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We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we
demonstrate that such strings will generically become superconducting at moderately low temperatures, thus
enhancing their stability. We then present a new class of defects—drum vortons—which arise when a small
symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma
model, relevant for hadrodynamics below the QCD scale. This model admits “embedded défsmpdgical
defect configurations of a simpler—in this case O(2) symmetric—model obtained by imposing an embedding
constraint that are unstable in the full model at zero temperature, but that can be staliilzeléctromagnetic
coupling to photonsin a thermal gas at moderately high termperatures. It is shown here that below the
embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will
not be of the symmetric embedded vortex type, but of an “asymmetric” vortex type, and are automatically
superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the
0O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane,
with tension given by the pion mass. The string current would then make it possible for a loop to attain a
(classically stable equilibrium state that differs from an “ordinary” vorton state by the presence of a sigma
membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized
if the symmetry breaking is too strong, as is found to be the case—due to the rather large value of the pion
mass—in the hadronic application of th&4Dsigma model.

DOI: 10.1103/PhysRevD.65.103520 PACS nuni$er98.80.Cq

I. INTRODUCTION defect configurations of the embedde®Dmodel constitute
what are known[10-13 as embedded defects within the
The purpose of this work is to follow up the work of framework of the full model, but as their energy is not mini-
Nagasawa and Brandenbergét who considered the possi- mized in the broader framework of the full(® model they
bility of thermal stabilization, via electromagnetic coupling, will not be stable in this more general context.
of vortex defects, i.e. cosmic strings, in a sigma model char- The point made by Nagasawa and Brandenbdrewas
acterized by @) symmetry with a set of degenerate vacuumthat the background reference states that are relevant in cos-
states having the topology of a 3-sphere. mological contexts are commonly not vacuum states but
Since the homotopy structure of the 3-sphere is trivialthermal equilibrium states, for which topological defects of
such a model does not have stationary vacuum defects ofthe embedded @) model can be stable as vortex defects of
topologically stable kind. However, this modéhvolving  the full model. The possibility of creating such vortex de-
charged and neutral pion fields as well as the sigma)fieldfects, i.e. cosmic strings, arises from breaking of th@)O
contains a subset of solutions that is identifiable as the conSymmetry by thermal effects mediated by electromagnetic
p|ete set Of So|uti0ns of an “embedded" mod@hvo'ving Coupling. Such stabilization of an embedded de[eet of a
just the neutral pion and the sigma figlcharacterized by topological defect of the embeddeda symmetric model
O(2) symmetry. This embedded model has a set of degenefloes however require that the product of the relevant electric
ate vacuum solutions having the topology of a circle, andcoupling constane and the temperatur® should be suffi-
therefore admits stationary vacuum vortex defects of a topociently large.
logically stable kind, which were callegion stringsin the The first thing we wish to point out here is that topologi-

initial paper{2] on this subject. These stationary topological cally stabilized vortex defects of thermialot vacuum equi-
librium states will exist for any non-zero value of the product

€0, even if it is very small(as long as the temperature is
Un this paper we will restrict our attention to the classical sigmahigher than the temperature of recombination, below which
model and not touch on the rich variety of defects which can existh€ thermal analysis used in this paper breaks dowor
when the quantum nature of QC(n particular at high baryon large values o€® these topological defects include the em-
density is taken into accour(see e.g[3—9] for discussions of such bedded defects referred to above. However, for smaller val-
defects. ues ofe® the topological defects are not configurations of
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the embedded model, but are of a mathematically less trividh which a semicolon denotes Riemannian covariant differ-
kind with the important property th&tnlike their embedded entiation with respect to the spacetime megjg, which we
counterparts at higher temperatutbey are automatically take to have signature—(,+,+,+), while the asterisk (*)
“superconducting” in the sense of Witteii4]. As first ob-  denotes complex conjugation. In addition to the electromag-
served by Davis and Shellafti5], such a conductivity prop- netic gauge potentiah , , the independent bosonic fields are
erty allows cosmic string loops to form vortons, i.e. centrifu-a set of four real scalar fields consisting of a pion triptgt
gally supported equilibrium states, which under a wide ranger,, 7, and a singletg= 75 say, that combine as the com-

of conditions will actually be stablgL6]. plex (respectively charge coupled and neyt@mbinations
The foregoing considerations are based on the supposition
that the underlying field model has non-thermal vacuum x=mitimy,, ¢=m3+img, (4)

states characterized by strict4) symmetry, with respect to
which the pions are identifiable as Goldstone bosons whici§o that
as such must have zero mass. However, for a more realistic
description, allowing for a finite pion mass that is actually
observed, the Lagrangian of the model has to be augmented
by the inclusion of a small intrinsic @) symmetry breaking
term. This removes the degeneracy of the vacuum, as well aghe other quantities involved are constants, of whicand
of the thermal equilibrium states, so there is no longer anyhe usual charge coupling constanare dimensionlesgand
possibility of forming a topologically stable defect, whether respectively large and small, but only moderately, compared
of the vacuum or of a thermal equilibrium state at finite with unity) while » has the dimensions of a maésith a
temperature. value about half that of the pigrand finally ¢ has the di-

There is however the possibility at finite temperature ofmensions of the cube of a ma@kat is small compared with
setting up a stationary state of a more interesting kind. On¢hat of the pion.
of the purposes of this article is to consider the construction It is evident thafindependently of the local (1) gauge
in such a context of a more general kind(dfnamically but symmetry of the electromagnetic phitiere will be a global
not topologically stable equilibrium configuration that may O(4) symmetry that will act on the sigma pion sector in the
be described as “drum vortor(or “frisbee”) consisting of a  limit when the constants ande are set to zero. This can be
vorton-xlike loop forming the boundary of a drum-type seen from the fact that the corresponding limit for the poten-
membrane. tial has the obviously @) invariant form

It is shown that the existence of such stabilized defects is
only possible if the symmetry breaking term is sufficiently S T TP S
small. This condition may be satisfied in other applications, V=g (motmtmyt ms— ) ®)
but it is found that it does not hold in the case when t{é)O
sigma model is applied in the hadrodynamic context for(and similarly for the kinetic terinase—0 ande—0.
which it was originally designed. The failure of the stabili-  The presence of the symmetry breaking term proportional
zation mechanism in this particular case is attributable to th¢o ¢ is empirically neededl19] to account for the finitéob-
rather large value of thédestabilizing pion massm, in  served value of the pion massn, that is given by the
conjunction with the rather small vale8=1/137 of the(sta-  vacuum state value of the partial derivative
bilizing) electromagnetic coupling constant.

o=3(¢+* ). (5)

