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Thermal stabilization of superconducting sigma strings and their drum vortons
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We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we
demonstrate that such strings will generically become superconducting at moderately low temperatures, thus
enhancing their stability. We then present a new class of defects—drum vortons—which arise when a small
symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma
model, relevant for hadrodynamics below the QCD scale. This model admits ‘‘embedded defects’’~topological
defect configurations of a simpler—in this case O(2) symmetric—model obtained by imposing an embedding
constraint! that are unstable in the full model at zero temperature, but that can be stabilized~by electromagnetic
coupling to photons! in a thermal gas at moderately high termperatures. It is shown here that below the
embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will
not be of the symmetric embedded vortex type, but of an ‘‘asymmetric’’ vortex type, and are automatically
superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the
O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane,
with tension given by the pion mass. The string current would then make it possible for a loop to attain a
~classically! stable equilibrium state that differs from an ‘‘ordinary’’ vorton state by the presence of a sigma
membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized
if the symmetry breaking is too strong, as is found to be the case—due to the rather large value of the pion
mass—in the hadronic application of the O~4! sigma model.
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I. INTRODUCTION

The purpose of this work is to follow up the work o
Nagasawa and Brandenberger@1# who considered the poss
bility of thermal stabilization, via electromagnetic couplin
of vortex defects, i.e. cosmic strings, in a sigma model ch
acterized by O~4! symmetry with a set of degenerate vacuu
states having the topology of a 3-sphere.

Since the homotopy structure of the 3-sphere is triv
such a model does not have stationary vacuum defects
topologically stable kind. However, this model~involving
charged and neutral pion fields as well as the sigma fi!
contains a subset of solutions that is identifiable as the c
plete set of solutions of an ‘‘embedded’’ model~involving
just the neutral pion and the sigma field! characterized by
O~2! symmetry. This embedded model has a set of dege
ate vacuum solutions having the topology of a circle, a
therefore admits stationary vacuum vortex defects of a to
logically stable kind, which were calledpion stringsin the
initial paper@2# on this subject.1 These stationary topologica

1In this paper we will restrict our attention to the classical sig
model and not touch on the rich variety of defects which can e
when the quantum nature of QCD~in particular at high baryon
density! is taken into account~see e.g.@3–9# for discussions of such
defects!.
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defect configurations of the embedded O~2! model constitute
what are known@10–13# as embedded defects within th
framework of the full model, but as their energy is not min
mized in the broader framework of the full O~4! model they
will not be stable in this more general context.

The point made by Nagasawa and Brandenberger@1# was
that the background reference states that are relevant in
mological contexts are commonly not vacuum states
thermal equilibrium states, for which topological defects
the embedded O~2! model can be stable as vortex defects
the full model. The possibility of creating such vortex d
fects, i.e. cosmic strings, arises from breaking of the O~4!
symmetry by thermal effects mediated by electromagn
coupling. Such stabilization of an embedded defect@i.e. of a
topological defect of the embedded O~2! symmetric model#
does however require that the product of the relevant elec
coupling constante and the temperatureQ should be suffi-
ciently large.

The first thing we wish to point out here is that topolog
cally stabilized vortex defects of thermal~not vacuum! equi-
librium states will exist for any non-zero value of the produ
eQ, even if it is very small~as long as the temperature
higher than the temperature of recombination, below wh
the thermal analysis used in this paper breaks down!. For
large values ofeQ these topological defects include the em
bedded defects referred to above. However, for smaller
ues ofeQ the topological defects are not configurations
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the embedded model, but are of a mathematically less tri
kind with the important property that~unlike their embedded
counterparts at higher temperature! they are automatically
‘‘superconducting’’ in the sense of Witten@14#. As first ob-
served by Davis and Shellard@15#, such a conductivity prop-
erty allows cosmic string loops to form vortons, i.e. centrif
gally supported equilibrium states, which under a wide ran
of conditions will actually be stable@16#.

The foregoing considerations are based on the suppos
that the underlying field model has non-thermal vacu
states characterized by strict O~4! symmetry, with respect to
which the pions are identifiable as Goldstone bosons wh
as such must have zero mass. However, for a more rea
description, allowing for a finite pion mass that is actua
observed, the Lagrangian of the model has to be augme
by the inclusion of a small intrinsic O~4! symmetry breaking
term. This removes the degeneracy of the vacuum, as we
of the thermal equilibrium states, so there is no longer a
possibility of forming a topologically stable defect, wheth
of the vacuum or of a thermal equilibrium state at fin
temperature.

There is however the possibility at finite temperature
setting up a stationary state of a more interesting kind. O
of the purposes of this article is to consider the construc
in such a context of a more general kind of~dynamically but
not topologically! stable equilibrium configuration that ma
be described as ‘‘drum vorton’’~or ‘‘frisbee’’ ! consisting of a
vorton-xlike loop forming the boundary of a drum-typ
membrane.

It is shown that the existence of such stabilized defect
only possible if the symmetry breaking term is sufficien
small. This condition may be satisfied in other applicatio
but it is found that it does not hold in the case when the O~4!
sigma model is applied in the hadrodynamic context
which it was originally designed. The failure of the stabi
zation mechanism in this particular case is attributable to
rather large value of the~destabilizing! pion massmp in
conjunction with the rather small valuee2.1/137 of the~sta-
bilizing! electromagnetic coupling constant.

II. BOSONIC SIGMA MODEL

The following work will be based on the use of a sigm
model of the usual kind constituting the bosonic sector of
Schweber–Gell-Mann–Levy-type@17,18# hadrodynamic
field theory as presented in the recent treatise of Wale
@19#. Such a sigma model is given by a Lagrangian den
of the form

L5
1

16p
FnmFmn2

1

2
~x um* x um1f ;m* f ;m!2V, ~1!

with

V5
l

4
~x* x1f* f2h2!22« l s, ~2!

where

Fmn5An;m2Am;n , x um5x ;m1 ieAmx, ~3!
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in which a semicolon denotes Riemannian covariant diff
entiation with respect to the spacetime metricgmn which we
take to have signature (2,1,1,1), while the asterisk (*)
denotes complex conjugation. In addition to the electrom
netic gauge potentialAm , the independent bosonic fields a
a set of four real scalar fields consisting of a pion tripletp0 ,
p1 , p2 and a singlet,s5p3 say, that combine as the com
plex ~respectively charge coupled and neutral! combinations

x5p11 ip2 , f5p31 ip0 , ~4!

so that

s5
1
2 ~f1 * f!. ~5!

The other quantities involved are constants, of whichl and
the usual charge coupling constante are dimensionless~and
respectively large and small, but only moderately, compa
with unity! while h has the dimensions of a mass~with a
value about half that of the pion! and finally « has the di-
mensions of the cube of a mass~that is small compared with
that of the pion!.

It is evident that@independently of the local U~1! gauge
symmetry of the electromagnetic part# there will be a global
O~4! symmetry that will act on the sigma pion sector in t
limit when the constantse and« are set to zero. This can b
seen from the fact that the corresponding limit for the pot
tial has the obviously O~4! invariant form

V;
l

4
~p0

21p1
21p2

21p3
22h2!2 ~6!

