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We discuss various issues related to stabilized embedded strings in a thermal background. In
particular, we demonstrate that such strings will generically become superconducting at moderately
low temperatures, thus enhancing their stability. We then present a new class of defects - drum
vortons - which arise when a small symmetry breaking term is added to the potential. We display
these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD
scale. This model admits ‘embedded defects’ (topological defect configurations of a simpler - in this
case O(2) symmetric - model obtained by imposing an embedding constraint) that are unstable
in the full model at zero temperature, but that can be stabilised (by electromagnetic coupling to
photons) in a thermal gas at moderately high termperatures. It is shown here that below the
embedded defect stabilisation threshold, there will still be stabilized cosmic string defects. However,
they will not be of the symmetric embedded vortex type, but of an ‘asymmetric’ vortex type, and
are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise
naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new
kind of cosmic sigma membrane, with tension given by the pion mass. The string current would
then make it possible for a loop to attain a (classically) stable equilibrium state that differs from
an “ordinary” vorton state by the presence of a sigma membrane stretched across it in a drum like
configuration. Such defects will however be entirely destabilised if the symmetry breaking is too
strong, as is found to be the case – due to the rather large value of the pion mass – in the hadronic
application of the O(4) sigma model.

PACS numbers: 98.80Cq

I. INTRODUCTION

The purpose of this work is to follow up the work of
Nagasawa and Brandenberger [1] who considered the pos-
sibility of thermal stabilisation, via electromagnetic cou-
pling, of vortex defects, i.e. cosmic strings, in a Sigma
model characterised by O(4) symmetry with a set of de-
generate vacuum states having the topology of a 3-sphere.

Since the homotopy structure of the 3 sphere is trivial,
such a model does not have stationary vacuum defects of
a topologically stable kind. However this model (involv-
ing charged and neutral pion fields as well as the sigma
field) contains a subset of solutions that is identifiable
as the complete set of solutions of an “embedded” model
(involving just the neutral pion and the sigma field) char-
acterised by O(2) symmetry. This embedded model has
a set of degenerate vacuum solutions having the topol-
ogy of a circle, and therefore admits stationary vacuum
vortex defects of a topologically stable kind, which were
called pion strings in the initial paper [2] on this sub-
ject ∗. These stationary topological defect configurations

∗In this paper we will restrict our attention to the classi-

of the embedded O(2) model constitute what are known
[10–13] as embedded defects within the framework of the
full model, but as their energy is not minimised in the
broader framework of the full O(4) model they will not
be stable in this more general context.

The point made by Nagasawa and Brandenberger [1]
was that the background reference states that are rele-
vant in cosmological contexts are commonly not vacuum
states but thermal equilibrium states, for which topolog-
ical defects of the embedded O(2) model can be stable
as vortex defects of the full model. The possibility of
creating such vortex defects, i.e. cosmic strings, arises
from breaking of the O(4) symmetry by thermal effects
mediated by electromagnetic coupling. Such stabilisa-
tion of an embedded defect (i.e. of a topological defect
of the embedded O(2) symmetric model) does however
require that the product of the relevant electric coupling
constant e and the temperature Θ should be sufficiently

cal Sigma model and not touch on the rich variety of defects
which can exist when the quantum nature of QCD (in par-
ticular at high baryon density) is taken into account (see e.g.
[3–9] for discussions of such defects).
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large.
The first thing we wish to point out here is that topo-

logically stabilised vortex defects of thermal (not vac-
uum) equilibrium states will exist for any non zero value
of the product eΘ, even if it is very small (as long as the
temperature is higher than the temperature of recom-
bination, below which the thermal analysis used in this
paper breaks down). For large values of eΘ these topo-
logical defects include the embedded defects referred to
above. However for smaller values of eΘ the topological
defects are not configurations of the embedded model,
but are of a mathematically less trivial kind with the
important property that (unlike their embedded coun-
terparts at higher temperature) they are automatically
“superconducting” in the sense of Witten [14]. As first
observed by Davis and Shellard [15], such a conductivity
property allows cosmic string loops to form vortons, i.e.
centrifugally supported equilibrium states, which under
a wide range of conditions will actually be stable [16].

The foregoing considerations are based on the supposi-
tion that the underlying field model has non thermal vac-
uum states characterised by strict O(4) symmetry, with
respect to which the pions are identifiable as Goldstone
bosons which as such must have zero mass. However for a
more realistic description, allowing for a finite pion mass
that is actually observed, the Lagrangian of the model
has to be augmented by the inclusion of a small intrinsic
O(4) symmetry breaking term. This removes the degen-
eracy of the vacuum, as well as of the thermal equilibrium
states, so there is no longer any possibility of forming a
topologically stable defect, whether of the vacuum or of
a thermal equilibrium state at finite temperature.

There is however the possibility at finite temperature
of setting up a stationary state of a more interesting kind.
One of the purposes of this article is to consider the con-
struction in such a context of a more general kind of
(dynamically but not topologically) stable equilibrium
configuration that may be described as “drum vorton”
(or “frisbee”) consisting of a vorton like loop forming the
boundary of a drum type membrane.

It is shown that the existence of such stabilised defects
is only possible if the symmetry breaking term is suffi-
ciently small. This condition may be satisfied in other
applications, but it is found that it does not hold in the
case when the O(4) sigma model is applied in the hadro-
dynamic context for which it was originally designed.
The failure of the stabilisation mechanism in this par-
ticular case is attributable to the rather large value of
the (destabilising) pion mass mπ in conjunction with the
rather small value e2 ' 1/137 of the (stabilising) electro-
magnetic coupling constant.

II. THE BOSONIC SIGMA MODEL

The following work will be based on the use of a Sigma
model of the usual kind constituting the bosonic sector

of the Schweber Gell-Mann Levy type [17,18] hadrody-
namic field theory as presented in the recent treatise of
Walecka [19]. Such a sigma model is given by a La-
grangian density of the form

L =
1

16π
F νµFµν −

1
2
(
χ|µ ∗χ|µ + φ;µ

∗φ;µ
)
− V , (1)

with

V =
λ

4
(
χ ∗χ + φ ∗φ− η2

)2 − ε λσ , (2)

where

Fµν = Aν;µ −Aµ;ν , χ|µ = χ;µ + ieAµχ , (3)

in which a semicolon denotes Riemannian covariant dif-
ferentiation with respect to the spacetime metric gµν

which we take to have signature (-,+,+,+), while ∗ de-
notes complex conjugation. In addition to the electro-
magnetic gauge potential Aµ, the independent bosonic
fields are a set of four real scalar fields consisting of a pion
triplet π0, π1, π2 and a singlet, σ = π3 say, that combine
as the complex, (respectively charge coupled and neutral)
combinations

χ = π1 + iπ2 , φ = π3 + iπ0 , (4)

so that

σ = 1

2
(φ + ∗φ) (5)

The other quantities involved are constants, of which λ
and the usual charge coupling constant e are dimension-
less (and respectively large and small, but only moder-
ately, compared with unity) while η has the dimensions
of a mass (with a value about half that of the pion) and
finally ε has the dimensions of the cube of a mass (that
is small compared with that of the pion).

