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The Corley-Jacobson dispersion relation and trans-Planckian inflation
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In this Letter we study the dependence of the spectrum of fluctuations in inflationary cosmology
on possible effects of trans-Planckian physics, using the Corley/Jacobson dispersion relations as
an example. We compare the methods used in previous work [1] with the WKB approximation,
give a new exact analytical result, and study the dependence of the spectrum obtained using the
approximate method of [1] on the choice of the matching time between different time intervals.
We also comment on recent work subsequent to [1] on the trans-Planckian problem for inflationary
cosmology.

PACS numbers: 98.80.Hw, 98.80.Cq

I. INTRODUCTION

The trans-Planckian problem of inflation is the follow-
ing: in many models of inflation, the phase of accelerated
expansion lasts so many e-foldings that the comoving
lengths corresponding to present day cosmological scales
were much smaller than the Planck length at the begin-
ning of inflation. Hence, one may wonder whether the
“standard” predictions of inflation, in particular the fact
that the power spectrum of cosmological perturbations
is close to scale-invariant, will be changed if the laws of
physics beyond the Planck scale are different from the
ones which rule the low energy phenomena. The usual
calculations of the spectrum of cosmological perturba-
tions (see e.g. [2] for a comprehensive review) is based on
the use of classical general relativity coupled to a weakly
interacting scalar field, and on linearizing the resulting
equations of motion about a classical background cosmol-
ogy. The validity of this approach in the trans-Planckian
regime is highly doubtful.

In the context of inflation, this question was first ad-
dressed in Ref. [1]. To calculate the power spectrum of
cosmological perturbations, the main equation that needs
to be solved is the equation of a parametric oscillator
with a time-dependent frequency which is a function of
the scale factor a(η) (and its derivatives) and of the dis-
persion relation ω

phys
(k), where k indicates the physical

wave number related to the comoving wave number n by
k = n/a. In the usual discussions, the dispersion relation
is taken to be linear as appropriate for a free field theory.
The method used in Ref. [1] was to replace the linear
relation ω

phys
= k by a non-standard one that mimics

possible modifications of the physics in the ultraviolet
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regime. Based on similar approaches [3, 4] used to study
the possible dependence of Hawking radiation on trans-
Planckian physics, two classes of dispersion relations were
considered [neff ≡ a(η)ω

phys
(n/a)]:

neff = n
λ

ℓ
C

tanh1/p

[(

ℓ
C

λ

)p]

, (1)

neff ≡

√

n2 + n2b1

(

ℓ
C

λ

)2

, (2)

where λ denotes the physical wavelength of a given mode,
and ℓ

C
is a characteristic length expected to be deter-

mined by the Planck scale. The first one is the Un-
ruh dispersion relation [3] whereas the second one is the
Corley/Jacobson relation [4] (b1 is an arbitrary number
which can be positive or negative). In fact, in Ref. [1] a
generalization of the Corley/Jacobson dispersion relation
was considered.

In [1], the problem was investigated for the class of
scale factors corresponding to power-law inflation, i.e.
a(η) = ℓ0|η|1+β , β ≤ −2 where ℓ0 has the dimension
of a length and is equal to the Hubble radius during in-
flation if β = −2 (de Sitter inflation). The example of the
Unruh dispersion relation was treated only for β = −2
whereas the second dispersion relation was studied for
any value of β ≤ −2. It was found that no modifications
in the spectrum of fluctuations arise in the first case,
whereas some differences can show up in the second case
if b1 < 01.

The aim of this letter is to return to the example of
the Corley/Jacobson dispersion relations, making use of

1 This result was obtained assuming that the initial state is the
“minimizing energy state”. In Ref. [1], another state was also
considered, but only to demonstrate that the final spectrum de-
pends on the choice of the initial state. As stressed in Ref. [1], the
“minimizing energy state” is the only physically well-motivated
state.
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a new exact analytical solution. This one allows us to ad-
dress some technical points that have been raised recently
in the literature and to compare the method of Ref. [1]
with the other methods used in the works subsequent to
[1]. Explicitly, in Section II, we compare the Wigner-
Kramers-Brillouin (WKB) approximation method used
in Ref. [5] to calculate the power spectrum with the
method used in Ref. [1]. In section III, we consider
the exact formula mentioned above which allows us to
make a smooth transition from the region where the sub-
Planckian effects are important to the region where the
dispersion relation is standard. We take advantage of the
fact that this new solution is also valid for b1 < 0 to dis-
cuss in more detail than in Ref. [1] the physical meaning
of complex solutions in the sub-Planckian region. In the
fourth section, we study the consequences for the match-
ing time used in the approximate analysis of [1] and show
that the use of an incorrect matching time will lead to
artificial oscillations in the spectrum2. First, however,
we comment on some of the recent work on this subject.