~and similarly for the kinetic term! ase→0 and«→0.
The presence of the symmetry breaking term proportio

to « is empirically needed@19# to account for the finite~ob-
served! value of the pion massmp that is given by the
vacuum state value of the partial derivative

]V

]~x * x!
5

l

2
~x * x1f * f2h2!. ~7!

The vacuum, i.e. the state for whichV is minimum, is evi-
dently characterized by the vanishing of the tripletp0 , p1 ,
p2 while the value ofs will be given by the larger,s1 say,
of the pair, s1 , s2 of values where~for vanishing pion
fields! V has a local minimum. These restricted minima a
given by the highest and lowest solutions of the cubic eq
tion

s6~s6
2 2h2!5«. ~8!

The relevant values will be given, for small values of«, by
the expansion

s656h1
«

2h27
3«2

8h5 1O$«3%. ~9!

Substituting the vacuum state values5s1 in the formula
0-2
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mp
2 5

2]V

]~x * x!
~10!

one finds that for low values of« the result will be given by

mp
2 5

«l

h
1O$«2%. ~11!

III. „NEUTRAL … EMBEDDED MODEL

The configuration space of the preceding model evide
includes an embedded subspace characterized by

x50⇔p15p250, ~12!

which characterizes an~electromagnetically decoupled!
‘‘embedded model’’ with Lagrangian

L$0%5
1

16p
FnmFmn2

1

2
f ;m * f ;m2V$0% ~13!

for

V$0%5
l

4
~f * f2h2!22« l s, ~14!

whose solutions will all automatically satisfy the field equ
tions of the complete model~1!.

This embedded model does not involve the charge c
pling constant~whose actual physical value would be give
by e2.1/137) but it does involve the other symmetry brea
ing parameter«. However, in the limit when the latter is se
to zero the reduced model will be subject to a global O~2!
symmetry action, as can be seen from the fact that the
responding limit for the potential has the obviously O~2!
invariant form

V$0%;
l

4
~p0

21p3
22h2!2 ~15!

~and similarly for the kinetic term! for «→0. In this limit
there will be a set of vacuum states with circular topolo
characterized byf * f5h2. One of the features of this em
bedded model in the limit of vanishing« will therefore be
the presence of topological vortex~i.e., string type! defects
of the vacuum. Such a configuration will be what is descr
able as an embedded defect from the point of view of
complete theory whose field equations it will also satisfy
the relevant limit of vanishing«, but in this broader frame
work it will be unstable since there will be no topologic
impediment to its decay via the excitation of thex ~charged
pion! degrees of freedom.

IV. THERMALLY MODIFIED MODELS: GENERAL
CONSIDERATIONS

Field models such as those described above can be m
fied so as to allow for the effect of a thermal backgroun
with temperatureQ, by replacing the relevant potential func
tion, V, by an appropriately modified function,VQ . If the
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independent field components involved are denoted byw i ,
for some indexi labeling the relevant degrees of freedom
then one would expect the effect of small short wavelen
fluctuationsdf i to be approximately describable by an e
pansion of the form

VQ5V1
]V
]w i

^dw i&1
1

2

]2V
]w i]w j

^dw idw j&1•••, ~16!

where the angular brackets denote thermal averages.
would expect the odd power averages to cancel out, star
with the linear contributions

^dw i&50, ~17!

so the leading contribution will be of quadratic order. O
would expect the short wavelength bosonic fluctuations
behave like a simple Bose-Einstein radiation gas for which
using a formula of Dolan and Jackiw@20#, for which a sim-
pler derivation will be provided below in Appendix A—th
quadratic contribution will be given simply by

^dw idw j&5
Q2

12
d i j . ~18!

Thus under conditions such that~in order for the use of such
a thermal potential to be meaningful at all! the background
variation length scale is large compared with the therm
length scale—i.e. the magnitude of the thermal symme
4-vector bm with components$Q21,0,0,0% in the thermal
rest frame—but such that the temperature is small eno
~i.e. bm is large enough! for the higher order terms in Eq
~16! to be neglected, one is led to the use of an approxim
tion given by the formula

VQ2V5
Q2

24
d i j

]2V
]w i]w j

. ~19!

V. THERMALLY MODIFIED SIGMA MODELS

In the particular case of the embedded model charac
ized by Eq.~13! it suffices to identify the componentsw with
the real and imaginary parts of the complex vectorf, and to
take V to be V$0% , so that the foregoing prescription lead
directly to the formula

V$0%Q
2V$0%5Q2

l

6S f * f2
1

2
h2D . ~20!

It is to be remarked that this adjustment~in which the final
term proportional toh is dynamically irrelevant because
does not depend onf) is such as to preserve the O~2! sym-
metry in the limit«→0: it is therefore qualitatively uninter
esting for moderate values ofQ, though for higher values
~above a critical valueQc) it will have the physically signifi-
cant effect of removing the degeneracy~and the consequen
spontaneous symmetry breaking! of the ground state.

The situation is more complicated for the full sigm
model characterized by Eq.~1!, because in addition to the
potentialV given by Eq.~2! there will be another coupling
0-3
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CARTER, BRANDENBERGER, AND DAVIS PHYSICAL REVIEW D65 103520
energy contribution—coming from the gauge coupling in t
kinetic term—so that for the purpose of applying the p
scription ~19! we need to make the identification

V5V1
1
2 e2x* x AmAm. ~21!

In view of the gauge invariance, the four components of
covectorAm should not all be considered to be dynamica
independent. Imposing the thermal gauge conditionbmAm
50 ~which is compatible with the usual Lorentz conditio
Am

;m50) one is left with three independent components giv
with respect to the thermal rest frame byA1 , A2 , A3. In
order to be able to apply the formula~18! on which the
prescription~19! is based, the corresponding field comp
nentsw i must be specified with the appropriate normaliz
tion, which can be achieved by takingw i5Ai /A4p ( i
51,2,3) in order for the~unrationalized! kinetic term
FmnFmn/16p to reduce~subject to the usual Lorentz gaug
condition! to the standard form 1

2 (w1;mw1
;m1w2;mw2

;m

1w3;mw3
;m). The corresponding expression for the elect

magnetic potential will therefore be given by

V2V52pe2x * x~w1
21w2

21w3
2!. ~22!

It can thus be seen that the corresponding thermally mod
version of the complete sigma model~1! will be given by

LQ5
1

16p
FnmFmn2

1

2
~x um* x um1f ;m* f ;m!2VQ , ~23!

with

VQ5V1VQ2V, ~24!

in which, by application of Eq.~19!, the extra thermal con
tribution can be seen to be given by

VQ2V5
Q2

2
e2S 1

6
AmAm1p x *xD

1
Q2

2

l

2 S x * x1f*f2
2

3
h2D . ~25!