N o\
- = * * 4 2
II. BOSONIC SIGMA MODEL ) 22X XTI ). @

The following work will be based on the use of a SigmaThe vacuum, i.e. the state for whighis minimum, is evi-

model of the usual kind constituting the bosonic sector of thed ; i -
: ently characterized by the vanishing of the triptgt, 7,
Schweber—Gell-Mann—Levy-type[17,1§ hadrodynamic 7, while the value ofo will be given by the largerg, say,
field theory as presented in the recent treatise of Waleck the pair,o, , o of values wherefor vanishing pion
Yty -

[19]. Such a sigma model is given by a Lagrangian denSit3fields) V has a local minimum. These restricted minima are

of the form given by the highest and lowest solutions of the cubic equa-
1 1 | tion
L= FUF = SO X+ o, =V, ()
124 M e
16m 2 oo(oi— ) =¢. ®)
with . .
The relevant values will be given, for small valuessgfby
A the expansion
V=2 (XXt ¢ -1’ -e o, 2 ,
e 3e
o.=*Fnt+ s=+5=5+0O g3, 9
where T TS e ©
Fuo=Auu=Aus Xp=XuTieAx, 3 Substituting the vacuum state value= o, in the formula

103520-2



THERMAL STABILIZATION OF SUPERCONDUCTING . .. PHYSICAL REVIEW D65 103520

) 20V independent field components involved are denotedpy
mw:m (100 for some index labeling the relevant degrees of freedom,
then one would expect the effect of small short wavelength

one finds that for low values af the result will be given by ~fluctuationsés¢; to be approximately describable by an ex-
pansion of the form

2 _ﬂ 2 2
m: = . +O{e%}. (11 EY
Vo=V+ a—‘Pi<5<Pi>+§ Ter0e, (Spidpj)+---, (16)
Il (NEUTRAL ) EMBEDDED MODEL where the angular brackets denote thermal averages. One
The configuration space of the preceding model evidentlyVould expect the odd power averages to cancel out, starting
includes an embedded subspace characterized by with the linear contributions
X=0c>771=772=0, (12) <5QDI>:O1 (17)

d SO the leading contribution will be of quadratic order. One
would expect the short wavelength bosonic fluctuations to
behave like a simple Bose-Einstein radiation gas for which—

which characterizes an(electromagnetically decouple
“embedded model” with Lagrangian

1 1 ' using a formula of Dolan and Jackil20], for which a sim-
Liy=16-F"Fur=5¢."¢" Vi (13 pler derivation will be provided below in Appendix A—the
guadratic contribution will be given simply by
for 02
V== (d*dp—n*)?—eN o (14)
{07 4 K ’

Thus under conditions such th@h order for the use of such

whose solutions will all automatically satisfy the field equa-2 thermal potential to be meaningful at)ahe background

tions of the complete modéL). variation length scale is large compared with the thermal
This embedded model does not involve the charge coulength scale—i.e. the magnitude of the thermal symmetry

pling constantwhose actual physical value would be given 4-vector 8# with components{® ~*,0,0,¢ in the thermal

by e2=1/137) but it does involve the other symmetry break-est frame—but such that the temperature is small enough

ing parametee. However, in the limit when the latter is set (i.e. B is large enoughfor the higher order terms in Eg.

to zero the reduced model will be subject to a glob&)o (16) to be neglected, one is led to the use of an approxima-

symmetry action, as can be seen from the fact that the coflon given by the formula

responding limit for the potential has the obviously2D

L 02 Y
invariant form R ey
Vo V=520 G0 (19)
A
Vioy~ 7 (mo+ m5—1%)? 15
0~ g (Mot m= ) (15) V. THERMALLY MODIFIED SIGMA MODELS
(and similarly for the kinetic terinfor e—0. In this limit In the particular case of the embedded model character-

there will be a set of vacuum states with circular topologyized by Eq.(13) it suffices to identify the componengswith
characterized byp * = 7?. One of the features of this em- the real and imaginary parts of the complex veetorand to
bedded model in the limit of vanishing will therefore be take ) to be V(q, so that the foregoing prescription leads
the presence of topological vortéke., string type defects  directly to the formula
of the vacuum. Such a configuration will be what is describ- N 1
able as an embedded defect from the point of view of the _ —@2 kg 2
complete theory whose field equations it will also satisfy in Violg™ Vioy=0 6( ¢Tdm5m ) 20
the relevant limit of vanishing, but in this broader frame- ) ] . ) )
work it will be unstable since there will be no topological !t is to be remarked that this adjustmeint which the final
impediment to its decay via the excitation of the(charged  t€rm proportional toy is dynamically irrelevant because it
pion) degrees of freedom. does not depend o) is such as to preserve thgZ) sym-
metry in the limite—0: it is therefore qualitatively uninter-
IV. THERMALLY MODIFIED MODELS: GENERAL esting for moderate values @, though for higher values
CONSIDERATIONS (above a critical valu® ) it will have the physically signifi-
cant effect of removing the degenera@and the consequent
Field models such as those described above can be modipontaneous symmetry breakjraf the ground state.
fied so as to allow for the effect of a thermal background, The situation is more complicated for the full sigma
with temperaturé, by replacing the relevant potential func- model characterized by E@l), because in addition to the
tion, V, by an appropriately modified function)y . If the  potentialV given by Eq.(2) there will be another coupling
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energy contribution—coming from the gauge coupling in the Y 02 N 02

kinetic term—so that for the purpose of applying the pre- *6 =w7e2+ > X X+ o* o+ - - 7],

scription (19) we need to make the identification Ax™x) 26)
V=V+ %eZX*XAMA". (21)  of Eq.(7), that the charged pion field will have an effective

mass,m, say, which will be non-vanishing in this thermally
odified case, even in the limit for which the symmetry
reaking parameter is set to set to zero, when specified in
the usual way by the formula

In view of the gauge invariance, the four components of th
covectorA , should not all be considered to be dynamically
independent. Imposing the thermal gauge conditBA,
=0 (which is compatible with the usual Lorentz condition
A;f‘= 0) one is left with three independent components given m2
with respect to the thermal rest frame By, A,, As. In X
order to be able to apply the formuld8 on which the

prescription(19) is based, the corresponding field compo-in the thermal equilibrium state whekg, is minimized.
nents¢o; must be specified with the appropriate normaliza- The analogue of Eq(8) for the values ofo at the re-
tion, which can be achieved by taking;=A;/\4w (i  stricted minima oV can be seen to have the form
=1,2,3) in order for the(unrationalized kinetic term