Following Ref. [1], there has been a significant amount
of work on the trans-Planckian problem for inflationary
cosmology. The work has focused on two issues. The first
is how broad the class of dispersion relations is for which
there is a change in the spectrum of fluctuations, and
whether there are other features in the linear perturba-
tions which can be used to probe trans-Planckian physics.
The second is whether the back-reaction of the excess
fluctuations produced by modified dispersion relations
are important and can have interesting consequences.

Let us for the moment focus on the issue of the class of
dispersion relations for which a modification of the spec-
trum of fluctuations is found. In [6], the case of Unruh
dispersion relations was studied in a de Sitter Universe,
and no change in the spectrum was found, in agreement
with the corresponding results in [1]. No dispersion re-
lations of Corley/Jacobson type were studied in [6]3. In
[5, 7] the trans-Planckian problem of inflationary cosmol-
ogy was addressed assuming that the mode wave function
is of WKB-type form. Once again, no changes in the
spectrum were found. It has been pointed out in [8] that
for dispersion relations which lead to adiabatic evolution
of the states on sub-Planckian scales - and WKB states
fall into this category - there are no changes in the spec-
trum compared to what is obtained with a linear disper-
sion relation. As shown in [8], the evolution in the case of

2 As pointed out in [5], there was a mistake in Section V.B.2 of the
first version of [1]: the incorrect choice of the matching time in
the Corley/Jacobson case with b1 > 0 led to a spectrum which
was the usual one times a complicated oscillatory function, in-
stead of to an unmodified spectrum.

3 On this basis, the claims of Ref. [5] that “contradictory results”
or “opposite results” were found in Refs. [1] and [6] are mislead-
ing. Indeed, the only common case between these two articles is
the case of the Unruh dispersion relation in de Sitter spacetime
for which exactly the same conclusion was obtained in Refs. [1]
and [6].

the Corley-Jacobson dispersion relations with a negative
sign of b1 is not adiabatic, and this is the reason that
the spectrum is modified. Note that the change in the
spectrum of fluctuations in the case of Corley/Jacobson
dispersion relations with b1 < 0 was confirmed in [7],
where these dispersion relations were labeled as “excep-
tional forms of ω(k)”. Other dispersion relations were
studied in [9, 10, 11, 12] 4.

The question of a possible dependence of the pre-
dictions for linear cosmological fluctuations on trans-
Planckian physics was recently considered in the context
of possible approaches to quantum gravity in [14, 15,
16, 17]. In [14, 16, 17] the starting point was mod-
ifications of the commutation relations stemming from
general considerations of short-distance quantum gravi-
tational effects, and in [15] consequences of short-distance
non-commutative geometry was investigated. Interest-
ing deviations of the spectrum of fluctuations from the
usual results were found. Specifically, the analysis of [15]
showed that non-Gaussian fluctuations are expected, and
the analysis of [17] revealed changes to the spectral shape.

To summarize the current state of knowledge on the
issue of the possible dependence of the spectrum of fluc-
tuations on trans-Planckian physics, if the dispersion re-
lation leads to adiabatic evolution of the vacuum state
on sub-Planckian length scales, then the spectrum is not
modified [5, 7, 8]. However, this restriction on the class
of dispersion relations may exclude the cases of actual
physical interest [15, 17]. String theory, M-theory, non-
commutative geometry and discrete quantum gravity can
all lead to much more drastic changes in the effective
dispersion relation and may hence result in changes in
the spectrum of fluctuations which can be probed ob-
servationally with current and future CMB experiments.
Recently, two concrete examples where a change in the
spectrum is obtained were studied in Refs. [13, 18].

The second issue raised in recent work, in particular in
[7, 19] is whether, if the power spectrum is indeed modi-
fied by trans-Planckian physics, there is a back-reaction
problem 5. The back-reaction problem is the following:
when viewed at late times, the modified dispersion re-
lations studied in [1] and in subsequent papers lead to
mode functions which during inflation on length scales
larger than ℓ

C
but smaller than the Hubble radius are

excited compared to the adiabatic vacuum. These fluc-
tuations carry energy and momentum, and this energy
could be so large as to turn off inflation, in a similar
manner as the back-reaction of cosmological fluctuations
in models of chaotic inflation [20] can build up and ter-

4 The goal of [10] was to provide a new model for dark energy (see,
however, [13]), and in [11] and [12] novel dispersion relations were
used to yield realizations of the varying speed of light scenario
[11] and to obtain inflation from radiation [12].