As in the case of the embedded model, the group of te
at the end~i.e. what remains whene is set to zero! is quali-
tatively uninteresting for moderate values ofQ, though for
higher values~above a critical valueQc that will be evalu-
ated below! it will have the physically significant effect o
removing the degeneracy~and the consequent spontaneo
symmetry breaking! of the ground state.

The part proportional toe2 is more interesting. The firs
term breaks the electromagnetic U~1! gauge invariance, giv-
ing an effective massmg5QueuA4p/6 to the photon.

The contribution to Eq.~25! that is of greatest interest fo
our present purpose is the second term,pe2Q2x * x/2, which
will break the O~4! symmetry that would otherwise exist i
the limit «→0.

It can be seen from the thermal generalization
10352
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]VQ

]~x * x!
5p

Q2

2
e21

l

2 S x* x1f* f1
Q2

2
2h2D ,

~26!

of Eq. ~7!, that the charged pion field will have an effectiv
mass,mx say, which will be non-vanishing in this thermall
modified case, even in the limit for which the symmet
breaking parameter« is set to set to zero, when specified
the usual way by the formula

mx
25

2]VQ

]~x* x!
, ~27!

in the thermal equilibrium state whereVQ is minimized.
The analogue of Eq.~8! for the values ofs at the re-

stricted minima ofVQ can be seen to have the form

s6~s6
2 2hQ

2 !5«, ~28!

with

hQ
2 5h22

Q2

2
. ~29!

The relevant solution will be given by an expansion ana
gous to Eq.~9! as

s6.6hQ1
«

2hQ
2

, ~30!

in the limit when «!hQ
3 . This inequality will fail to be

satisfied near the critical temperature, i.e. whenQ.A2h, in
which case the solution to Eq.~28! will have an order of
magnitude given simply by

s6'6«1/3. ~31!

Substituting the vacuum state values5s1 in Eq. ~27!, one
obtains a formula of the form

mx
25pe2Q21mpQ

2 , ~32!

in which the first term will remain even when« is set to zero.
The other term is the square of the effective massmpQ

of the

uncharged pion fieldp0, which will be given simply by

mpQ

2 .
«l

hQ
, ~33!

which works out as

mpQ

2 .mp
2 S 12

Q2

2h2D 21/2

, ~34!

in the limit when«!hQ
3 , while for very small values ofhQ ,

i.e. whenQ.A2h, it will be given by
0-4



o

ba
ne
s

-

de
c

d
s

er
st
w
o
th
ro
er

d

i
ic
i

th
e

cr

that
ply

he
nd

for

of

all

.

fect,

is
een

in

dded

THERMAL STABILIZATION OF SUPERCONDUCTING . . . PHYSICAL REVIEW D65 103520
mpQ

2 'l«2/3'S lh2

mp
2 D 1/3

mp
2 . ~35!

VI. STABILIZATION OF EMBEDDED DEFECT

Nagasawa and Brandenberger pointed out@1# that the
presence of an O~4! symmetry breaking term proportional t
x* x can stabilize the embedded string defect introduced
Sec. III. This string can be viewed as an ordinary glo
vortex defect of the finite temperature sigma model obtai
when settingx50 after the finite temperature correction
have been included, i.e. in Eq.~23!. The corresponding La
grangian is

LQ$0%5
1

16p
FnmFmn2

1

2
f ;m* f ;m2VQ$0% , ~36!

with

VQ$0%2V$0%5
1

12
Q2e2AmAm1Q2

l

4S f* f2
2

3
h2D .

~37!

Note that this embedded submodel of the thermally exten
model is different from, and more realistic than, the dire
thermal extension of the original embedded submodel~13!. It
is to be observed thatVQ$0% differs from the quantityV$0%Q

given by Eq.~20! not only by the photon mass term~which
could be got rid of by adopting the more restrictive embe
ding condition to the effect thatAm should vanish as well a
x, which is possible becausex is its only source! but also
because, unlikeV$0%Q

, the effective potentialVQ$0% allows

for the effect of thermal excitations of the fieldx even
though the embedding condition set its mean value to z
This observation serves as a reminder that a fully reali
treatment would require the inclusion of further terms allo
ing for the thermal excitation of the fermionic degrees
freedom whose neglect from the outset—on the grounds
we are considering cases where their mean value is ze
was justifiable as a good approximation for the zero temp
ture limit, but less so at finite temperature.

It can be seen that the potential for this embedded mo
~36! will be given by an expression of the form

VQ$0%1«ls5
e2

12
Q2AmAm1

l

4 S f * f1
Q2

2
2h2D 2

1CQ ,

~38!

where CQ is a temperature dependent contribution that
constant in the sense of being independent of the dynam
field variables, and that is therefore irrelevant in so far as
effect in the Lagrangian is concerned. It is evident that
condition for the degeneracy of the ground state and the
istence of the embedded vortex defect in the limit when« is
set to zero is that the temperature should be less than a
cal value given simply byh, i.e.

Q,Qc , Qc5A2h. ~39!
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The positivity property of the quantityx* x whose vanishing
characterizes the embedding under consideration means
the stability of the embedded solution can be checked sim
by verifying the positivity of the derivative~26! on the em-
bedding,x50, where it reduces simply to

]VQ

]~x* x!x* x505p
Q2

2
e21

l

2 S f* f1
Q2

2
2h2D . ~40!

In order for this to remain positive even at the core of t
defect wheref* f goes to zero, it is evidently necessary a
sufficient to have

lhQ
2 ,pe2Q2. ~41!

Combining this with the condition~39! for the defect to exist
at all, we see that the necessary and sufficient condition
the existence of stable cosmic strings in the limit when« is
set to zero is that the dimensionless ratioQ/h should lie
within the finite range

A2S 11
2pe2

l D 21/2

,
Q

h
,A2, ~42!

a requirement that would be satisfied in a broad range
temperature if the dimensionless ratio 2pe2/l were reason-
ably large, but that is rather restrictive if this ratio is sm
compared with unity as one expects.

The temperature at which the lower inequality of Eq.~42!
is saturated will be denoted byQQ . The finite temperature
effective potential along inf andx axes is sketched in Fig
1 for the various temperature ranges considered.

VII. ASYMMETRIC VORTEX DEFECT

The instability of the embeddedx50 vortex defect when
the temperature is too low to satisfy Eq.~42!, i.e. when

S 11
2pe2

l DQ2,2h2, ~43!

does not mean that there cannot be any stable vortex de
but merely that there cannot be one that satisfies thex re-
flection symmetry condition. The defects that occur in th
case must therefore be of the asymmetric kind that has b
recently discussed by Axenideset al. @21–23#.

For the full sigma model characterized by Eq.~23! the
potential given by Eq.~25! can be seen to be expressible,
a manner analogous to Eq.~38! by

VQ1«ls5e2
Q2

2 S 1

6
AmAm1px * x D

1
l

4
~x * x1f * f2hQ

2 !21CQ , ~44!

in which hQ is given by Eq.~29!.
In the limit when « vanishes, it is evident that—if and

only if the inequality~39! is satisfied so thathQ
2 is positive—

this model will have a degenerate O~2! invariant family of
ground states that are the same as those of the embe
0-5
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CARTER, BRANDENBERGER, AND DAVIS PHYSICAL REVIEW D65 103520
model ~36!, namely the set of states characterized byAmAm

50 andx * x50 but with f * f5hQ
2 .