F ., F*"I16m to reduce(subject to the usual Lorentz gauge O-i(a-?j_ 77%))=8, (28
conditon to the standard formsz(e¢;.,¢f“+ @, ¢4 _
+¢3.,¢4"). The corresponding expression for the electro-With
magnetic potential will therefore be given by

20V
ax*x)

(27)

@2
2__ 2

V—V=27Tez)(*)((qoi+ <p§+ (p%) (22 KE 2 (29

It can thus be seen that the corresponding thermally modifiethe relevant solution will be given by an expansion analo-

version of the complete sigma mod@) will be given by gous to Eq(9) as

1
Lo=16-F"Fu=5 (Xfux#+ ¢%,0) Vo, (23 =t et — (30
27
with
in the limit when e< 772). This inequality will fail to be
Vog=V+Vg—V, (24)  satisfied near the critical temperature, i.e. wis \27, in
which case the solution to E@28) will have an order of
in which, by application of Eq(19), the extra thermal con- magnitude given simply by
tribution can be seen to be given by
o.~*glB (32)

©? o[ 1 *
Vo—V=—-¢e A A+ 7 x"x

2 6 Substituting the vacuum state value= o, in Eq. (27), one

5 ) obtains a formula of the form
P, * *x 4 .2
T2 2(’( X+ ot o3 ) (29 m?=me202+m?_, (32

As in the case of the embedded model, the group of termg, \yhich the first term will remain even whenis set to zero.

at the endi.e. what remains whea is set to zerpis quali-  The other term is the square of the effective mass of the
tatively uninteresting for moderate values ®f though for L . . . .10

higher valuegabove a critical valu® . that will be evalu- uncharged pion fieldro, which will be given simply by
ated below it will have the physically significant effect of

removing the degeneradyand the consequent spontaneous m2 zﬂ, (33)
symmetry breakingof the ground state. "o 7me
The part proportional t@? is more interesting. The first )
term breaks the electromagneti¢lly gauge invariance, giv- Which works out as
ing an effective masm,=0|e|y47/6 to the photon. o\ 1o
The contribution to Eq(25) that is of greatest interest for m?2 zmz( 1- ) (34)
our present purpose is the second terr@?® 2y * x/2, which 7o 27° ’
will break the @4) symmetry that would otherwise exist in
the limit e—0. in the limit whene < 77% , while for very small values ofg ,
It can be seen from the thermal generalization i.e. when®= 27, it will be given by
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2 ™
w

7 3 The positivity property of the quantity* ¥ whose vanishing
m?2 ~A82’3~<—> m2. (35  characterizes the embedding under consideration means that
© the stability of the embedded solution can be checked simply
by verifying the positivity of the derivativé26) on the em-

VI. STABILIZATION OF EMBEDDED DEFECT bedding,x =0, where it reduces simply to
Nagasawa and Brandenberger pointed [iit that the NV B 02 5 N[ 02 )
presence of an @) symmetry breaking term proportional to IO )X X0 T € + 2 ¢" b+ o (40)
x* x can stabilize the embedded string defect introduced in
Sec. lll. This string can be viewed as an ordinary globalln order for this to remain positive even at the core of the

vortex defect of the finite temperature sigma model obtainediefect wherep* ¢ goes to zero, it is evidently necessary and
when settingy=0 after the finite temperature corrections sufficient to have

have been included, i.e. in E(R3). The corresponding La-
grangian is \ 75 < me?02. (41)

1 Combining this with the conditio(B9) for the defect to exist
E@{O}:EFVMF”V_ §¢fﬂ¢;”—v(~){o}, (36) atall, we see that the necessary _and sufficient _condit_ion for
the existence of stable cosmic strings in the limit wheis
with set to zero is that the dimensionless ra@d» should lie
within the finite range
Voo —V —i@)z A AM+®2§ P
o{0}~ Vi =159 ¢ A 2197 ¢=307). V2

37
a requirement that would be satisfied in a broad range of
Note that this embedded submodel of the thermally emende%mp?erature if the dimensionless ratier@/)\ were reasog-

model is different from, and more realistic than, the directypy |arge, but that is rather restrictive if this ratio is small
thermal extension of the original embedded subm¢tidl It compared with unity as one expects.

is to be observed thate g differs from the quantityo; The temperature at which the lower inequality of E4R)
given by Eq.(20) not only by the photon mass terfwhich s saturated will be denoted 9. The finite temperature
could be got rid of by adopting the more restrictive embed-effective potential along im» and y axes is sketched in Fig.
ding condition to the effect thak,, should vanish as well as 1 for the various temperature ranges considered.

X, Which is possible becausg is its only sourcg but also

because, unlike/{o}e, the effective potentiaVgo, allows VIl. ASYMMETRIC VORTEX DEFECT

for the effect of thermal excitations of the fielg even
though the embedding condition set its mean value to zerg
This observation serves as a reminder that a fully realistié
treatment would require the inclusion of further terms allow-
ing for the thermal excitation of the fermionic degrees of
freedom whose neglect from the outset—on the grounds that

we are considering cases where their mean value is zeropes not mean that there cannot be any stable vortex defect,
was justifiable as a good approximation for the zero tempergy ¢ merely that there cannot be one that satisfiestire-

1+

2 eZ —1/2 @
T ) < <\Z (42)

The instability of the embeddegd=0 vortex defect when
he temperature is too low to satisfy E¢2), i.e. when

2

2me
1+ 02<27?, (43

ture limit, but less so at finite temperature. flection symmetry condition. The defects that occur in this
It can be seen that the potential for this embedded modelase must therefore be of the asymmetric kind that has been
(36) will be given by an expression of the form recently discussed by Axenides al. [21—23.
5 2 2 For the full sigma model characterized by Hg3) the

e A tential given by Eq(25) can b to b ible, i
Voo +eho= —sO2A Ab+ | ¢* p+—— 72| +Co, potential given by Eq(25) can be seen to be expressible, in

12 4 2 a manner analogous to E8) by

(38 ,

where Cg is a temperature dependent contribution that is V®+8)\U:e27(gAMAM+WX*X)

constant in the sense of being independent of the dynamical

field variables, and that is therefore irrelevant in so far as its N . 2.2

effect in the Lagrangian is concerned. It is evident that the T (XXt P—7)"+Co, (44
condition for the degeneracy of the ground state and the ex-

istence of the embedded vortex defect in the limit whes  in which 7g is given by Eq.(29).

set to zero is that the temperature should be less than a criti- In the limit whene vanishes, it is evident that—if and

cal value given simply byy, i.e. only if the inequality(39) is satisfied so thay? is positive—
this model will have a degeneratg(2) invariant family of
0<0,, O.= \/577. (39 ground states that are the same as those of the embedded
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2me?
N

@2

X x=n'=—|1+

: (49

a result that evidently has the necessary property of strict

T positivity just as long as Eq43) is satisfied.