It is evident that (independently of the local U(1)
gauge symmetry of the electromagnetic part) there will
be a global O(4) symmetry that will act on the sigma
pion sector in the limit when the constants e and ε are
set to zero. This can be seen from the fact that the cor-
responding limit for the potential has the obviously O(4)
invariant form

V ∼ λ

4
(
π 2

0 + π 2
1 + π 2

2 + π 2
3 − η2

)2
, (6)

(and similarly for the kinetic term) as e → 0 and ε → 0.
The presence of the symmetry breaking term propor-

tional to ε is empirically needed [19] to account for the
finite (observed) value of the pion mass mπ that is given
by the vacuum state value of the partial derivative

∂V

∂(χ ∗χ)
=

λ

2
(
χ ∗χ + φ ∗φ− η2) , (7)

The vacuum, i.e the state for which V is minimum, is
evidently characterised by the vanishing of the triplet π0 ,
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π1 , π2 while the value of σ will be given by the larger,
σ+ say, of the pair, σ+ , σ− of values where (for vanishing
pion fields) V has a local minimum. These restricted
minima are given by the highest and lowest solutions of
the cubic equation

σ±(σ 2
± − η2) = ε . (8)

The relevant values will be given, for small values of ε,
by the expansion

σ± = ±η +
ε

2η2
∓ 3ε2

8η5
+O{ε3} . (9)

Substituting the vacuum state value σ = σ+ in the for-
mula

m 2
π =

2∂V

∂(χ ∗χ)
(10)

one finds that for low values of ε the result will be given
by

m 2
π =

ελ

η
+O{ε3} . (11)

III. THE (NEUTRAL) EMBEDDED MODEL

The configuration space of the preceeding model evi-
dently includes an embedded subspace characterised by

χ = 0 ⇔ π1 = π2 = 0 , (12)

that characterises an (electromagnetically decoupled)
“embedded model” with Lagrangian

L{0} =
1

16π
F νµFµν −

1
2
φ;µ

∗φ ;µ − V{0} (13)

for

V{0} =
λ

4
(
φ ∗φ− η2

)2 − ε λσ , (14)

whose solutions will all automatically satisfy the field
equations of the complete model (1).

This embedded model does not involve the charge cou-
pling constant (whose actual physical value would be
given by e2 ' 1/137) but it does involve the other sym-
metry breaking parameter ε. However in the limit when
the latter is set to zero the reduced model will be subject
to a global O(2) symmetry action, as can be seen from
the fact that the corresponding limit for the potential has
the obviously O(2) invariant form

V{0} ∼
λ

4
(
π 2

0 + π 2
3 − η2

)2
, (15)

(and similarly for the kinetic term) for ε → 0. In this
limit there will be a set of vacuum states with circular

topology characterised by φ ∗φ = η2. One of the features
of this embedded model in the limit of vanishing ε will
therefore be the presence of topological vortex (i.e. string
type) defects of the vacuum. Such a configuration will be
what is describable as an embedded defect from the point
of view of the complete theory whose field equations it
will also satisfy in the relevant limit of vanishing ε, but
in this broader framework it will be unstable since there
will be no topological impediment to its decay via the
excitation of the χ (charged pion) degrees of freedom.

IV. THERMALLY MODIFIED MODELS:
GENERAL CONSIDERATIONS

Field models such as those described above can be
modified so as to allow for the effect of a thermal back-
ground, with temperature Θ, by replacing the relevant
potential function, V , by an appropriately modified func-
tion, VΘ . If the independent field components involved
are denoted by ϕi, for some index i labelling the relevant
degrees of freedom, then one would expect the effect of
small short wavelength fluctuations δφi to be approxi-
mately describable by an expansion of the form

VΘ = V +
∂V
∂ϕi

〈δϕi〉+
1
2

∂2V
∂ϕi∂ϕj

〈δϕiδϕj〉+ ... , (16)

where the angle brackets denote thermal averages. One
would expect the odd power averages to cancel out, start-
ing with the linear contributions

〈δϕi〉 = 0 , (17)

so the leading contribution will be of quadratic order.
One would expect the short wavelength bosonic fluctua-
tions to behave like a simple Bose Einstein radiation gas
for which – using a formula of Dolan and Jackiw [20],
for which a simpler derivation will be provided below in
the Appendix – the quadratic contribution will be given
simply by

〈δϕiδϕj〉 =
Θ2

12
δij . (18)

Thus under conditions such that (in order for the use
of such a thermal potential to be meaningful at all)
the background variation length scale is large compared
with the thermal length scale – i.e. the magnitude
of the thermal symmetry 4-vector βµ with components
{Θ−1, 0, 0, 0} in the thermal rest frame –, but such that
the temperature is small enough (i.e. βµ is large enough)
for the higher order terms in (16) to be neglected, one is
lead to the use of an approximation given by the formula

VΘ − V =
Θ2

24
δij

∂2V
∂ϕi∂ϕj

. (19)
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V. THERMALLY MODIFIED SIGMA MODELS

In the particular case of the embedded model charac-
terised by (13) it suffices to identify the components ϕ
with the real and imaginary parts of the complex vec-
tor φ, and to take V to be V{0}, so that the foregoing
prescription leads directly to the formula

V{0}Θ − V{0} = Θ2 λ

6
(
φ ∗φ− 1

2
η2) . (20)

It is to be remarked that this adjustment (in which the
final term proportional to η is dynamically irrelevant be-
cause it does not depend on φ) is such as to preserve the
O(2) symmetry in the limit ε → 0: it is therefore qualita-
tively uninteresting for moderate values of Θ, though for
higher values (above a critical value Θc) it will have the
physically significant effect of removing the degeneracy
(and the consequent spontaneous symmetry breaking) of
the ground state.

The situation is more complicated for the full sigma
model characterised by (1), because in addition to the
potential V given by (2) there will be another coupling
energy contribution – coming from the gauge coupling in
the kinetic term – so that for the purpose of applying the
prescription (19) we need to make the identification

V = V + 1

2
e2χ ∗χ AµAµ . (21)

In view of the gauge invariance, the four components
of the covector Aµ should not all be considered to be
dynamically independent. Imposing the thermal gauge
condition βµAµ = 0 (which is compatible with the usual
Lorentz condition A ;µ

µ = 0) one is left with three inde-
pendent components given with respect to the thermal
rest frame by A1 , A2 , A3 . In order to be able to ap-
ply the formula (18) on which the prescription (19) is
based, the corresponding field components ϕi must be
specified with the appropriate normalisation, which can
be achieved by taking ϕi = Ai/

√
4π, (i= 1,2,3) in or-

der for the (unrationalised) kinetic term FµνFµν/16π to
reduce (subject to the usual Lorentz gauge condition)
to the standard form 1/2

(
ϕ1;µϕ ;µ

1
+ϕ2;µϕ ;µ

2
+ϕ3;µϕ ;µ

3

)
.