There must therefore exist corresponding topologica
stable vortex defect solutions with a core wheref * f50.
When the temperature is in the range~42! these stable topo
logical defects will be identifiable with the embedded defe
discussed in the preceding section. However, in the lo
temperature range characterized by the inequality~43!
@which evidently makes the weaker condition~39! redun-
dant# the topologically stable vortex defects resulting fro
the potential~44! will no longer satisfy the reflection sym
metry conditionx50. The solution—obtained by minimiz
ing the energy—will presumably be such thatx* x reaches a
finite maximum on the core wheref* f vanishes, with a
value that will presumably be comparable with, but som
what less than, the value for whichVQ is minimized subject
to the constraintf50, i.e., for the value obtained by solvin
Eq. ~26! with f* f set to zero, which gives the value of th
upper bound as

FIG. 1. Sketch of the effective potentialVQ for the neutral~solid
lines! and charged~dashed lines! Higgs fields for different tempera
ture ranges. From bottom to top, the graphs correspond to
temperature~no stable string!, nonzero temperature below th
thresholdQQ ~when a stable conducting string with asymmet
core exists!, QQ,Q,Qc ~the temperature range for which the em
bedded defect with symmetric core is stable!, andQ.Qc ~complete
symmetry restoration, no string!. In the figure the temperature i
denoted byT instead ofQ.
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x* x5h22
Q2

2 S 11
2pe2

l D , ~45!

a result that evidently has the necessary property of s
positivity just as long as Eq.~43! is satisfied.

VIII. VORTEX CONDUCTIVITY

The breakdown of the reflection symmetry propertyx
50 for vortex defects in the low temperature range given
Eq. ~43! implies that ~unlike the embedded vortex defec
described in Sec. VI! the field configuration in such a vorte
will not be uniquely defined but will depend on an arbitra
phase angle,w say, defined as the argument in the express

x5uxueiw, uxu5Ax* x. ~46!

This means that such a vortex defect will be describable
superconducting string in the sense of Witten@14#, meaning
that it will be able to carry a current attributable to slo
variation of the phasew along the vortex core. Its propertie
will therefore depend on the squared magnitude,n2 say, of
the phase gradient, as specified—in such a way that it wil
positive for the case of a spacelike gradient with which
shall mainly be concerned here—by

n25w ;mw ;m. ~47!

In a uniform cylindrically symmetric ~Nielsen-Olesen-
Kibble-type! configuration described in terms of correspon
ing cylindrical time, radial, angular, and longitudinal coord
nates,$t,Ã,u,z% of the usual kind, physically well-defined
quantities will be independent of the timet and the longitu-
dinal coordinatez, and will be describable completely a
fields on the 2-dimensional orthogonal space sections w
circular coordinates$Ã,u%. In a gauge such thatAm has no
time or longitudinal components the time and longitudin
components of the phase gradient will be physically w
defined and therefore uniform, so the phase itself can
taken to be given by an expression of the standard form

w5kz2vt ~48!

for some constant angular frequencyv and wave numberk.
The mechanism described in detail by Peter@24# imposes

an upper limit on the admissible value of the longitudina
Lorentz invariant combinationv2-k2. This limit arises from
the requirement that the charged condensate fieldx should
be effectively confined within a finite length scale,r x say,
whose order of magnitude can be estimated as being g
roughly by

r x'
1

Amx
21k22v2

, ~49!

where mx is the relevant mass value for the charged p
field, which at zero temperature will be same as that of
uncharged pion field, i.e.mx5mp with mp given by Eq.
~11!, which evidently satisfiesmp

2 >pe2Q2, so that there will
be a charge dependent term that remains even in the lim

ro
0-6
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vanishing« and mp . In terms of this mass valuemx , the
confinement condition that is needed forr x to remain finite
will be given simply by

v22k2,mx
2 . ~50!

In such a configuration the original 4-dimensional Lagran
ian variational problem reduces to a 2-dimensional ene
variation problem for which the original potential functio
VQ has to be replaced by a corresponding 2-dimensio
version

VQ
[2]5VQ1

1
2 ~k22v2!x* x, ~51!

to allow for the kinetic contributions from the longitudina
and temporal phase variations. Since the ensuing genera
tion of Eq. ~26! is

]VQ
[2]

]~x* x!
5p

Q2

2
e21

1

2
~k22v2!1

l

2
~x* x1f* f2hQ

2 !,

~52!

this leads to the replacement of Eq.~45! by an upper bound
that, for a spacelike current,k22v2.0, is more severe
namely

x* x5h22
Q2

2 S 11
2pe2

l D2
n2

l
, ~53!

in which the Lorentz invariant quantity

n5Ak22v2 ~54!

is identifiable as the phase gradient magnitude that was
troduced in Eq.~47!.

The necessity thatx* x should be positive implies tha
—just as a timelike current is subject to the ‘‘charge confin
ment’’ limit ~50!—at the opposite extreme a spacelike c
rent will be subject to a ‘‘current quenching’’ limit of the
kind originally discussed by Witten@14#, which will be given
in the present application by a relation of the form

n,nQ, ~55!

where the quenching limitnQ is given by the formula

nQ
2 5l hQ

2 2pe2Q2, ~56!

whose right-hand side itself satisfies a positivity conditi
that is equivalent to the temperature limit~43!. Thus, for
fixed temperatureQ, then for n,nQ the vortices will be
stable. An equivalent way to interpret this stability analysis
that for fixed currentn, the vortex will be stable provided
Q,Qn , whereQn is given by

Qn
252S h22

n2

l D S 11
2pe2

l D 21

. ~57!

For Q.Qn the current leaks off the vortex.
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In the spacelike current case, for whichk22v2.0, there
will be a locally preferred Lorentz frame characterized
v50 andk5n in which the total energy per unit length,U
say, will exceed the corresponding longitudinal stress m
nitude, i.e. the string tensionT say, by an amount that can b
seen from Eq.~51! to be given by@25#

U2T5n2k, ~58!

wherek is the sectional integral of the condensate amplitu
x* x, i.e.,

k52pE x * x r dr . ~59!

On the basis of Eqs.~49! and~53!, the order of magnitude o
this sectional integral can be roughly estimated as

k'
lhQ

2 2pe2Q22n2

l~mx
21n2!

. ~60!

According to the general principles of conducting stri
theory @25# the total~sectionally integrated! electromagnetic
current densityj m in the string will have a magnitude give
in terms of this sectional integral by the formula

j m j m5e2m2, m5kn, ~61!

in which m is interpretable as the effective mass per u
phase radian winding number, which can be defined in te
of the relevant equation of state specifying the energy d
sity U as a function of the angular number densityn by the
specification

m5
dU

dn
. ~62!

It can be estimated using Eq.~60! that this effective mass
will be given roughly by

m'
n

l S mx
21nQ

2

mx
21n2

21D . ~63!