VIIl. VORTEX CONDUCTIVITY

The breakdown of the reflection symmetry propejty
=0 for vortex defects in the low temperature range given by
~ Eq. (43) implies that(unlike the embedded vortex defects
=== — = Ty <T<T, described in Sec. Vlthe field configuration in such a vortex
will not be uniquely defined but will depend on an arbitrary
phase anglep say, defined as the argument in the expression

x=Ix1€¢ |xI=Vx*x. (46)

This means that such a vortex defect will be describable as a
superconducting string in the sense of Witféd], meaning
—_— 0<T<Tq that it will be able to carry a current attributable to slow
~ — variation of the phase along the vortex core. Its properties
will therefore depend on the squared magnituefesay, of
the phase gradient, as specified—in such a way that it will be
positive for the case of a spacelike gradient with which we
shall mainly be concerned here—by

=g, (47

In a uniform cylindrically symmetric (Nielsen-Olesen-

Kibble-type configuration described in terms of correspond-
phi ing cylindrical time, radial, angular, and longitudinal coordi-

nates,{t,w,#,z} of the usual kind, physically well-defined

FIG. 1. Sketch of the effective potenti}, for the neutratsolid ~ quantities will be independent of the tintend the longitu-

lines) and chargeddashed linesHiggs fields for different tempera- dinal coordinatez, and will be describable completely as
ture ranges. From bottom to top, the graphs correspond to zerbields on the 2-dimensional orthogonal space sections with
temperature(no stable string nonzero temperature below the circular coordinategws, 6}. In a gauge such tha,, has no
threshold® (when a stable conducting string with asymmetric time or longitudinal components the time and longitudinal
core existy ©,<0 <0, (the temperature range for which the em- components of the phase gradient will be physically well
bedded defect with symmetric core is stablnd®>© . (complete  defined and therefore uniform, so the phase itself can be

symmetry restoration, no stringin the figure the temperature is taken to be given by an expression of the standard form
denoted byT instead of®.

eta

model (36), namely the set of states characterizedAyA\* p=kz—wt “8)
=0 andy * x=0 but with ¢ * ¢= 75 . for some constant angular frequeneyand wave numbek.
There must therefore 'exist qorresponding topologically  The mechanism described in detail by P¢®#] imposes
stable vortex defect solutions with a core whek€ ¢=0.  an ypper limit on the admissible value of the longitudinally
When the temperature is in the ran@2) these stable topo- | grentz invariant combinatiom?-k2. This limit arises from
logical defects will be identifiable with the embedded defects;,o requirement that the charged condensate fiekhould

discussed in the preceding section. However, in the IoweE)e effectively confined within a finite length scale, say,

temperature range characterized by the inequal#®) : . ; .
[which evidently makes the weaker conditié®9) redun- \r/gt(;ﬁyobrser of magnitude can be estimated as being given

danil the topologically stable vortex defects resulting from
the potential(44) will no longer satisfy the reflection sym- 1
metry conditiony=0. The solution—obtained by minimiz- o~ (49)

ing the energy—uwill presumably be such théty reaches a toymi k- w?

finite maximum on the core wheré* ¢ vanishes, with a

value that will presumably be comparable with, but some-wherem, is the relevant mass value for the charged pion
what less than, the value for whiah, is minimized subject field, which at zero temperature will be same as that of the
to the constrainty=0, i.e., for the value obtained by solving uncharged pion field, i.em,=m_ with m_ given by Eq.

Eg. (26) with ¢* ¢ set to zero, which gives the value of the (11), which evidently satisfiemf,z me’®2, so that there will
upper bound as be a charge dependent term that remains even in the limit of
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vanishinge andm, . In terms of this mass valum, , the In the spacelike current case, for whikh— w?>0, there
confinement condition that is needed fgrto remain finite  will be a locally preferred Lorentz frame characterized by
will be given simply by o=0 andk= v in which the total energy per unit lengtb),
s a2 say, will exceed the corresponding longitudinal stress mag-
o —k°<m. (50 nitude, i.e. the string tensionsay, by an amount that can be

] ) o ) ) seen from Eq(51) to be given by[25]
In such a configuration the original 4-dimensional Lagrang-

ian variational problem reduces to a 2-dimensional energy U—T= 12k, (58
variation problem for which the original potential function

Ve has to be replaced by a corresponding 2-dimensionalvherex is the sectional integral of the condensate amplitude
version x*x, e,

V=V + 5 (k2= w?) x* x, (52) K=2wfx*xrdr- (59

to allow for the kinetic contributions from the longitudinal On the basis of Eqg49) and(53), the order of magnitude of
and temporal phase variations. Since the ensuing generalizHliS Sectional integral can be roughly estimated as
tion of EQ.(26) is
q.(26) N7 — me?@2— 12
K~ O . (60)
A(mi+ %)

vz 0?2
* -7 2
a(x* x)

1 \

e+ S(K— )+ SO x+ 6" b= ),

(52) According to the general principles of conducting string

theory[25] the total(sectionally integratedelectromagnetic

th|s |eads to the rep'acement Of 345) by an upper bound current densitM.M in the String W|” haVe a magnitude giVen
namel .
’ j“j ,=€’u?  u=«v, (61)
@2

X x=n'=— |1+

(53 in which u is interpretable as the effective mass per unit
phase radian winding number, which can be defined in terms
of the relevant equation of state specifying the energy den-
sity U as a function of the angular number densitypy the

v= k= »? (54) specification

is identifiable as the phase gradient magnitude that was in-
troduced in Eq(47).

The necessity thag* y should be positive implies that ) , , )
—just as a timelike current is subject to the “charge confinet can be estimated using E(60) that this effective mass
ment” limit (50)—at the opposite extreme a spacelike cur-Will P& given roughly by
rent will be subject to a “current quenching” limit of the

2mre? V2
N N

in which the Lorentz invariant quantity

_dU 62
r= gy (62

kind originally discussed by Wittef1.4], which will be given _v[mitre 3
in the present application by a relation of the form A m)2(+ 12 '
v<vgq, (55

IX. EQUATION OF STATE

where the quenching limitg is given by the formula The value(53) of y* x is that for which the derivative

R=\ n}— me202, (56)  vanishes, and thus whekég] is minimized, subject to the
constraint¢ * ¢=0. The difference between this minimal

whose right-hand side itself satisfies a positivity conditionvalue ofVis! and the thermal equilibrium state value that is
that is equivalent to the temperature lint#3). Thus, for its absolute minimum has a valugV{?! that provides a
fixed temperature®, then for v<<vg the vortices will be lower bound on the energy density in the vortex core. This
stable. An equivalent way to interpret this stability analysis ispotential energy density difference will be given in the limit
that for fixed currentv, the vortex will be stable provided of vanishinge by the exact formula
®<0,, where®, is given by