The corresponding expression for the electromagnetic po-
tential will therefore be given by

V − V = 2πe2χ ∗χ (ϕ 2
1

+ ϕ 2
2

+ ϕ 2
3

) (22)

It can thus be seen that the corresponding thermally
modified version of the complete sigma model (1) will be
given by

LΘ =
1

16π
F νµFµν −

1
2
(
χ|µ ∗χ|µ + φ;µ

∗φ;µ
)
− VΘ , (23)

with

VΘ = V + VΘ − V , (24)

in which, by application of (19), the extra thermal con-
tribution can be seen to be given by

VΘ − V =
Θ2

2
e2

(1
6
AµAµ + π χ ∗χ

)
+

Θ2

2
λ

2
(
χ ∗χ + φ ∗φ− 2

3
η2) . (25)

As in the case of the embedded model, the group of
terms at the end (i.e. what remains when e is set to
zero) is qualitatively uninteresting for moderate values
of Θ, though for higher values (above a critical value
Θc that will be evaluated below) it will have the phys-
ically significant effect of removing the degeneracy (and
the consequent spontaneous symmetry breaking) of the
ground state.

The part proportional to e2 is more interesting. The
first term breaks the electromagnetic U(1) gauge invari-
ance, giving an effective mass mγ = Θ|e|

√
4π/6 to the

photon.
The contribution to (25) that is of greatest interest

for our present purpose is the second term, πe2Θ2χ ∗χ/2
which will break the O(4) symmetry that would other-
wise exist in the limit ε → 0.

It can be seen from the thermal generalisation

∂VΘ

∂(χ ∗χ)
= π

Θ2

2
e2 +

λ

2
(
χ ∗χ + φ ∗φ +

Θ2

2
− η2) , (26)

of (7), that the charged pion field will have an effective
mass, mχ say, that will be non-vanishing in this thermally
modified case, even in the limit for which the symmetry
breaking parameter ε is set to set to zero, when specified
in the usual way by the formula

m 2
χ =

2∂VΘ

∂(χ ∗χ)
, (27)

in the thermal equilibrium state where VΘ is minimised.
The analogue of the equation (8) for the values of σ at

the restricted minima of VΘ can be seen to have the form

σ±(σ 2
± − η 2

Θ
) = ε , (28)

with

η 2
Θ

= η2 − Θ2

2
. (29)

The relevant solution will be given by an expansion anal-
ogous to (9) as

σ± ' ±ηΘ +
ε

2η 2
Θ

, (30)

in the limit when ε � η 3
Θ
. This inequality will fail to

be satisfied near the critical temperature, i.e. when Θ '√
2η, in which case the solution to (28) will have an order

of magnitude given simply by

σ± ≈ ±ε1/3 . (31)
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Substituting the vacuum state value σ = σ+ in (27),
one obtains a formula of the form

m 2
χ = πe2Θ2 + m 2

πΘ
, (32)

in which the first term will remain even when ε is set to
zero. The other term is the square of the effective mass
mπΘ of the uncharged pion field π0 , which will be given
simply by

m 2
πΘ
' ελ

ηΘ

, (33)

which works out as

m 2
πΘ
' m 2

π

(
1− Θ2

2η2

)−1/2

, (34)

in the limit when ε � η 3
Θ
, while for very small values of

ηΘ , i.e. when Θ '
√

2η, it will be given by

m 2
πΘ
≈ λε2/3 ≈

(λη2

m 2
π

)1/3

m 2
π . (35)

VI. STABILISATION OF EMBEDDED DEFECT

Nagasawa and Brandenberger pointed out [1] that the
presence of an O(4) symmetry breaking term propor-
tional to χ ∗χ can stabilise the embedded string type de-
fect that arises, so long as Θ is not too large, as a topolog-
ical defect in the limit ε → 0, of the embedded model ob-
tained by setting χ = 0 in the thermally extended model
characterised by (23). The embedded model obtained in
this way is given by

LΘ{0} =
1

16π
F νµFµν −

1
2
φ;µ

∗φ;µ − VΘ{0} , (36)

with

VΘ{0} − V{0} =
1
12

Θ2e2AµAµ + Θ2 λ

4
(
φ ∗φ− 2

3
η2) . (37)

Note that this embedded submodel of the thermally ex-
tended model is different from, and more realistic than,
the direct thermal extension of the original embedded
submodel (13). It is to be observed that VΘ{0} differs
from the quantity V{0}Θ given by (20) not only by the
photon mass term (which could be got rid of by adopt-
ing the more restrictive embedding condition to the effect
that Aµ should vanish as well as χ, which is possible be-
cause χ is its only source) but also because, unlike V{0}Θ ,
the effective potential VΘ{0} allows for the effect of ther-
mal excitations of the field χ even though the embed-
ding condition set its mean value to zero. This observa-
tion serves as a reminder that a fully realistic treatment
would require the inclusion of further terms allowing for
the thermal excitation of the fermionic degrees of free-
dom whose neglect from the outset – on the grounds that

we are considering cases where their mean value is zero
– was justifiable as a good approximation for the zero
temperature limit, but less so at finite temperature.

It can be seen that the potential for this embedded
model (36) will be given by an expression of the form

VΘ{0} + ελσ =
e2

12
Θ2 AµAµ

+
λ

4
(
φ ∗φ +

Θ2

2
− η2

)2 + CΘ , (38)

where CΘ is a temperature dependent contribution that
is constant in the sense of being independent of the dy-
namical field variables, and that is therefore irrelevant
in so far as its effect in the Lagrangian is concerned. It
is evident that the condition for the degeneracy of the
ground state and the existence of the embedded vortex
defect in the limit when ε is set to zero is that the tem-
perature should be less than a critical value given simply
by η i.e.

Θ < Θc , Θc =
√

2η . (39)

The positivity property of the quantity χ ∗χ whose van-
ishing characterises the embedding under consideration
means that the stability of the embedded solution can be
checked simply by verifying the positivity of the deriva-
tive (26) on the embedding, χ = 0, where it reduces
simply to

∂VΘ

∂(χ ∗χ)χ ∗χ=0

= π
Θ2

2
e2 +

λ

2
(
φ ∗φ +

Θ2

2
− η2) . (40)

In order for this to remain positive even at the core of the
defect where φ ∗φ goes to zero, it is evidently necessary
and sufficient to have

λη 2
Θ

< πe2Θ2 . (41)

Combining this with the condition (39) for the defect
to exist at all, we see that the necessary and sufficient
condition for the existence of stable cosmic strings in the
limit when ε is set to zero is that the dimensionless ratio
Θ/η should lie within the finite range

√
2
(
1 +

2πe2

λ

)−1/2

<
Θ
η

<
√

2 , (42)

a requirement that would be satisfied in a broad range
of temperature if the dimensionless ratio 2πe2/λ were
reasonably large, but that is rather restrictive if this ratio
is small compared with unity as one expects.