5 Clearly, the back-reaction problem can only be raised as a second
question once it has been established that there are important
modifications to the fluctuation spectrum.
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minate inflation. This is a very interesting issue which
merits detailed study.

II. WKB APPROXIMATION VS. PIECEWISE

SOLUTIONS

The equation of motion that needs to be solved in order
to compute the power spectrum of cosmological pertur-
bations is

µ′′ + ω2(n, η)µ = 0 , (3)

where the expression for ω is given below [see Eq. (7)].
Usually, Eq. (3) possesses two regimes depending on
whether the wavelength λ of the mode is smaller or larger
than the Hubble radius ℓ

H
. In the present context, we

deal with three different regimes. The first one is when
λ ≪ ℓ

C
≪ ℓ

H
. This defines Region I of Ref. [1]. The sec-

ond regime is such that ℓ
C
≪ λ ≪ ℓ

H
and corresponds

to Region II of Ref. [1]. Finally, the third regime is when
ℓ
C

≪ ℓ
H

≪ λ: this is Region III of Ref. [1]. We re-
cover the usual result for the spectrum of fluctuations if
in Region II µ is given by a single branch with a coef-
ficient proportional to 1/

√
n multiplying the plane wave

solution.
The method used in Ref. [1] to determine the solution

of Eq. (3) is to find solutions in the three regions and to
match them at the boundaries between the regions. The
method used in Ref. [5] is different and consists in utiliz-
ing the WKB approximation. In that case, the solution
of Eq. (3) is given by

µwkb =
1

√

2ω(η)
exp

[

±i

∫ η

ηi

ω(τ)dτ

]

, (4)

where ηi is some initial time.

In cases where the adiabatic approximation is justified,
the two methods are equivalent. To verify this, consider
first Unruh’s dispersion relation. Inserting the disper-
sion relation into Eq. (4) (using the minus sign) yields in
Region I

µwkb =
1

2

√

ǫ

π
|ηi|1/2

(
∣

∣

∣

∣

η

ηi

∣

∣

∣

∣

)−2πi/ǫ+1/2

. (5)

This is nothing but Eq. (66) of Ref. [1] [i.e. Eq. (54) in
the limit when ǫ ≡ ℓ

C
/ℓ0 is small], properly normalized

according to Eqs. (56)-(57) of that reference. Similarly,
in the case of the Corley/Jacobson dispersion relation
(with b1 > 0, in which case the adiabatic condition is
satisfied [5]), Eq. (4) becomes

µwkb = 2−1/2

(

nǫ

2π

)−1/2

n−1/2b
−1/4
1 |η|−1/2 exp

[

∓ib
1/2
1

(

nǫ

4π

)

n

(

|η|2 − |ηi|2
)]

. (6)

Again, this is the same result as obtained with the match-
ing technique in Ref. [1]. To see this, take Eq. (118) of
that reference, which provides the solution in Region I,
consider the limit when z is large and use Eqs. (126) and
(127) with the lower sign. In Region II, the solution is
simply given by plane waves µ ≃ B1e

inη + B2e
−inη in

agreement with Eq. (14) of Ref. [1].

The advantage of the WKB method over the method
used in Ref. [1] is that one does not have to perform the
matching between the different regions. The disadvan-
tage is that the WKB method applies only to examples
in which the adiabaticity condition is satisfied. In the
next section, we consider an exact model which allows us
to avoid the matching between Region I and II. In the
third section, we study the consequences for the match-
ing time and show that an incorrect matching time could
lead to artificial oscillations in the spectrum, as pointed
out in Ref. [5].