IX. EQUATION OF STATE

The value~53! of x * x is that for which the derivative
vanishes, and thus whereVQ

[2] is minimized, subject to the
constraintf * f50. The difference between this minima
value ofVQ

[2] and the thermal equilibrium state value that
its absolute minimum has a valueDVQ

[2] that provides a
lower bound on the energy density in the vortex core. T
potential energy density difference will be given in the lim
of vanishing« by the exact formula

DVQ
[2]5

pe2Q21n2

4l
~2lhQ

2 2n22pe2Q2!, ~64!

which will be valid so long as it does not exceed the upp
limit
0-7
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DVQ
[2]<

l

4
hQ

4 , ~65!

given by the value of the central energy density in the sy
metric ‘‘embedded vortex’’ case that will otherwise be app
cable. Thus in consequence of Eq.~55!, it can be seen that i
will be possible to approximate Eq.~64! by an order of mag-
nitude estimate of the simpler form

DVQ
[2]'

hQ
2

2
~pe2Q21n2!. ~66!

This barrier height provides a minimal estimate for the def
energy density on the central axis wheref* f vanishes. The
defect core, meaning the region wheref* f differs signifi-
cantly from its equilibrium state valuehQ

2 , will be charac-
terized by a radial length scaler f that can be estimated from
the consideration that energy minimization will give rise to
gradient energy density whose order of magnitude (hQ/r f)2

should be comparable with the barrier heightDVQ
[2] ; i.e., we

can expect to have

r f
2 '

hQ
2

2DVQ
[2] . ~67!

In the case of ax reflection symmetric ‘‘embedded’’ defec
that will apply when the limit~65! is exceeded, this leads t
the simple estimate

r f'A 2

hQ

Al , ~68!

while in the alternative case of an asymmetric defect,
when the inequality~55! is satisfied, we obtain the estimat

r f'
1

Ape2Q21n2
. ~69!

It is to be noticed that in order to obtain confinement to
finite core radius it is sufficient but not necessary to hav
finite temperatureQ. Even in the zero temperature limit, fo
which there is no longer any strictly topological stabilizatio
there can still in principle be a confined defect if there is
non-vanishing spacelike~but not null or timelike! current,
i.e., one characterized by a strictly positive value of t
quantityn25k22v2. However, in practice a defect that d
pended entirely on this current confining mechanism co
not be stable: although compatible with the ‘‘quenchin
limit ~55!, the necessary current would have to exceed
more stringent upper limit imposed, as described below,
the requirement of stability with respect to longitudinal pe
turbations.

It is apparent that in the small« limit under consideration
in the present section, the core radius~69! will be of the
same order of magnitude,r f'r x , as the charged condensa
confinement radius given by Eq.~49!. However, since the
kind of string defect we are dealing with is of global rath
than local type, its energy density will include an unconfin
10352
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contribution from the gradient of thef field outside the core
wheref* f.hQ

2 . Since this gradient energy density cont
bution will be given approximately by an expression, nam
hQ

2 /2r 2, whose radial dependence has the inverse square
character that is typical of a global vortex defect, its in
grated contribution for an infinitely long straight strin
would be logarithmically divergent, so that its effective val
in practice will be determined by a long range cut off radiu
Rf say, characterizing the length scale of macroscopic va
tion of the system. The integrated gradient energy density
unit length of string can thus be estimated to have a ma
tude of the order ofhQ

2 ln$Rf /rf%.
On the presumption that, for largeRf , this gradient con-

tribution will dominate, its value in the limit when the cu
rent magnituden vanishes can be used as a matching con
tion to fix the constant of integration in the solution of E
~62! using the estimate~63!. We thereby deduce that th
equation of state for the string energy densityU as a function
of the angular winding number densityn will be given, as a
rough approximation, by an expression of the form

U'
hQ

2

2
ln$Rf

2 ~n21mx
2!%2

n2

2l
, ~70!

in the small« limit for which the relevant effective mas
variable will be given bymx

2'pe2Q2.
On the basis of Eq.~70!, the corresponding expression fo

the string tensionT will be given, according to Eqs.~58! and
~60!, by

T'
hQ

2

2 S ln$Rf
2 ~n21mx

2!%2
2n2

n21mx
2D 1

n2

2l
. ~71!

It is shown in Appendix B how an appropriately auxiliar
field F can be used in a recently formulated procedure@26#
for casting such a conducting model into a standard va
tional form.

X. LONGITUDINAL STABILITY LIMIT

The most physically important quantities derivable fro
the equation of state include the extrinsic~wiggle type! per-
turbation speedcE and the longitudinal~sound type! pertur-
bation speedcL , whose squared values are given@25# by the
formulas

cE
25

T

U
~72!

and @using Eqs.~58!, ~61! and ~62!#

cL
252

dT

dU
5

n dm

m dn
, ~73!

in which the positivity of the right hand sides is a necess
condition for stability of the short wavength perturbations
the corresponding~wiggle or longitudinal! kind.

The largeness of the logarithmic factor ensures the p
tivity not just of the energy densityU but also of the tension
T, thus ensuring the satisfaction of the wiggle stability co
0-8
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dition that the quantity in Eq.~72! should be positive
throughout the spacelike current range 0<n2,nQ

2 under
consideration for longitudinal stability.

The question of longitudinal stability is less trivial. As i
the analogous case@27# of the local string model describin
the kind of superconducting vortex obtained@27# from the
toy bosonic field model originally proposed by Witten@14#,
the longitudinal stability requirement

dm

dn
.0 ~74!

imposes an upper ‘‘bunching’’ stability limit on the phys
cally admissible current amplitude that is more severe
the original ‘‘quenching’’ limit ~55! imposed by the require
mentm.0. For Eq.~63!, one obtains

dm

dn
'

~mx
21nQ

2 !~mx
22n2!

l~mx
21n2!2

2
1

l
. ~75!

Treating the ratiomxnQ/(mx
213nQ

2) as small, which it typi-
cally will be ~it can never exceed 1/3!, we see that a neces
sary and approximately sufficient condition for satisfacti
of the longitudinal stability limit~74! is given by the inequal-
ity

n2

nQ
2

&
mx

2

3mx
212nQ

2
. ~76!

This is interpretable as meaning that the ‘‘bunching’’ ins
bility will set in for a value of the wavenumbern that is at
most 1/A3 of the ‘‘quenching’’ limit nQ.

XI. ATTACHED MEMBRANE

Up to this stage our qualitative considerations have b
restricted to what occurs in the limit«→0, which should be
a good approximation in the higher temperature range, ab
the limit ~41!, where the symmetric embedded vortex def
is stable. However, since the pion massmp given by Eq.~11!
will actually not be small compared withh but of the same
order of magnitude, the effects of the symmetry break
term proportional to« will be significant in the lower tem-
perature range where the vortex defects will be of the as
metric ‘‘superconducting’’ kind.

In the rest of this section we will assume that«.0 but
that the pion mass is small compared to the scale of sym
try breaking. In Sec. XIV we return to the question of wh
happens in the case of a realistic~i.e., large! pion mass.