2@ 2 2
Te O+ v
. , 2 mre?| 1 AVEl=————(2\ny— 1= me?0?),  (64)
O=2| n°— N 1+ X (57
which will be valid so long as it does not exceed the upper
For ®>0 , the current leaks off the vortex. limit
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4 contribution from the gradient of the field outside the core
76 s (65  where¢* ¢p= 72 . Since this gradient energy density contri-
bution will be given approximately by an expression, namely
given by the value of the central energy density in the sym.nﬁ)IZrZ, whose radial dependence has the inverse square law
metric “embedded vortex” case that will otherwise be appli- character that is typical of a global vortex defect, its inte-
cable. Thus in consequence of ED), it can be seen that it grated contribution for an infinitely long straight string
will be possible to approximate E¢p4) by an order of mag- would be logarithmically divergent, so that its effective value
nitude estimate of the simpler form in practice will be determined by a long range cut off radius,
R, say, characterizing the length scale of macroscopic varia-
76 tion of the system. The integrated gradient energy density per
AVL)z]“?(WeZZjL v2). (66) unit length of string can thus be egstimated to h%)\//e a mgg%i—
tude of the order ofy3In{Ry/r 4}.
This barrier height provides a minimal estimate for the defect On the presumption that, for larg®,, this gradient con-
energy density on the central axis whef&¢ vanishes. The tribution will dominate, its value in the limit when the cur-
defect core, meaning the region whepé& ¢ differs signifi-  rent magnitudes vanishes can be used as a matching condi-
cantly from its equilibrium state valug? , will be charac- tion to fix the constant of integration in the solution of Eq.
terized by a radial length scalg, that can be estimated from (62) using the estimat¢63). We thereby deduce that the
the consideration that energy minimization will give rise to aéquation of state for the string energy densitgs a function
gradient energy density whose order of magnitugg,¢,)?  ©of the angular winding number densitywill be given, as a
should be comparable with the barrier height(s); i.e., we ~ rough approximation, by an expression of the form

>

AVEl<

2

can expect to have 2 2
(C]
77% U= 7|H{R(2b( V2+ m)z()}— ﬁ’ (70)
) 5
r4~ . (67)
¢ 2 . L. . .
2AVy in the smalle limit for which the relevant effective mass

variable will be given bym’~ 7e?®2.

On the basis of Eq.70), the corresponding expression for
the string tensio will be given, according to Eq$58) and
(60), by

2 2 2 2
~A|— 2v v
f4~ N %ﬁ' (68) T~% IN{RZ(v2+m?)}— +—. (7D

2 2 N
v +mX

In the case of g reflection symmetric “embedded” defect
that will apply when the limit(65) is exceeded, this leads to
the simple estimate

while in the alternative case of an asymmetric defect, i.e

when the inequality55) is satisfied, we obtain the estimate It is shown in Appendix B how an appropriately auxiliary

field @ can be used in a recently formulated proced2@
for casting such a conducting model into a standard varia-

! (69)  tional form.

[y~ ——.
¢ Jre?®2+ 12

It is to be noticed that in order to obtain confinement to a ) ] N .

finite core radius it is sufficient but not necessary to have a 1he most physically important quantities derivable from
finite temperatured. Even in the zero temperature limit, for the equation of state include the extringiziggle typg per-
which there is no longer any strictly topological stabilization, turbation speea and the longitudinalsound typg pertur-
there can still in principle be a confined defect if there is abation speed, , whose squared values are gij@3] by the
non-vanishing spacelikéout not null or timelike current, formulas

i.e., one characterized by a strictly positive value of the T

quantity v>=k?— w?. However, in practice a defect that de- c=— (72)
pended entirely on this current confining mechanism could U

not be stable: although compatible with the “quenching” :

limit (55), the necessary current would have to exceed thgnd[usmg Eqs(58), (61) and (62)]

more stringent upper limit imposed, as described below, by dT  vdu

the requirement of stability with respect to longitudinal per- CLTTAUT wdv (73
turbations.

It is apparent that in the smadl limit under consideration in which the positivity of the right hand sides is a necessary
in the present section, the core radi@®) will be of the  condition for stability of the short wavength perturbations of
same order of magnitude,~r , , as the charged condensate the correspondingwiggle or longitudinal kind.
confinement radius given by E@49). However, since the The largeness of the logarithmic factor ensures the posi-
kind of string defect we are dealing with is of global rather tivity not just of the energy density but also of the tension
than local type, its energy density will include an unconfinedT, thus ensuring the satisfaction of the wiggle stability con-

X. LONGITUDINAL STABILITY LIMIT
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dition that the quantity in Eq.72) should be positive so thats,V is negative wheread_V will be positive. This
throughout the spacelike current ranges 0°< vé under means that there will now be an absolute minimum only
consideration for longitudinal stability. whereo=o0 . It follows that a circuit round the set of what
The question of longitudinal stability is less trivial. As in were previously degenerate equilibrium states must now
the analogous cag@7] of the local string model describing cross a finite energy barrier whose height,g say, will be
the kind of superconducting vortex obtaing2i7] from the  given by the difference between the né&bsolut¢ minimum
toy bosonic field model originally proposed by Wittgt¥], = where o=0, and the (restricted maximum where o
the longitudinal stability requirement =—o_ (in both cases for vanishing values of the pion com-
ponent$ which will be given by
du
3,0 (74) No=06_V—5,V. (78)

imposes an upper “bunching” stability limit on the physi- On the basis of the estimaté8) this works out as

cally admissible current amplitude that is more severe that

the original “quenching” limit (55) imposed by the require- Ne=2¢eN7e, (79
mentu>0. For Eq.(63), one obtains 3 i - )
as long asng>¢, while near the critical temperature, i.e.,
de  (M+rd)(mi—v?) 1 when® =27, it would have an order of magnitude that is

T Nt 022 -y (75 obtainable from Eq(31) as

Ve~2 . 80
Treating the ratian, vo/(m’+3v%) as small, which it typi- =< (80)

cally will be (it can never exceed 1y3we see that a Nneces- |, the case of ordinary cosmic strings it is well knojae]
sary and approximately sufficient condition for satisfactionyay if the symmetry giving rise to the strings is weakly bro-
of the longitudinal stability limit(74) is given by the inequal- o, by an explicit symmetry breaking term, then the strings

ity become boundaries of membrane-like defects. This mem-
) ) brane is the locus where the phase of the string order param-
ry_ my (76) eter changes by 2 (if we consider circling the string in the