VII. THE ASYMMETRIC VORTEX DEFECT

The instability of the embedded χ = 0 vortex defect
when the temperature is too low to satisfy (42), i.e. when
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(
1 +

2πe2

λ

)
Θ2 < 2η2 , (43)

does not mean that there cannot be any stable vortex
defect, but merely that there cannot be one that satisfies
the χ reflection symmetry condition. The defects that
occur in this case must therefore be of the asymmet-
ric kind that has been recently discussed by Axenides,
Perivolaropoulos, and Trodden [21].

For the full sigma model characterised by (23) the po-
tential given by (25) can be seen to be expressible, in a
manner analogous to (38) by

VΘ + ελσ = e2 Θ2

2

(1
6
AµAµ + πχ ∗χ

)
+

λ

4
(
χ ∗χ + φ ∗φ− η 2

Θ

)2 + CΘ , (44)

in which ηΘ is given by (29).
In the limit when ε vanishes, it is evident that – if and

only if the inequality (39) is satisfied so that η 2
Θ

is positive
– this model will have a degenerate O(2) invariant family
of ground states that are the same as those of the embed-
ded model (36), namely the set of states characterised by
AµAµ = 0 and χ ∗χ = 0 but with φ ∗φ = η 2

Θ
.

There must therefore exist corresponding topologically
stable vortex defect solutions with a core where φ ∗φ = 0.
When the temperature is in the range (42) these stable
topological defects will be identifiable with the embedded
defects discussed in the preceding section. However in the
lower temperature range characterised by the inequality
(43) (which evidently makes the weaker condition (39) re-
dundant) the topologically stable vortex defects resulting
from the potential (44) will no longer satisfy the reflec-
tion symmetry condition χ = 0. The solution – obtained
by minimising the energy – will presumably be such that
χ ∗χ reaches a finite maximum on the core where φ ∗φ
vanishes, with a value that will presumable be compa-
rable with, but somewhat less than the value for which
VΘ is minimised subject to the constraint φ = 0, i.e for
the value obtained by solving (26) with φ ∗φ set to zero,
which gives the value of the upper bound as

χ ∗χ = η2 − Θ2

2

(
1 +

2πe2

λ

)
, (45)

a result that evidently has the necessary property of strict
positivity just so long as (43) is satisfied.

VIII. VORTEX CONDUCTIVITY

The breakdown of the reflection symmetry property
χ = 0 for vortex defects in the low temperature range
given by (43) implies that (unlike the embedded vortex
defects described in Section VI) the field configuration
in such a vortex will not be uniquely defined but will
depend on an arbitrary phase angle, ϕ say, defined as
the argument in the expression

phi
 eta

V
T

T > T c

TQ < T < T c

0 < T < T Q

T = 0

FIG. 1. Sketch of the effective potential VΘ for the neutral
(solid lines) and charged (broken lines) Higgs fields for differ-
ent temperature ranges. From bottom to top, the graphs cor-
respond to zero temperature (no stable string), nonzero tem-
perature below the threshold ΘQ (when a stable conducting
string with asymmetric core exists), ΘQ < Θ < Θc (the tem-
perature range for which the embedded defect with symmetric
core is stable), and Θ > Θc (complete symmetry restoration,
no string). In the figure the temperature is denoted by T
instead of Θ.
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χ = |χ|eiϕ . |χ| =
√

χ ∗χ . (46)

This means that such a vortex defect will be describ-
able as a superconducting string in the sense of Wit-
ten [14], meaning that it will be able to carry a current
attributable to slow variation of the phase ϕ along the
vortex core. Its properties will therefore depend on the
squared magnitude, ν2 say, of the phase gradient, as spec-
ified – in such a way that it will be positive for the case
of a spacelike gradient with which we shall mainly be
concerned here – by

ν2 = ϕ;µϕ;µ . (47)

In a uniform cylindrically symmetric (Nielsen-Olesen-
Kibble type) configuration described in terms of corre-
sponding cylindrical time, radial, angular, and longitudi-
nal coordinates, {t, $, θ, z} of the usual kind, physically
well defined quantities will be independent of the time t
and the longitudinal coordinate z, and will be describ-
able completely as fields on the 2-dimensional orthogo-
nal space sections with circular coordinates {$, θ}. In a
gauge such that Aµ has no time or longitudinal compo-
nents the time and longitudinal components of the phase
gradient will be physically well defined and therefore uni-
form, so the phase itself can be taken to be given by an
expression of the standard form

ϕ = kz − ωt (48)

for some constant angular frequency ω and wavenumber
k.

The mechanism described in detail by Peter [22] im-
poses an upper limit on the admissible value of the lon-
gitudinally Lorentz invariant combination ω2 − k2. This
limit arises from the requirement that the charged con-
densate field χ should be effectively confined within a
finite length scale, rχ say, whose order of magnitude can
be estimated as being given roughly by

rχ ≈
1√

m 2
χ + k2 − ω2

, (49)

where mχ is the relevant mass value for the charged pion
field, which at zero temperature will be same as that of
the uncharged pion field, i.e. mχ = mπ with mπ given
by (11), which evidently satisfies m2

π ≥ πe2Θ2, so that
there will be a charge dependent term that remains even
in the limit of vanishing ε and mπ. In terms of this mass
value mχ, the confinement condition that is needed for
rχ to remain finite will be given simply by

ω2 − k2 < m 2
χ . (50)

In such a configuration the original 4-dimensional La-
grangian variational problem reduces to a 2 dimension
energy variation problem for which the original poten-
tial function VΘ has to be replaced by a corresponding 2
dimensional version

V [2]
Θ

= VΘ + 1

2
(k2 − ω2)χ ∗χ , (51)

to allow for the kinetic contributions from the longitu-
dinal and temporal phase variations. Since the ensuing
generalisation of (26) is

∂V [2]
Θ

∂(χ ∗χ)
= π

Θ2

2
e2 + 1

2
(k2 − ω2) +

λ

2
(
χ ∗χ + φ ∗φ− η 2

Θ
) ,

(52)

this leads to the replacement of (45) by an upper bound
that, for a spacelike current, k2−ω2 > 0, is more severe,
namely

χ ∗χ = η2 − Θ2

2

(
1 +

2πe2

λ

)
− ν2

λ
. (53)

in which the Lorentz invariant quantity

ν =
√

k2 − ω2 (54)

is identifiable as the phase gradient magnitude that was
introduced in (47).