III. THE EXACT MODEL

The effective time dependent frequency is given by the
equation

ω2(n, η) = n2
eff − a′′

a
. (7)

We consider the Corley-Jacobson dispersion relation
given in Eq. (1) where, as already mentioned above, b1 is
an arbitrary number which can be positive or negative.
We restrict our consideration to the prototypical model
of inflation, i.e. de Sitter inflation. Then the scale factor
can be written as a(η) = ℓ0/|η|. If we consider the evolu-
tion of the mode well inside horizon, the term a′′/a can
be neglected in Eq. (3). Then, this equation takes on the
form

µ′′ +

[

n2 + b1

(

n2ǫ

2π

)2

|η|2
]

µ = 0, (8)

where ǫ ≡ ℓ
C
/ℓ0. Typically, ǫ is a very small number of

the order 10−5. We now need to distinguish between the
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cases of positive or negative b1. Let us first concentrate
on the b1 > 0 case. We make the following change of
variables −η = Cx (x > 0), where C is a constant given

by C = [(b1)
−1/4/n]

√

π/ǫ. Then the equation of motion
takes the form

d2µ

dx2
+

(

x2

4
− a

)

µ = 0, a ≡ − π

ǫ
√

b1

< 0. (9)

Clearly, this equation possesses two regimes. The first
one, corresponding to Region I in Ref. [1], is when the
quartic term of the dispersion relation dominates. Ex-
pressed in terms of the new variable x, this corresponds

to x2/4 ≫ |a|. On the other hand, Region II of Ref. [1]
corresponds to a region where the dispersion relation has
become standard and x2/4 ≪ |a|. The general solution
of Eq. (9) (valid in both regions) is given in terms of
parabolic cylinder functions E(a, x) (see Ref. [21]) and
reads

µ = A1E(a, x) + A2E
∗(a, x), (10)

where the two constants A1 and A2 are fixed by the initial
conditions when η → −∞ (i.e. x → ∞). In this limit,
the asymptotic behavior is given by [21]

lim
η→−∞

µ = b
−1/8
1

(

π

ǫ

)−1/4(
nǫ

2π

)−1/2

|η|−1/2

{

A1 exp

[

ib
1/2
1

n2ǫ

4π
|η|2 + i

π

4
+ i

φ2

2

]

+A2 exp

[

−ib
1/2
1

n2ǫ

4π
|η|2 − i

π

4
− i

φ2

2

]}

, (11)

where φ2 ≡ arg Γ(1/2 + ia). Thus we reproduce the correct WKB behavior if we take

A1 = 2−1/2 b
−1/8

1√
n

(

π

ǫ

)1/4

exp

[

−i(b1)
1/2

(

n2ǫ

4π

)

|ηi|2 − i
π

4
− i

φ2

2

]

, A2 = 0. (12)

Let us now study how this solution behaves in Re-
gion II. Usually, the solution in this region is given by
1/

√
2ne±in|η|. It is therefore sufficient to have only one

branch proportional to 1/
√

n to recover the standard
scale-invariant spectrum. Using the asymptotic behav-
ior of the parabolic cylinder functions when x2/4 ≪ |a|,
one finds

µ ≃ A1

(

π

ǫ

)−1/4

b
1/8
1 exp

[

in|η| + i
π

4

]

, (13)

i.e. we precisely recover the conditions necessary to ob-
tain a Harrison-Zeldovich spectrum, due to the fact that
A1 ∝ 1/

√
n, see Eq. (12).

Let us now turn to the case b1 < 0. An immediate con-
sequence is that the dispersion relation neff(n, η) vanishes
at some point and then becomes complex. Therefore, we
face the following problems. Firstly, in the region where
neff(n, η) is small, the term a′′/a is no longer negligible.
In principle it should be taken into account in the equa-
tion of motion but no exact solution can then be found.
However, this problem is not too serious because the ef-
fect of this term on the final spectrum is expected to be
small. Secondly, a much more serious question is the fact
that there is a region where we have to quantize a field
in the presence of imaginary frequency modes. Although
imaginary frequencies are standard in classical physics
and in quantum mechanics, they seem to be problematic
in the context of quantum field theory [22] although there

exist concrete physical situations where they are impor-
tant [23]. Thirdly, we have to fix the initial conditions in
the complex region. A possible choice for the initial con-
ditions, which is consistent with the WKB result, is to
keep only the decreasing exponential in the region where
the effective frequency becomes complex as proposed in
Ref. [1]. Then, an exact solution in terms of parabolic
cylinder functions U(a, x) and V (a, x) (see Ref. [21]) can
be found. This gives a Harrison-Zeldovich spectrum cor-
rected by oscillations and by an exponential term of the

form eAn2

. This result is in agreement with what was
obtained in Ref. [1]. However, this result rests clearly
on “non-standard physics” and for this reason is not so
attractive. Therefore, it is important to recall that there
now exist two cases where the final spectrum is modified
and everything is well-defined [13, 18].