2

vQ~3m)2(+2vé' transverse plane, then the change in phase is no longer uni-

form as it would be without symmetry breaking, but the

This is interpretable as meaning that the “bunching” insta-Phase change is localized along one ray in the transverse

bility will set in for a value of the wavenumber that is at ~ Plane, i.e. on a membrane in three-dimensional space
most 14/3 of the “quenching” limit vg. The presence of this energy barrier means that it will no

longer be possible to have a strictly isolated exactly axisym-
metric vortex defect, but that instead there will be composite
XI. ATTACHED MEMBRANE defects(of a kind whose mechanics and classif28] and

Up to this stage our qualitative considerations have beefuantum[30] decay processes have been considered in the
restricted to what occurs in the limit—0, which should be ~ context of axion theorythat cannot be isolated but must be
a good approximation in the higher temperature range, abovaitached to membrane defecsee Fig. 2 for a sket¢hThese
the limit (41), where the symmetric embedded vortex defectmembrane defects will not actually be “domain walls” in the
is stable. However, since the pion mass given by Eq.(11)  Strict sense(because the state outside will be the same on
will actually not be small compared with but of the same ~Poth sides but they will have many of the same properties,
order of magnitude, the effects of the symmetry breakingncluding a thickness length scalg say, whose estimation
term proportional tee will be significant in the lower tem- (like that ofr,) can be obtained from the consideration that
perature range where the vortex defects will be of the asymthe energy will be minimized when the relevant gradient en-
metric “superconducting” kind. ergy density, of the order ofo(, /r,)?, is comparable with

In the rest of this section we will assume that0 but  the relevant barrier heigh#V . Thus, as the analogue of Eq.
that the pion mass is small compared to the scale of symmé67) we obtain the general formula
try breaking. In Sec. XIV we return to the question of what )
happens in the case of a realisti@., large pion mass. 2 T+

The effect ofe #0 is to break the degeneracy of the cir- o™~ Ne '
cular set of the equilibrium states that were characterized by
X*x=0, ¢* p= 77(29, by adding unequal adjustment energy The condition that the symmetry breaking coefficienand
terms, 8,V and §_V say, to the restricted local minima at hence alsosVg should be small evidently entails thaj,

(81)

o=o0, and o=0_~—o0,, thereby breaking the degen- should be correspondingly large. It is only on scales small
eracy. On the basis of Eq38) these adjustments will be compared with this that the phase field distribution outside
given approximately by the string at a membrane boundary will retain the axially
symmetric distribution assumed in Sec. I1X. This radius will

O0:V=—\eo., (77) therefore act as the outer cutoff introduced in the equation of
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. 4

Evaluating the formuld77) for 6_V using the first term in
the estimaté30) for o_ leads to the conclusion that classical
stability of the membrane requires th@& should be low
enough for the inequality

3
! 6 ® 2 77®>48 (88)

to be approximately satisfied. This conclusion justifies ne-

glecting the second term in E(B0) and shows that it is not
membrane Eq. (31) but Eq. (30) that will be relevant as an order of

magnitude estimate far. . We thereby conclude that

5_V=g\7g (89

which enables us to rewrite the classical stability criterion
—————— (84) in the form

vortex (vg= V") ?=N?7e( 75— 4 ), (90
FIG. 2. Sketch of the vortex and the attached membrane. Th0m which the necessity of the conditidB8) is obvious.
vectorsl andzin the figure correspond to the vectorand¢ inthe ~ The condition(88) also implies that the barrier height in the

text in Sec. XII. The configuration is symmetric along the vertical formula (81) will be given generally not by Eq80) but by
axis, and the membrane is the surface to the right of the véex  EQ. (79), and hence by Eq33) that the membrane radius

solid line), as illustrated with the dashed lines. will be given by
state function(70). Thus when such symmetry breaking is 1
I . 9 Fo™~—), (93)
present it will normally be appropriate to make the identifi- Mz,
cation

with m,, as given by Eq(34) rather than Eq(35). Thus
according to Eq(83) the membrane tensiof works out to

The membrane surface energy density resulting from th&e
concentration of the phase gradient within the widghwill

Ry=~T,. (82

-2
be identifiable with the tensiory, say, of the membrane, and = 76 Mag: (92)
will be given by the general formula -
or more explicitly
T~r,0Vg. (83 9234
o . T~|1- =—=| #°m (93
Although it will not be topologically stable such a membrane 27° ™

will be classically stabilized provided that after symmetry
breaking, the value of the potential at the highest point in the
original vacuum manifoldat o_) is lower than the potential
at the origin. This classical stability criterion can be seen to We now examine the way in which the centrifugal effect
be expressible as of the string current in a closed loop can balance not just the
2] contraction of the string tension, as in an ordinary vorton
0_V<AVg". (84  [15,16,235, but also the contraction effect of the surface ten-
sion of the membrane that will be stretched across it in a
drum type configuration of the kind whose investigation has
2)2 been initiated more recent)1].
(85) In so far as the sigma membrane is concerned, the general
dynamical evolution can be described in terms of a unit vec-
Har, {*, orthogonal to the 3-dimensional sigma membrane
world sheet, and on its boundary, another unit veckdr,

Xll. DRUM VORTON EQUILIBRIUM STATES

By rewriting Eq.(64) in the equivalent form

N (Vé—v

it can be seen that this energy density must always satisfy t

inequalit S . .
q y which is tangential to the world sheet but orthogonal to its
5 . boundary. In the two dimensional string world sheet that con-
AVL)]<Z ur (86)  stitutes the boundary, there will be a preferred orthonormal
diad of tangent vectors consisting of a preferred timelike unit
and hence that Eq84) imposes the requirement vector u* and an orthogonal spacelike unit veciof, of
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which the latter is aligned with the current in the spacelikewhereC# is the membrane curvature vector defined by
current configuration that we are considering. The set

{u” U” \*,¢#} thus constitutes a complete orthonormal tet- K=K (107)

rad at any point on the bounding strittgzhere it is physi- ) .

cally well determined modulo sign reversalsn terms of ~ Since the world sheet of the membrane is just a hypersurface,

such vectors the surface stress energy density tefiééyof ~ With @ uniquely(subject to a choice of orientatipulefined

the membrane will be given by normal #, we can work in term_s of its second fundamental
form K, and the traceC as defined by