The necessity that χ ∗χ should be positive implies that
– just as a timelike current is subject to the “charge con-
finement” limit (50) – at the opposite extreme a spacelike
current will be subject to a “current quenching” limit of
the kind originally discussed by Witten [14], which will
be given in the present application by a relation of the
form

ν < νQ , (55)

where the quenching limit νQ is given by the formula

ν 2
Q

= λ η 2
Θ
− πe2Θ2 , (56)

whose right hand side itself satisfies a positivity condition
that is equivalent to the temperature limit (43). Thus,
for fixed temperature Θ, then for ν < νQ the vortices will
be stable. An equivalent way to interpret this stability
analysis is that for fixed current ν, the vortex will be
stable provided Θ < Θν , where Θν is given by

Θ2
ν = 2(η2 − ν2

λ
)(1 +

2πe2

λ
)−1 . (57)

For Θ > Θν the current leaks off the vortex.
In the spacelike current case, for which k2 − ω2 > 0,

there will be a locally preferred Lorentz frame charac-
terised by ω = 0 and k = ν in which the total energy per
unit length, U say, will exceed the corresponding longi-
tudinal stress magnitude, i.e. the string tension T say,
by an amount that can be seen from (51) to be given by
[23]

U − T = ν2κ , (58)

where κ is the sectional integral of the condensate ampli-
tude χ ∗χ, i.e.
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κ = 2π

∫
χ ∗χ r dr . (59)

On the basis of (49) and (53), the order of magnitude of
this sectional integral can be roughly estimated as

κ ≈
λη 2

Θ
− πe2Θ2 − ν2

λ(m 2
χ + ν2)

. (60)

According to the general principles of conducting string
theory [23] the total (sectionally integrated) electromag-
netic current density jµ in the string will have a mag-
nitude given in terms of this sectional integral by the
formula

jµjµ = e2µ2 , µ = κν , (61)

in which µ is interpretable as the effective mass per unit
phase radian winding number, which can be defined in
terms of the relevant equation of state specifying the en-
ergy density U as a function of the angular number den-
sity ν by the specification

µ =
dU

dν
. (62)

It can be estimated using (60) that this effective mass
will be given roughly by

µ ≈ ν

λ

(m 2
χ + ν 2

Q

m 2
χ + ν2

− 1
)

. (63)

IX. THE EQUATION OF STATE.

The value (53) of χ ∗χ is that for which the deriva-
tive vanishes, and thus where V [2]

Θ
is minimised, subject

to the constraint φ ∗φ = 0. The difference between this
minimal value of V [2]

Θ
and the thermal equilibrium state

value that is its absolute minimum has a value ∆V [2]
Θ

that provides a lower bound on the energy density in the
vortex core. This potential energy density difference will
be given in the limit of vanishing ε by the exact formula

∆V [2]
Θ

=
πe2Θ2+ν2

4λ

(
2λη 2

Θ
−ν2−πe2Θ2

)
, (64)

which will be valid so long as it does not exceed the upper
limit

∆V [2]
Θ

≤ λ

4
η 4

Θ
, (65)

given by the value of the central energy density in the
symmetric “embedded vortex” case that will otherwise
be applicable. Thus in consequence of (55), it can be
seen that it will be possible to approximate (64) by an
order of magnitude estimate of the simpler form

∆V [2]
Θ

≈
η 2

Θ

2
(
πe2Θ2 + ν2

)
. (66)

This barrier height provides a minimal estimate for the
defect energy density on the central axis where φ ∗φ van-
ishes. The defect core, meaning the region where φ ∗φ
differs significantly from its equilibrium state value η 2

Θ

will be characterised by a radial length scale rφ that can
be estimated from the consideration that energy minimi-
sation will give rise to a gradient energy density whose
order of magnitude (ηΘ/rφ)2 should be comparable with
the barrier height ∆V [2]

Θ
, i.e. we can expect to have

r 2
φ ≈

η 2
Θ

2∆V
[2]

Θ

. (67)

In the case of a χ reflection symmetric “embedded” defect
that will apply when the limit (65) is exceeded, this leads
to the simple estimate

rφ ≈
√

2
ηΘ

√
λ

, (68)

while in the alternative case of an asymmetric defect,
i.e. when the inequality (55) is satisfied, we obtain the
estimate

rφ ≈
1√

πe2Θ2 + ν2
. (69)

It is to be noticed that in order to obtain confinement
to a finite core radius it is sufficient but not necessary
to have a finite temperature Θ. Even in the zero tem-
perature limit, for which there is no longer any strictly
topological stabilisation, there can still in principle be a
confined defect if there is a non vanishing spacelike (but
not null or timelike) current, i.e. one characterised by
a strictly positive value of the quantity ν2 = k2 − ω2.
However in practice a defect that depended entirely on
this current confining mechanism could not be stable: al-
though compatible with the “quenching” limit (55), the
necessary current would have to exceed the more strin-
gent upper limit imposed, as described below, by the
requirement of stability with respect to longitudinal per-
turbations.

It is apparent that in the small ε limit under consider-
ation in the present section, the core radius (69) will be
of the same order of magnitude, rφ ≈ rχ, as the charged
condensate confinement radius given by (49). However
since the kind of string defect we are dealing with is of
global rather than local type, its energy density will in-
clude an unconfined contribution from the gradient of
the φ field outside the core where φ ∗φ ' η 2

Θ
. Since

this gradient energy density contribution will be given
approximately by an expression, namely η 2

Θ
/2r2, whose

radial dependence has the inverse square law character
that is typical of a global vortex defect, its integrated
contribution for an infinitely long straight string would
be logarithmically divergent, so that its effective value
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in practice will be determined by a long range cut off
radius, Rφ say, characterising the length scale of macro-
scopic variation of the system. The integrated gradient
energy density per unit length of string can thus be esti-
mated to have a magnitude of the order of η 2

Θ
ln{Rφ/rφ}.

On the presumption that, for large Rφ, this gradient
contribution will dominate, its value in the limit when the
current magnitude ν vanishes can be used as a matching
condition to fix the constant of integration in the solution
of (62) using the estimate (63). We thereby deduce that
the equation of state for the string energy density U as
a function of the angular winding number density ν will
be given, as a rough approximation, by an expression of
the form

U ≈
η 2

Θ

2
ln{R 2

φ(ν2 + m 2
χ)} − ν2

2λ
, (70)

in the small ε limit for which the relevant effective mass
variable will be given by m 2

χ ≈ πe2Θ2.
On the basis of (70), the corresponding expression for

the string tension T will be given, according to (58) and
(60), by

T ≈
η 2

Θ

2

(
ln{R 2

φ(ν2 + m 2
χ)} − 2ν2

ν2 + m 2
χ

)
+

ν2

2λ
. (71)

It is shown in an appendix how an appropriately aux-
iliary field Φ can be used in a recently formulated pro-
cedure [24] for casting such a conducting model into a
standard variational form.