The effect of«Þ0 is to break the degeneracy of the c
cular set of the equilibrium states that were characterized
x* x50, f* f5hQ

2 , by adding unequal adjustment ener
terms,d1V and d2V say, to the restricted local minima a
s5s1 and s5s2'2s1 , thereby breaking the degen
eracy. On the basis of Eq.~38! these adjustments will be
given approximately by

d6V.2l«s6 , ~77!
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so thatd1V is negative whereasd2V will be positive. This
means that there will now be an absolute minimum o
wheres5s1 . It follows that a circuit round the set of wha
were previously degenerate equilibrium states must n
cross a finite energy barrier whose height,dVQ say, will be
given by the difference between the new~absolute! minimum
where s5s1 and the ~restricted! maximum where s
52s2 ~in both cases for vanishing values of the pion co
ponents! which will be given by

dVQ5d2V2d1V. ~78!

On the basis of the estimates~9! this works out as

dVQ.2 «lhQ , ~79!

as long ashQ
3 @«, while near the critical temperature, i.e

whenQ.A2h, it would have an order of magnitude that
obtainable from Eq.~31! as

dVQ'2 «4/3l. ~80!

In the case of ordinary cosmic strings it is well known@28#
that if the symmetry giving rise to the strings is weakly br
ken by an explicit symmetry breaking term, then the strin
become boundaries of membrane-like defects. This m
brane is the locus where the phase of the string order par
eter changes by 2p ~if we consider circling the string in the
transverse plane, then the change in phase is no longer
form as it would be without symmetry breaking, but th
phase change is localized along one ray in the transv
plane, i.e. on a membrane in three-dimensional space!.

The presence of this energy barrier means that it will
longer be possible to have a strictly isolated exactly axisy
metric vortex defect, but that instead there will be compos
defects~of a kind whose mechanics and classical@29# and
quantum@30# decay processes have been considered in
context of axion theory! that cannot be isolated but must b
attached to membrane defects~see Fig. 2 for a sketch!. These
membrane defects will not actually be ‘‘domain walls’’ in th
strict sense~because the state outside will be the same
both sides! but they will have many of the same propertie
including a thickness length scaler s say, whose estimation
~like that of r f) can be obtained from the consideration th
the energy will be minimized when the relevant gradient e
ergy density, of the order of (s1 /r s)2, is comparable with
the relevant barrier heightdVQ . Thus, as the analogue of Eq
~67! we obtain the general formula

r s
2'

s1
2

dVQ
. ~81!

The condition that the symmetry breaking coefficient« and
hence alsodVQ should be small evidently entails thatr s

should be correspondingly large. It is only on scales sm
compared with this that the phase field distribution outs
the string at a membrane boundary will retain the axia
symmetric distribution assumed in Sec. IX. This radius w
therefore act as the outer cutoff introduced in the equation
0-9
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state function~70!. Thus when such symmetry breaking
present it will normally be appropriate to make the ident
cation

Rf'r s . ~82!

The membrane surface energy density resulting from
concentration of the phase gradient within the widthr s will
be identifiable with the tension,T say, of the membrane, an
will be given by the general formula

T'r sdVQ . ~83!

Although it will not be topologically stable such a membra
will be classically stabilized provided that after symme
breaking, the value of the potential at the highest point in
original vacuum manifold~at s2) is lower than the potentia
at the origin. This classical stability criterion can be seen
be expressible as

d2V,DVQ
[2] . ~84!

By rewriting Eq.~64! in the equivalent form

DVQ
[2]5

l

4
hQ

4 2
~nQ

2 2n2!2

4l
, ~85!

it can be seen that this energy density must always satisfy
inequality

DVQ
[2],

l

4
hQ

4 ~86!

and hence that Eq.~84! imposes the requirement

FIG. 2. Sketch of the vortex and the attached membrane.
vectorsl andz in the figure correspond to the vectorsl andz in the
text in Sec. XII. The configuration is symmetric along the vertic
axis, and the membrane is the surface to the right of the vortex~the
solid line!, as illustrated with the dashed lines.
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d2V. ~87!

Evaluating the formula~77! for d2V using the first term in
the estimate~30! for s2 leads to the conclusion that classic
stability of the membrane requires thatQ should be low
enough for the inequality

hQ
3 >4« ~88!

to be approximately satisfied. This conclusion justifies n
glecting the second term in Eq.~30! and shows that it is no
Eq. ~31! but Eq. ~30! that will be relevant as an order o
magnitude estimate fors6 . We thereby conclude that

d2V.«lhQ ~89!

which enables us to rewrite the classical stability criteri
~84! in the form

~nQ
2 2n2!2<l2hQ~hQ

3 24 «!, ~90!

from which the necessity of the condition~88! is obvious.
The condition~88! also implies that the barrier height in th
formula ~81! will be given generally not by Eq.~80! but by
Eq. ~79!, and hence by Eq.~33! that the membrane radiu
will be given by

r s'
1

mpQ

, ~91!

with mpQ
as given by Eq.~34! rather than Eq.~35!. Thus

according to Eq.~83! the membrane tensionT works out to
be

T'hQ
2 mpQ

, ~92!

or more explicitly

T'S 12
Q2

2h2D 3/4

h2mp . ~93!

XII. DRUM VORTON EQUILIBRIUM STATES

We now examine the way in which the centrifugal effe
of the string current in a closed loop can balance not just
contraction of the string tension, as in an ordinary vort
@15,16,25#, but also the contraction effect of the surface te
sion of the membrane that will be stretched across it in
drum type configuration of the kind whose investigation h
been initiated more recently@31#.

In so far as the sigma membrane is concerned, the gen
dynamical evolution can be described in terms of a unit v
tor, zm, orthogonal to the 3-dimensional sigma membra
world sheet, and on its boundary, another unit vector,lm,
which is tangential to the world sheet but orthogonal to
boundary. In the two dimensional string world sheet that c
stitutes the boundary, there will be a preferred orthonorm
diad of tangent vectors consisting of a preferred timelike u
vector um and an orthogonal spacelike unit vectorũm, of

e

l

0-10
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which the latter is aligned with the current in the spacel
current configuration that we are considering. The

$um,ũm,lm,zm% thus constitutes a complete orthonormal t
rad at any point on the bounding string~where it is physi-
cally well determined modulo sign reversals!. In terms of
such vectors the surface stress energy density tensor,T mn, of
the membrane will be given by

T mn5T~zmzn2gmn!, ~94!

where T is the fixed ~background temperature depende!
membrane tension given by Eq.~92!. The corresponding ex
pression for the surface stress energy density tensor,Tmn, of
the string at the boundary will be given in terms of a varia
energy density,U, and a variable string tension,T, by

Tmn5Uumun2Tũmũn. ~95!

