dashed
lines.
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Figure 3: (a) Invariant mass distribution of the selected events of the KSK
+π− control sample

showing the signal of the ηc meson. (b) The D0 signal reconstructed in its K−π+ decay mode.
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