X. THE LONGITUDINAL STABILITY LIMIT.

The most physically important quantities derivable
from the equation of state include the extrinsic (wiggle
type) perturbation speed cE and the longitudinal (sound
type) perturbation speed cL , whose squared values are
given [23] by the formulae

c 2
E

=
T

U
, (72)

and (using (58), (61) and (62))

c 2
L

= − dT

dU
=

ν dµ

µ dν
, (73)

in which the positivity of the right hand sides is a nec-
essary condition for stability of the short wavength per-
turbations of the corresponding (wiggle or longitudinal)
kind.

The largeness of the logarithmic factor ensures the pos-
itivity not just of the energy density U but also of the
tension T , thus ensuring the satisfaction of the wiggle sta-
bility condition that the quantity in (72) should be posi-
tive throughout the spacelike current range 0 ≤ ν2 < ν 2

Q

under consideration. for longitudinal stability.

The question of longitudinal stability is less trivial. As
in the analogous case [25] of the local string model de-
scribing the kind of superconducting vortex obtained [25]
from the toy bosonic field model originally proposed by
Witten [14], the longitudinal stability requirement,

dµ

dν
> 0 , (74)

imposes an upper “bunching” stability limit on the phys-
ically admissible current amplitude that is more severe
that the original “quenching” limit (55) imposed by the
requirement µ > 0. For the equation of state (70), one
obtains

dµ

dν
≈

(m 2
χ + ν 2

Q
)(m 2

χ − ν2)
λ(m 2

χ + ν2)2
− 1

λ
. (75)

Treating the ratio mχνQ/(m 2
χ + 3ν 2

Q
) as small, which it

typically will be (it can never exceed 1/3), we see that a
necessary and approximately sufficient condition for sat-
isfaction of the longitudinal stability limit (74) is given
by the inequality

ν2

ν 2
Q
∼<

m 2
χ

3m 2
χ + ν 2

Q

. (76)

This is interpretable as meaning that the “bunching” in-
stability will set in for a value of the wavenumber ν that
is at most 1/

√
3 of the “quenching” limit νQ .

XI. THE ATTACHED MEMBRANE

Up to this stage our qualitative considerations have
been restricted to what occurs in the limit ε → 0, which
should be a good approximation in the higher temper-
ature range, above the limit (39), where the symmetric
embedded vortex defect is stable. However – since the
pion mass mπ given by (11) will actually not be small
compared with η but of the same order of magnitude,
the effects of the symmetry breaking term proportional
to ε will be significant in the lower temperature range
where the vortex defects will be of the asymmetric “su-
perconducting” kind.

The effect of this term is to break the degeneracy of
the circular set of the equilibrium states that were char-
acterised by χ ∗χ = 0, φ ∗φ = η 2

Θ
, by adding unequal

adjustment energy terms, δ+V and δ−V say, to the re-
stricted local minima at σ = σ+ and σ = σ− ≈ −σ+ ,
thereby breaking the degeneracy. On the basis of (38)
these adjustments will be given approximately by

δ±V ' −λεσ± , (77)

so that δ+V is negative whereas δ−V will be positive. This
means that there will now be an absolute minimum only
where σ = σ+ . It follows that a circuit round the set of
what were previously degenerate equilibrium states must
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now cross a finite energy barrier whose height, δVΘ say,
will be given by the difference between the new (absolute)
minimum where σ = σ+ and the (restricted) maximum
where σ = −σ− (in both cases for vanishing values of the
pion components) which will be given by

δVΘ = δ−V − δ+V . (78)

On the basis of the estimates (9) this works out as

δVΘ ' 2ε λ ηΘ , (79)

so long as η 3
Θ
� ε, while near the critical temperature,

i.e. when Θ '
√

2η, it would have an order of magnitude
that is obtainable from (31) as

δVΘ ≈ 2ε4/3λ . (80)

In the case of ordinary cosmic strings it is well known
[26] that if the symmetry giving rise to the strings is
weakly broken by an explicit symmetry breaking term,
then the strings become boundaries of membrane-like de-
fects. This membrane is the locus where the phase of the
string order parameter changes by 2π (if we consider cir-
cling the string in the transverse plane, then the change
in phase is no longer uniform as it would be without sym-
metry breaking, but the phase change is localized along
one ray in the transverse plane, i.e. on a membrane in
three-dimensional space).

The presence of this energy barrier means that it will
no longer be possible to have a strictly isolated exactly
axisymmetric vortex defect, but that instead there will
be composite defects (of a kind whose mechanics and
classical [27] and quantum [28] decay processes have been
considered in the context of axion theory) that cannot
be isolated but must be attached to membrane defects.
These membrane defects will not actually be “domain
walls” in the strict sense (because the state outside will
be the same on both sides) but they will have many of
the same properties, including a thickness length scale rσ

say, whose estimation (like that of rφ) can be obtained
from the consideration that the energy will be minimised
when the relevant gradient energy density, of the order of
(σ+/rσ)2, is comparable with the relevant barrier height
δVΘ . Thus, as the analogue of (67) we obtain the general
formula

r 2
σ ≈

σ 2
+

δVΘ

. (81)

The condition that the symmetry breaking coefficient ε
and hence also δVΘ should be small evidently entails that
rσ should be correspondingly large. It is only on scales
small compared with this that the phase field distribution
outside the string at a membrane boundary will retain
the axially symmetric distribution assumed in Section
IX. This radius will therefore act as the outer cut off
introduced in the equation of state function (70). Thus
when such symmetry breaking is present it will normally
be appropriate to make the identification

l z

membrane

 vortex

FIG. 2. Sketch of the vortex and the attached membrane.
The vectors l and z in the figure correspond to the vectors λ
and ζ in the text in Section XII.