Systematically using curly script to distinguish quantities
sociated with the 211 dimensional world sheet of the mem
brane from their analogues for the 111 dimensional world
sheet of the boundary string, the relevant dynamical eq
tions will be succinctly expressible@25# in terms of a second
fundamental tensorKmn

r of the string world sheet and of it
analogueK mn

r for the membrane. Since the latter evolv
freely, its equation of motion will be of the simple gener
form

T mnK mn
r 50. ~96!

The corresponding equation of motion for the string w
have the non-homogeneous form

TmnKmn
r 5 f r, ~97!

with a force density on the right in which the dominant co
tribution ~at least for configurations of large radius! will be
produced by the attached membrane, whose effect will
given ~subject to the orientation convention that the me
brane tangent vectorlm at the boundary is outward directed!
simply by

f r5T rnln . ~98!

In addition to this~in practise inwardly directed! membrane
tension contribution, there will in principle be another~in
practise outwardly! directed contribution arising from th
magnetic field produced by the string current. However, a
result of the smallness of the electromagnetic coupling c
stante2.1/137, such a ‘‘magnetic spring’’ effect can be e
pected@32# to be relatively unimportant.

The simple isotropic form~94! of the membrane surfac
stress energy tensor allows us to evaluate the right hand
of Eq. ~97! and the left hand side of Eq.~98! in more explicit
form as

f m52Tlm ~99!

and

T mnK mn
r 52TK r ~100!
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whereK m is the membrane curvature vector defined by

K r5K n
nr . ~101!

Since the world sheet of the membrane is just a hypersurf
with a uniquely~subject to a choice of orientation! defined
normalzm, we can work in terms of its second fundamen
form Kmn and the traceK as defined by

Kmn5K mn
r zr , K5K m

m5K rzr , ~102!

thus reducing the generic equation of free motion~96! for the
membrane to the familiar more specialized form

K50. ~103!

The membrane dynamical equation~103! will of course be
trivially satisfied in the stationary, flat-drum- like configura
tions with which we are concerned here. The non-trivial p
of the problem is the solution of Eq.~97! that governs the
string boundary. Specifically our purpose is to look for vo
ton configurations that are characterized as being statio
with respect to a static background with respect to a tim
like static symmetry generating vectorkm that not only sat-
isfies the Killing equationkn;m1k;mn50, but that is actually
covariantly constant,

km;n50. ~104!

The stationarity requirement imposes that this Killing vec
be tangent to the world sheets of the membrane and o
string boundary. If we define~modulo another choice of sign!
the spacelike unit string tangent vectorem to be orthogonal to
km, the locally determined stress energy eigenvectors will
expressible in the form

um5~12v2!21/2~km1vem!,

ũm5~12v2!21/2~em1vkm!, ~105!

wherev is what will be interpretable as the rotation speed
the vorton, which will be given in terms of the phase fr
quency variables introduced in Eq.~48!, as specified with
respect to the vorton rest frame, byv5v/k.

The second fundamental tensor works out in this case
be given by an expression of the form

Kmn
r 5emenKr, ~106!

in which the curvature trace vector

Kr5Kn
nr ~107!

will be given simply by

Kr5en¹ner. ~108!

For a flat and circular configuration with radiusR, the cur-
vature vector can thus be seen to be given in terms of
radially outward directed unit normallr simply by
0-11
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Kr52
1

R
lr. ~109!

By combining this with Eqs.~95! and ~105! it can be seen
that the left hand side of the string dynamical equation~97!
will be given explicitly by

TmnKmn
r 52

Uv22T

~12v2!R
lr. ~110!

Using this in conjunction with the expression~99! for the
force density on the right, which is also proportional tolr,
the dynamical equation~97! can be seen to reduce to th
simple explicit form

Uv22T5~12v2!RT. ~111!

In this drum vorton equilibrium equation, it is to be recalle
that U is the string energy density~its locally preferred rest
frame with relative motionv) and thatT is the corresponding
~state dependent! string tension, whileT is the ~fixed!
‘‘drum’’ tension characterizing the membrane. Thus for
arbitrary string state characterized by a chosen energy
sity U and an associated, necessarily smaller, value of
string tension,T,U, it will be possible to obtain a circula
drum vorton solution with arbitrarily large radiusR by taking
a correspondingly high~but always subluminal! rotation ve-
locity value given by

v25
T1RT
U1RT . ~112!

XIII. DEFECTS IN PION HADRODYNAMICS

Since by Eq.~11! the symmetry breaking parameter« will
be given in terms of the observable pion massmp by

«.
h

l
mp

2 , ~113!

the minimal~necessary but not sufficient! defect stability re-
quirement~88! can be expressed as the inequality

mp
2 <

lh2

4 S 12
Q2

2h2D 3/2

. ~114!

As long asQ is not too large compared withA2h, this will
be compatible—albeit rather marginally—with the observ
ratio, mp /h'2, due to the fairly large value that is empir
cally @19# measured for the dimensionless constantl'25.

The foregoing requirement is obtained from the condit
~90! in the limit for which the phase gradient magnituden
has its maximum ‘‘quenching’’ valuenQ as given by Eq.
~56!, a value that will in practice be unattainable due to t
‘‘bunching’’ instability limit given by Eq.~76!.

For lesser values ofn, a necessary—and, in view of Eq
~88!, approximately sufficient—condition for the classic
stability condition~90! to be satisfied is obtainable, by takin
its square root, in the form
10352
n-
e

d

e

nQ
2 2n2<lhQ

2 22
l«

hQ
. ~115!

Using the expression~56! for the ‘‘quenching’’ limit nQ and
the formula ~33! for the effective mass of the uncharge
pion, this condition can be rewritten as

n2>2S mpQ

2 2pe2
Q2

2 D . ~116!

Since the final, charge dependent, term is negative, this
quirement would be satisfied automatically if the symme
breaking termmp

2 were small enough to satisfy the conditio

mpQ

2 ,pe2
Q2

2
, ~117!

which can be written more explicitly as

mp
2 ,pe2Q2A12

Q2

2h2 . ~118!

In practice however, as a result of the small value of
electromagnetic coupling constante2.1/137, the relatively
large value of the symmetry breaking parametermp /h'2
ensures that in the hadrodynamic application the condi
~117! will fail throughout the relevant temperature rangeQ
&h.

Even when the condition~118! does not hold, the string
defect stability condition~116! might still be satisfied for
sufficiently large value of the current. However, as well
the difficulty of reconciling such a current with the upp
limit on n imposed by the bunching stability condition~76!,
there is the consideration that stability of the membra
against spontaneous formation of string surrounded hole
the membrane requires an energy barrier against formatio
even the least energetic kind of strings, namely those
which n vanishes. This suggests that genuinely stable de
formation will be possible only when Eq.~118! is satisfied.