TH=T{""—gm), (94)

where 7 is the fixed (background temperature dependent

membrane tension given by E@2). The corresponding ex- thus reducing the generic equation of free moti@8) for the
pression for the surface stress energy density teii$dr,of  membrane to the familiar more specialized form

the string at the boundary will be given in terms of a variable

energy densitylJ, and a variable string tensiof, by K=0. (103

K=K, K=KL=K"{,, (102

I

Tev=Uuku’— Tu u”. (95)  The membrane dynamical equatict03) will of course be

trivially satisfied in the stationary, flat-drum- like configura-
Systematically using curly script to distinguish quantities astions with which we are concerned here. The non-trivial part
sociated with the 21 dimensional world sheet of the mem- of the problem is the solution of Eq497) that governs the
brane from their analogues for ther1 dimensional world  string boundary. Specifically our purpose is to look for vor-
sheet of the boundary string, the relevant dynamical equaon configurations that are characterized as being stationary
tions will be succinctly expressib[€5] in terms of a second with respect to a static background with respect to a time-
fundamental tensoK”,, of the string world sheet and of its like static symmetry generating vectkt that not only sat-
analoguek’,, for the membrane. Since the latter evolvesisfies the Killing equatiork,. , +k.,,=0, but that is actually
freely, its equation of motion will be of the simple general covariantly constant,
form

k,,=0. (104
T"Kh,,=0. (96)

The stationarity requirement imposes that this Killing vector

The corresponding equation of motion for the string will be tangent to the world sheets of the membrane and of its

have the non-homogeneous form string boundary. If we definenodulo another choice of sign
ep the spacelike unit string tangent vec#drto be orthogonal to
THKy, =17, 97) k*, the locally determined stress energy eigenvectors will be

with a force density on the right in which the dominant con-eXprGSSIbIe in the form

tribution (at least for configurations of large radjusill be_ ub=(1—0?2) Ykt +per),
produced by the attached membrane, whose effect will be
given (subject to the orientation convention that the mem-

Tt — o 2\—1/20 qu w
brane tangent vector* at the boundary is outward direcjed u#=(1-v%) e ok, (109
simply by wherev is what will be interpretable as the rotation speed of
Fo— TN (98) the vorton, which will be given in terms of the phase fre-

quency variables introduced in E(8), as specified with
In addition to this(in practise inwardly directedmembrane respect to the vorton rest frame, by w/k.
tension contribution, there will in principle be anoth@n The second fundamental tensor works out in this case to
practise outwardly directed contribution arising from the be given by an expression of the form
magnetic field produced by the string current. However, as a

result of the smallness of the electromagnetic coupling con- KL, =e.eK?, (106)
stante?=1/137, such a “magnetic spring” effect can be ex-
pected[32] to be relatively unimportant. in which the curvature trace vector

The simple isotropic forn{94) of the membrane surface
stress energy tensor allows us to evaluate the right hand side KP=K}? (107)
of Eq. (97) and the left hand side of E¢Q8) in more explicit
form as will be given simply by

ft=—T\* (99 KP=e"V,e’. (108
and For a flat and circular configuration with radi&s the cur-
vature vector can thus be seen to be given in terms of the
TR, = —1IK? (100 radially outward directed unit normal® simply by
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1 2 2 5 \e
KP=— ﬁ)\p. (109 v~V $)\17®—2%. (115

By combining this with Eqs(95) and (105 it can be seen
that the left hand side of the string dynamical equati®n
will be given explicitly by

Using the expressio(b6) for the “quenching” limit v and
the formula(33) for the effective mass of the uncharged
pion, this condition can be rewritten as

Uv?-T

A-o9R" ) ?
1v2=2|m2 —me?—].
o 2

THKE,=— (110

(116

Using this in conjunction with the expressi@¢@9) for the
force density on the right, which is also proportionaliity
the dynamical equatio97) can be seen to reduce to the
simple explicit form

Since the final, charge dependent, term is negative, this re-
quirement would be satisfied automatically if the symmetry
breaking termnf, were small enough to satisfy the condition
Uv?-T=(1-v?RT. (111
: - o 2 ,0?
In this drum vorton equilibrium equation, it is to be recalled mz,<7e 5 (117
thatU is the string energy densitijts locally preferred rest
frame with relative motiow) and thafT is the corresponding
(state dependentstring tension, while7 is the (fixed) ~ which can be written more explicitly as
“drum” tension characterizing the membrane. Thus for an
arbitrary string state characterized by a chosen energy den- 02
sity U and an associated, necessarily smaller, value of the mi< 1-re2®2\/1— 77 (118
string tension,T<U, it will be possible to obtain a circular 7
drum vorton solution with arbitrarily large radifisby taking
a correspondingly higlibut always subluminalrotation ve-  In practice however, as a result of the small value of the
locity value given by electromagnetic coupling constaet=1/137, the relatively
large value of the symmetry breaking parameter/ n~2
T+RT ensures that in the hadrodynamic application the condition
= ) (112 >
U+RT (117 will fail throughout the relevant temperature range
=7.
Even when the conditioil18 does not hold, the string
defect stability condition(116) might still be satisfied for
Since by Eq(11) the symmetry breaking parametewill ~ sufficiently large value of the current. However, as well as
be given in terms of the observable pion mass by the difficulty of reconciling such a current with the upper
limit on v imposed by the bunching stability conditi¢n6),
7 there is the consideration that stability of the membrane
&= me’ (113 against spontaneous formation of string surrounded holes in
the membrane requires an energy barrier against formation of
the minimal(necessary but not sufficiordefect stability re- even the least energetic kind of strings, namely those for

quirement(88) can be expressed as the inequality which v vanishes. This suggests that genuinely stable defect
formation will be possible only when E@118) is satisfied.

812 The foregoing reasoning effectively rules out the case of
(114 the hadrodynamic application that motivated this investiga-
tion, but it raises the question of whether the kind of defects

As long asO is not too large compared with2 , this will ~ We ha_ve been considering might occur in other applice_ltions,
be compatible—albeit rather marginally—uwith the observednvolving the same type of @) sigma model but with
ratio, m_,/p~2, due to the fairly large value that is empiri- weaker symmeNtry breaking. In terms of a dimensionless
cally [19] measured for the dimensionless constamt25. mass parameten and a dimensionless temperature param-
The foregoing requirement is obtained from the conditioneter # defined by
(90) in the limit for which the phase gradient magnitude
has its maximum “quenching” valueg as given by Eq. - m, 16)
(56), a value that will in practice be unattainable due to the m=—, 0= — (119
“bunching” instability limit given by Eq.(76). K ‘/577
For lesser values of, a necessary—and, in view of Eq.
(88), approximately sufficient—condition for the classical the situation may be summed up in the statement that the
stability condition(90) to be satisfied is obtainable, by taking defects will be viable if and only if the temperature is in the
its square root, in the form limited range for which an inequality of the form

v2

Xlll. DEFECTS IN PION HADRODYNAMICS

A79? 02
F I
Me="3 (1 27
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{6} >m? (120 6°<(me?) 'm?, (127

is satisfied, where the functidd 6} simply vanishes whe#

is greater than unity, and is specified #r1 as follows, i the condition(120) would cease to hold, so there would be
a manner Fhat depends on whetlés greater or less that the gnother phase transition in which any surviving string
value bq given by bounded membranes—including the drum vortons—would

2 7Tez) —12 re? be destroyed.