Rφ ≈ rσ . (82)

The membrane surface energy density resulting from
the concentration of the phase gradient within the width
rσ, will be identifiable with the tension, T say, of the
membrane, and will be given by the general formula

T ≈ rσ δVΘ . (83)

Although it will not be topologically stable such a
membrane will be classically stabilised provided the en-
ergy density δVΘ of the membrane forming energy bar-
rier does not exceed the total energy density of the string
forming energy barrier, as given by ∆VΘ − δ+V , i.e. by
augmenting the original string barrier height (64) by the
adjustment, −δ+V , that is needed to allow for the rela-
tive lowering of the ground state energy density. Using
the analogous expression (78) for the membrane forming
barrier height, this classical stability criterion can be seen
to be expressible as

δ−V < ∆V [2]
Θ

. (84)

By rewriting (64) in the equivalent form

∆V [2]
Θ

=
λ

4
η 4

Θ
−

(ν2
Q
− ν2)2

4λ
, (85)

it can be seen that this energy density must always satisfy
the inequality
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∆V [2]
Θ

<
λ

4
η 4

Θ
(86)

and hence that (84) imposes the requirement

η 2
Θ

>
4
λ

δ−V . (87)

Evaluating the formula (77) for δ−V using either of the
estimates (30) and (31) for σ− leads to the conclusion
that classical stability of the membrane requires that Θ
should be low enough for the inequality

η3
Θ
≥ 4ε (88)

to be approximately satisfied, with the implication that
it is not (31) but (30) that will be relevant as an order
of magnitude estimate for σ±. We thereby obtain the
estimate

δ−V ' εληΘ (89)

which enables us to rewrite the classical stability criterion
(84) in the form

(ν 2
Q
− ν2)2 ≤ λ2ηΘ

(
η 3

Θ
− 4ε

)
, (90)

from which the necessity of the condition (88) is obvious.
The condition (88) also implies that the barrier height in
the formula (81) will be given generally not by (80) but
by (79), and hence by (33) that the membrane radius will
be given by

rσ ≈
1

mπΘ

, (91)

with mπΘ
as given by (34) rather than (35). Thus ac-

cording to (83) the membrane tension T works out to
be

T ≈ η 2
Θ

mπΘ , (92)

or more explicitly

T ≈
(
1− Θ2

2η2

)3/4

η2 mπ . (93)

XII. DRUM VORTON EQUILIBRIUM STATES

We now examine the way in which the centrifugal effect
of the string current in a closed loop can balance not just
the contraction of the string tension, as in an ordinary
vorton [15,16,23], but also the contraction effect of the
surface tension of the membrane that will be stretched
across it in a drum type configuration of the kind whose
investigation has been initiated more recently [29].

In so far as the sigma membrane is concerned, the gen-
eral dynamical evolution can be described in terms of a
unit vector, ζµ, orthogonal to the 3 dimensional sigma

membrane world sheet, and on its boundary, another unit
vector, λµ, that is tangential to the world sheet but or-
thogonal to its boundary. In the two dimensional string
world sheet that constitutes the boundary, there will be a
preferred orthonormal diad of tangent vectors consisting
of a preferred timelike unit vector uµ and an orthogonal
spacelike unit vector ũµ, of which the latter is aligned
with the current in the spacelike current configuration
that we are considering. The set {uµ, ũµ, λµ, ζµ} thus
constitutes a complete orthonormal tetrad at any point
on the bounding string (where it is physically well de-
termined modulo sign reversals). In terms of such vec-
tors the surface stress energy density tensor, T µν , of the
membrane will be given by

T µν = T
(
ζµζν − gµν

)
, (94)

where T is the fixed (background temperature depen-
dent) membrane tension given by (92). The correspond-
ing expression for the surface stress energy density tensor,
T µν , of the string at the boundary will be given in terms
of a variable energy density, U , and a variable string ten-
sion, T by

T µν = Uuµuν − T ũµũν . (95)

Systematically using curly script to distinguish quan-
tities associated with the 2+1 dimensional world sheet of
the membrane from their analogues for the 1+1 dimen-
sional world sheet of the boundary string, the relevant
dynamical equations will be succinctly expressible [23] in
terms of a second fundamental tensor K ρ

µν of the string
world sheet and of its analogue K ρ

µν for the membrane.
Since the latter evolves freely, its equation of motion will
be of the simple general form

T µνK ρ
µν = 0 . (96)

The corresponding equation of motion for the string will
have the non homogeneous form

T µνK ρ
µν = fρ , (97)

with a force density on the right in which the dominant
contribution (at least for configurations of large radius)
will be produced by the attached membrane, whose ef-
fect will be given (subject to the orientation convention
that the membrane tangent vector λµ at the boundary is
outward directed) simply by

fρ = T ρνλν . (98)

In addition to this (in practise inwardly directed) mem-
brane tension contribution, there will in principle be an-
other (in practise outwardly) directed contribution aris-
ing from the magnetic field produced by the string cur-
rent. However due to the smallness of the electromag-
netic coupling constant e2 ' 1/137 such a “magnetic
spring” effect can be expected [30] to be relatively unim-
portant.
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The simple isotropic form (94) of the membrane surface
stress energy tensor allows us to evaluate the right hand
side of (97) and the left hand side of (96) in more explicit
form as

fµ = −T λµ , (99)

and

T µνK ρ
µν = −T Kρ (100)

where Kµ is the membrane curvature vector defined by

Kρ = Kν ρ
ν . (101)

Since the world sheet of the membrane is just a hypersur-
face, with a uniquely (subject to a choice of orientation)
defined normal ζµ, we can work in terms of its second
fundamental form Kµν and the trace K as defined by

Kµν = K ρ
µν ζρ , K = K µ

µ = Kρζρ , (102)

thus reducing the generic equation of free motion (96) for
the membrane to the familiar more specialised form

K = 0 . (103)

The membrane dynamical equation (103) will of course
be trivially satisfied in the stationary, flat drum like con-
figurations with which we are concerned here. The non
trivial part of the problem is the solution of the equa-
tion (97) that governs the string boundary. Specifically
our purpose is to look for vorton configurations that are
characterised as being stationary with respect to a static
background with respect to a timelike static symmetry
generating vector kµ that not only satisfies the Killing
equation kν;µ +k;µν = 0 , but that is actually covariantly
constant,

kµ;ν = 0 . (104)

The stationarity requirement imposes that this Killing
vector be tangent to the world sheets of the membrane
and of its string boundary. If we define (modulo another
choice of sign) the spacelike unit string tangent vector
eµ to be orthogonal to kµ the locally determined stress
energy eigenvectors will be expressible in the form

uµ = (1 − v2)−1/2
(
kµ + veµ

)
,

ũµ = (1 − v2)−1/2
(
eµ + vkµ

)
, (105)

where v is what will be interpretable as the rotation speed
of the vorton, which will be given in terms of the phase
frequency variables introduced in (48), as specified with
respect to the vorton rest frame, by v = ω/k.