IV. CONSEQUENCES FOR THE MATCHING

PROCEDURE

We now investigate what we can learn from the previ-
ous exact solution with respect to the matching between
Regions I and II. We concentrate on the Corley/Jacobson
case with b1 > 0. A priori, two natural choices for the
matching time can be envisaged. The first choice is to
match the solutions when λ = ℓ

C
. This amounts to



5

choosing

|ηj| = |η1| =

(

nℓ
C

2πℓ0

)−1

. (14)

Another possibility is to choose the matching time such
that the usual and the extra contribution in the disper-
sion relation are equal

n2b1

(

ℓ
C

λ

)2

= n2 ⇒ |ηj| = |η′
1| =

(

nℓ
C

2πℓ0

)−1

b
−1/2
1 .

(15)

This is in fact equivalent to matching the frequencies
neff(n, η). Therefore, η1 and η′

1 are not equal unless b1 =
1. Let us now perform the matching between Regions I
and II. Then, the coefficient B1 is given by:

2inB1e
inηj = 2−1/2

(

nǫ

2π

)−1/2

n−1/2b
−1/4
1 |ηj|−1/2 exp

[

∓ib
1/2
1

(

nǫ

4πβ

)

n

(

|ηj|2 − |ηi|2
)]

×
{

in − 1

2
(1 + β)|ηj|−1 ± ib

1/2
1

(

nǫ

2π

)

n|ηj|
}

. (16)

For the curly bracket of the above expression one finds

{. . . }1 = −1

2
(1 + β)|ηj|−1 + in

(

1 ±
∣

∣

∣

∣

ηj

η′
1

∣

∣

∣

∣

)

. (17)

In the same manner, one can determine B2 to be

2inB2e
−inηj = 2−1/2

(

nǫ

2π

)−1/2

n−1/2b
−1/4
1 |ηj|−1/2 exp

[

∓ib
1/2
1

(

nǫ

4πβ

)

n

(

|ηj|2 − |ηi|2
)]

×
{

in +
1

2
(1 + β)|ηj|−1 ∓ ib

1/2

1

(

nǫ

2π

)

n|ηj|
}

. (18)

Again, we can write the curly bracket in the previous
expression as

{. . . }2 = +
1

2
(1 + β)|ηj|−1 + in

(

1 ∓
∣

∣

∣

∣

ηj

η′
1

∣

∣

∣

∣

)

. (19)

The situation is now clear. If the joining is performed at
ηj = η1, the terms proportional to in in the curly brack-
ets have no reason to cancel out and they are in fact of
order one. The term proportional to |ηj |−1 is very small
and can be neglected. Therefore we reach the conclu-
sion that B1 ≃ B2 and we have oscillations. However,
if we perform the matching at ηj = η′

1 the situation is
drastically different. This time one of the curly brack-
ets vanishes and one of the Bi’s becomes of the order

η
′−1
1 ≪ 1, whereas the other one is of order 1. In other

words, only one branch survives, we have no oscillations
and the spectrum of fluctuations is unchanged.

A comparison with the exact solution shows that the
correct matching time is η′

1. Therefore, there are no oscil-
lations in the spectrum in the case b1 > 0, as pointed out
in Ref. [5], and the spectrum is unchanged. On the other
hand, for b1 < 0 the spectrum is modified, in agreement

with the analysis of Ref. [1].

V. CONCLUSION

In this short letter, we have investigated the following
technical points: (i) it has been shown that the method
used in Ref. [1] is equivalent to the WKB approach, (ii)
a new solution valid in the case of the Corley/Jacobson
dispersion relation has been presented, (iii) in the case
where piecewise solutions are used, the matching condi-
tions have been studied. It has been demonstrated that
the frequencies rather than the wavelengths should be
matched (as could have been guessed from the equation of
motion) and that if the latter requirement is utilized then
artificial oscillations show up in the spectrum. These re-
sults complete the study of Ref. [1].

On more general grounds, the conclusion that follows
from the previous considerations is that there is a sen-
sitive dependence of the spectrum of cosmological fluc-
tuations on the assumptions made at the level of sub-
Planckian physics. A separate issue is whether these
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modifications are reasonable from a physical point of
view. This question cannot be answered in the absence
of a realistic theory of physics beyond the Planck scale.
To our knowledge, it is still an open problem to derive a
dispersion relation from, for example, string theory (see,
however, Refs. [14, 24] for some recent progress).
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