02Q=(1+ =1-—, (122

at which the quantity/é given by Eq.(56) vanishes. For the XIV. CONCLUSIONS

higher rangg41) one has . . S .
In this paper we have studied the stabilization mechanism

A for embedded defectil], with particular emphasis on the
6= 6= {0} = 2(1—02)3/2, (122 application to the classical bosonic(4) sigma model of
hadrodynamics.
by Eqg.(114), while in the lower rangé43) one has We have seen that below the stabilization threshold for an

embedded defect of the traditional kir@vith symmetric
core there will still be stablized cosmic string defects, but of
asymmetric vortex type. These defects will automatically be
superconducting, and this provides them with an extra stabi-
by Eq. (118. lization mechanism. These superconducting string defects
Clearly the condition for defect formation will never be are stable above a threshold tempera‘[ﬁ)’@ set by the
satisfied ifm? exceeds the maximum value &f meaning strength of the explicit symmetry breaking term in the poten-
roughly if m?>e?. In the more interesting case of a cosmo-tial, i.e. by the pion mass in the case of hadrodynamics. In
logical scenario with the absence of explicit symmetry breaking the defects remain
stable until the temperature of recombination, at which point
ml<e?, (124  our thermal analysis breaks down.

In the case of explicit symmetry breaking, the supercon-
the conclusion to be drawn is that as the cosmological temducting vortices become boundaries of a new type of
perature® drops past a first critical valu® . corresponding  membrane-like defects which we caltum vortons across
to 6= 6. with 6. given roughly byf.=1, in approximate which the change in the phase of the string order parameter
accordance with Eq39), but with a small deviation given in s |ocalized, and whose tension is given by the symmetry

02
o< 0="F{0}= wez?(l— 6)12, (123

order of magnitude by breaking mass, the pion mass in the case of hadrodynamics.
~5\ 2 We have seen that drum vortons can be stabilized by rota-

1- 05%('“—) , (125 o | | |
me? In the case of hadrodynamics, the pion mass is too large

for the superconducting vortices and drum vortons studied
the universe would enter a regime in which the conditionhere to be stable. This is due to the large value of the pion
(120 is satisfied, so that the defects, in the form of stringmass relative to the QCD symmetry breaking scale and due
bounded membranes, would condense out and evolve. Thg the large value of the self-coupling constantelative to
Strings WOUIC.I be Superconducting from the outset Unlesg‘]e small value of the gauge Coup“aé' However, in many
0.>04, which implies that thgcompared to Eq(124]  grand unified models, we expektto be small and the ex-

relatively severe restriction plicit symmetry breaking terms to be absent. In this case, the
embedded strings with asymmetric core studied in this paper
(me?)32 !
m2< (126 and their drum vortons would be stable.
\/X Thus, we have identified a new class of defects which

could be of great cosmological importance in the early uni-
is satisfied, and even in this extreme case they would rapidlyerse. They could be used for baryogendsie, e.g.[35])
become superconducting as the temperature drops below tlee for the generation of primordial magnetic fieldee, e.g.,
value given by Eq(43) and enters the regime characterized[36]). There are also severe cosmological constraints on
by Eq. (123). As a result of the superconductivity, some of models which admit such defects, a topic which we will
the defect structure could be provisionally preserybgl  come back to in a subsequent publicatjé)].
mechanisms similar to those that have been considered for
other kinds of string defects33]) in the form of drum vor-
tons of the kind described in Sec. XII. However, after pass- aAfter completion of this manuscript a repd&4] appeared which
ing through another lower critical temperature and entering @iscusses the stabilization of certain unstable strings and textures by
regime characterized roughly by the cosmological expansion.
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APPENDIX A: MEAN SQUARE AMPLITUDE

IN THERMAL DISTRIBUTION I:f E|y|l/2d20'. (B1)

To derive the coefficient in the ubiquitously useful for-
mula (18), it will suffice to consider the case of a single Which is taken over a the string world sheet with internal
component field, with small amplitud®p say, which can be coordinatess® (a=0,1) and corresponding induced metric
analyzed as a sum of contributions from plane waves withy_ =~ for a suitably chosen Lagrangian density scafarin
angular frequency» in different directions. From any such particular, in terms of the phase scalaused above and of

plane wave contribution, the mean square field fluctuatiomn appropriately specified auxiliary scadr this Lagrangian
amplitude will receive an infinitesimal contribution can be given the standard form

d{(6¢)?) that will be related to the corresponding infinitesi-

mal contributiond€ to the energy densit§ by a proportion- L=-1% ¢2@|a¢"a—V{q’}y (B2)
ality formula that(subject to use of the standard field nor-

malization convention as aboveill have the simple form  with ¢ and® as independently variable 2-surface supported
fields using the general prescriptip26]

dE= w?d((5¢)?). (A1)
_1
In a thermal distribution with temperatu@, the energy den- V=2(U+T) (B3)
sity contribution corresponding to an infinitesimal angular,_ .
. . . . . with
frequency rangéw will be given(in our units, for which the
speed of lightc, the Boltzmann constark, and the Dirac @ qD|a: V2 w=d2. (B4)
Planck constanti=h/27 are all set to unity, i.ec=k=1% la ’
=1) by the well-known Bose-Einstein gas formula In the present application to the model characterized by the
3 equation of staté€70), this prescription simply gives
w w
= (A2)
2772(ea)/®_ 1) (1)2_ Vé_ V2 (BS)
o 2, .2\
Combining this with Eq(A1) and integrating with the sub- (M%)
s_titution u= w/@,_we fin(_j that the total mean square fluctua- and hence
tion amplitude will be given by
2 2y @2
,. 0% (=udu U (B6)
(P))=52) o1 (A3) 1+ @2

so it immediately follows from Eqs(70) and (71) that the

Since the integral involved is well known to be given as a
g g required potential functiow{®} will be given by

Riemann zeta function by

2y H2_ .2 2,2 2
x 2 MNP —vg 1 | RG(ME+vg)

_r V=
ca1 =g (A4) 14\ 2

2, 2 2
mX+ 66}
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