The foregoing reasoning effectively rules out the case
the hadrodynamic application that motivated this investi
tion, but it raises the question of whether the kind of defe
we have been considering might occur in other applicatio
involving the same type of O~4! sigma model but with
weaker symmetry breaking. In terms of a dimensionle
mass parameterm̃ and a dimensionless temperature para
eteru defined by

m̃5
mp

h
, u5

Q

A2h
~119!

the situation may be summed up in the statement that
defects will be viable if and only if the temperature is in th
limited range for which an inequality of the form
0-12
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f $u%.m̃2 ~120!

is satisfied, where the functionf $u% simply vanishes whenu
is greater than unity, and is specified foru,1 as follows, in
a manner that depends on whetheru is greater or less that th
valueuQ given by

uQ
2 5S 11

2pe2

l D 21/2

.12
pe2

l
, ~121!

at which the quantitynQ
2 given by Eq.~56! vanishes. For the

higher range~41! one has

u>uQ⇒ f $u%5
l

4
~12u2!3/2, ~122!

by Eq. ~114!, while in the lower range~43! one has

u<uQ⇒ f $u%5pe2
u2

2
~12u2!1/2, ~123!

by Eq. ~118!.
Clearly the condition for defect formation will never b

satisfied if m̃2 exceeds the maximum value off, meaning
roughly if m̃2.e2. In the more interesting case of a cosm
logical scenario with

m̃2<e2, ~124!

the conclusion to be drawn is that as the cosmological t
peratureQ drops past a first critical valueQc corresponding
to u5uc with uc given roughly byuc.1, in approximate
accordance with Eq.~39!, but with a small deviation given in
order of magnitude by

12uc
2'S m̃2

pe2D 2

, ~125!

the universe would enter a regime in which the condit
~120! is satisfied, so that the defects, in the form of stri
bounded membranes, would condense out and evolve.
strings would be superconducting from the outset unl
Qc.QQ , which implies that the@compared to Eq.~124!#
relatively severe restriction

m̃2<
~pe2!3/2

Al
~126!

is satisfied, and even in this extreme case they would rap
become superconducting as the temperature drops below
value given by Eq.~43! and enters the regime characteriz
by Eq. ~123!. As a result of the superconductivity, some
the defect structure could be provisionally preserved~by
mechanisms similar to those that have been considered
other kinds of string defects@33#! in the form of drum vor-
tons of the kind described in Sec. XII. However, after pa
ing through another lower critical temperature and enterin
regime characterized roughly by
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u2&~pe2!21m̃2, ~127!

the condition~120! would cease to hold, so there would b
another phase transition in which any surviving stri
bounded membranes—including the drum vortons—wo
be destroyed.

XIV. CONCLUSIONS

In this paper we have studied the stabilization mechan
for embedded defects@1#, with particular emphasis on th
application to the classical bosonic O~4! sigma model of
hadrodynamics.2

We have seen that below the stabilization threshold for
embedded defect of the traditional kind~with symmetric
core! there will still be stablized cosmic string defects, but
asymmetric vortex type. These defects will automatically
superconducting, and this provides them with an extra st
lization mechanism. These superconducting string defe
are stable above a threshold temperatureQd set by the
strength of the explicit symmetry breaking term in the pote
tial, i.e. by the pion mass in the case of hadrodynamics
the absence of explicit symmetry breaking the defects rem
stable until the temperature of recombination, at which po
our thermal analysis breaks down.

In the case of explicit symmetry breaking, the superco
ducting vortices become boundaries of a new type
membrane-like defects which we calldrum vortons, across
which the change in the phase of the string order param
is localized, and whose tension is given by the symme
breaking mass, the pion mass in the case of hadrodynam
We have seen that drum vortons can be stabilized by r
tion.

In the case of hadrodynamics, the pion mass is too la
for the superconducting vortices and drum vortons stud
here to be stable. This is due to the large value of the p
mass relative to the QCD symmetry breaking scale and
to the large value of the self-coupling constantl relative to
the small value of the gauge couplinge2. However, in many
grand unified models, we expectl to be small and the ex
plicit symmetry breaking terms to be absent. In this case,
embedded strings with asymmetric core studied in this pa
and their drum vortons would be stable.

Thus, we have identified a new class of defects wh
could be of great cosmological importance in the early u
verse. They could be used for baryogenesis~see, e.g.,@35#!
or for the generation of primordial magnetic fields~see, e.g.,
@36#!. There are also severe cosmological constraints
models which admit such defects, a topic which we w
come back to in a subsequent publication@37#.

2After completion of this manuscript a report@34# appeared which
discusses the stabilization of certain unstable strings and texture
the cosmological expansion.
0-13
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APPENDIX A: MEAN SQUARE AMPLITUDE
IN THERMAL DISTRIBUTION

To derive the coefficient in the ubiquitously useful fo
mula ~18!, it will suffice to consider the case of a sing
component field, with small amplitudedw say, which can be
analyzed as a sum of contributions from plane waves w
angular frequencyv in different directions. From any suc
plane wave contribution, the mean square field fluctuat
amplitude will receive an infinitesimal contributio
d^(dw)2& that will be related to the corresponding infinites
mal contributiondE to the energy densityE by a proportion-
ality formula that~subject to use of the standard field no
malization convention as above! will have the simple form

dE5v2d^~dw!2&. ~A1!

In a thermal distribution with temperatureQ, the energy den-
sity contribution corresponding to an infinitesimal angu
frequency rangedv will be given~in our units, for which the
speed of lightc, the Boltzmann constantk, and the Dirac
Planck constant\5h/2p are all set to unity, i.e.c5k5\
51) by the well-known Bose-Einstein gas formula

dE5
v3dv

2p2~ev/Q21!
. ~A2!

Combining this with Eq.~A1! and integrating with the sub
stitutionu5v/Q, we find that the total mean square fluctu
tion amplitude will be given by

^~dw!2&5
Q2

2p2E
0

` u du

eu21
. ~A3!

Since the integral involved is well known to be given as
Riemann zeta function by

E
0

` u du

eu21
5z$2%5

p2

6
, ~A4!
.
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we immediately obtain the simple final formula

^~dw!2&5
Q2

12
, ~A5!

of which the required multicomponent generalization~18! is
now an obvious corollary.

APPENDIX B: VARIATIONAL FORMULATION

The conducting string model set up in Secs. VIII and
can easily be cast into variational form in terms of an act
integral

I5E Lugu1/2d2s. ~B1!

Which is taken over a the string world sheet with intern
coordinatessa (a50,1) and corresponding induced metr
gab for a suitably chosen Lagrangian density scalarL. In
particular, in terms of the phase scalarw used above and o
an appropriately specified auxiliary scalarF, this Lagrangian
can be given the standard form

L52 1
2 F2w uaw ua2V$F%, ~B2!

with w andF as independently variable 2-surface suppor
fields using the general prescription@26#

V5 1
2 ~U1T! ~B3!

with

w uaw ua5n2, k5F2. ~B4!

In the present application to the model characterized by
equation of state~70!, this prescription simply gives

F25
nQ

2 2n2

l~mx
21n2!

, ~B5!

and hence

n25
nQ

2 2mx
2l F2

11l F2
, ~B6!

so it immediately follows from Eqs.~70! and ~71! that the
required potential functionV$F% will be given by

V5
mx

2l F22nQ
2

mx
21nQ

2
1

1

2
lnH Rf

2 ~mx
21nQ

2 !

11l F2 J . ~B7!
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