The second fundamental tensor works out in this case
to be given by an expression of the form

K ρ
µν = eµeνKρ , (106)

in which the curvature trace vector

Kρ = Kν ρ
ν (107)

will be given simply by

Kρ = eν∇νeρ . (108)

For a circular configuration with radius R, the curva-
ture vector can thus be seen to be given in terms of the
radially outward directed unit normal λρ simply by

Kρ = − 1
R

λρ . (109)

By combining this with (95) and (105) it can be seen that
the left hand side of the string dynamical equation (97)
will be given explicitly by

T µνK ρ
µν = − Uv2 − T

(1− v2)R
λρ . (110)

Using this in conjunction with the expression (99) for the
force density on the right, which is also proportional to
λρ, the dynamical equation (97) can be seen to reduce to
the simple explicit form

Uv2 − T = (1− v2)R T . (111)

In this drum vorton equilibrium equation, it is to be re-
called that U is the string energy density (its locally pre-
ferred rest frame with relative motion v) and that T is
the corresponding (state dependent) string tension, while
T is the (fixed) “drum” tension characterising the mem-
brane. Thus for an arbitrary string state characterised by
a chosen energy density U and an associated, necessarily
smaller, value of the string tension, T < U , it will be pos-
sible to obtain a circular drum vorton solution with ar-
bitrarily large radius R by taking a correspondingly high
(but always subluminal) rotation velocity value given by

v2 =
T + RT
U + RT . (112)

XIII. DEFECTS IN PION HADRODYNAMICS

Since, by (11) the symmetry breaking parameter ε will
be given in terms of the observable pion mass mπ by

ε ' η

λ
m 2

π , (113)

the minimal (necessary but not sufficient) defect stability
requirement (88) can be expressed as the inequality

m 2
π ≤

λη2

4

(
1− Θ2

2η2

)3/2

. (114)

So long as Θ is not too large compared with
√

2η, this
will be compatible – albeit rather marginally – with the
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observed ratio, mπ/η ≈ 2 due to the fairly large value
that is empirically [19] measured for the dimensionless
constant λ ≈ 25.

The foregoing requirement is obtained from the condi-
tion (90) in the limit for which the phase gradient mag-
nitude ν has its maximum “quenching” value νQ as given
by (56), a value that will in practise be unattainable due
to the “bunching” instability limit given by (76).

For lesser values of ν, a necessary – and, in view of
(88), approximately sufficient – condition for the classical
stability condition (90) to be satisfied is obtainable, by
taking its square root, in the form

ν 2
Q
− ν2 ≤ λη 2

Θ
− 2

λε

ηΘ

. (115)

Using the expression (56) for the “quenching” limit νQ

and the formula (33) for the effective mass of the un-
charged pion, this condition can be rewritten as

ν2 ≥ 2
(
m 2

πΘ
− πe2 Θ2

2
)
. (116)

Since the final, charge dependent, term is negative,
this requirement would be satisfied automatically if the
symmetry breaking term m 2

π were small enough to satisfy
the condition

m 2
πΘ

< πe2 Θ2

2
, (117)

which can be written more explicitly as

m 2
π < πe2Θ2

√
1− Θ2

2η2
. (118)

In practise however due to the small value of the elec-
tromagnetic coupling constant e2 ' 1/137, the rela-
tively large value of the symmetry breaking parameter
mπ/η ≈ 2 ensures that in the hadrodynamic application
the condition (117) will fail throughout the relevant tem-
perature range Θ ∼< η.

Even when the condition (118) does not hold, the
string defect stability condition (116) might still be satis-
fied for sufficiently large value of the current. However as
well as the difficulty of reconciling such a current with the
upper limit on ν imposed by the bunching stability con-
dition (76), there is the consideration that stability of the
membrane against spontaneous formation of string sur-
rounded openings requires an energy barrier against for-
mation of even the least energetic kind of strings, namely
those for which ν vanishes. This suggests that genuinely
stable defect formation will be possible only when (118)
is satisfied.

The foregoing reasoning effectively rules out the case of
the hadrodynamic application that motivated this inves-
tigation, but it raises the question of whether the kind of
defects we have been considering might occur in other ap-
plications, involving the same type of O(4) sigma model

but with weaker symmetry breaking. In terms of a di-
mensionless mass parameter m̃ and a dimensionless tem-
perature parameter θ defined by

m̃ =
mπ

η
, θ =

Θ√
2η

(119)

the situation may be summed up in the statement that
the defects will be viable if and only if the temperature is
in the limited range for which an inequality of the form

f{θ} > m̃2 (120)

is satisfied, where the function f{θ} simply vanishes
when θ is greater than unity, and is specified for θ < 1 as
follows, in a manner that depends on whether θ is greater
or less that the value θQ given by

θ 2
Q

=
(
1 +

2πe2

λ

)−1/2

' 1− πe2

λ
, (121)

at which the quantity ν 2
Q

given by (56) vanishes. For the
higher range (41) one has

θ ≥ θQ ⇒ f{θ} =
λ

4
(
1− θ2

)3/2
, (122)

by (114), while in the lower range (43) one has

θ ≤ θQ ⇒ f{θ} = πe2 θ2

2
(
1− θ2

)1/2
, (123)

by (118).
Clearly the condition for defect formation will never be

satisfied if m̃2 exceeds the maximum value of f , meaning
roughly if m̃2 > e2. In the more interesting case of a
cosmological scenario with

m̃2 ≤ e2 , (124)

the conclusion to be drawn is that as the cosmological
temperature Θ drops past a first critical value Θc cor-
responding to θ = θc with θc given roughly by θc ' 1,
in approximate accordance with (39), but with a small
deviation given in order of magnitude by

1− θ 2
c ≈

( m̃2

πe2

)2

, (125)

the universe would enter a regime in which the condi-
tion (120) is satisfied, so that the defects, in the form
of string bounded membranes would condense out and
evolve. The strings would be superconducting from the
outset unless Θc > ΘQ, which implies the (compared to
(124)) relatively severe restriction

m̃2 ≤
(
πe2)3/2

√
λ

(126)

is satisfied, and even in this extreme case they would
rapidly become superconducting as the temperature
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drops below the value given by (43) and enters the regime
characterised by (123). Due to the superconductivity,
some of the defect structure could be provisionally pre-
served (by mechanisms similar to those that have been
considered for other kinds of string defects [31]) in the
form of drum vortons of the kind described in Section
XII. However after passing through another lower critical
temperature and entering a regime characterised roughly
by

θ2 ∼< (πe2)−1m̃2 , (127)

the condition (120) would cease to hold, so there would
be another phase transition in which any surviving string
bounded membranes – including the drum vortons –
would be destroyed.

XIV. CONCLUSIONS

In this paper we have studied the stabilization mecha-
nism for embedded defects [1], with particular emphasis
on the application to the classical bosonic O(4) sigma
model of hadrodynamics †.

We have seen that below the stabilization threshold for
an embedded defect of the traditional kind (with sym-
metric core) there will still be stablized cosmic string
defects, but of asymmetric vortex type. These defects
will automatically be superconducting, and this provides
them with an extra stabilization mechanism. These su-
perconducting string defects are stable above a threshold
temperature Θd set by the strength of the explicit sym-
metry breaking term in the potential, i.e. by the pion
mass in the case of hadrodynamics. In the absence of ex-
plicit symmetry breaking the defects remain stable until
the temperature of recombination, at which point our
thermal analysis breaks down.

In the case of explicit symmetry breaking, the super-
conducting vortices become boundaries of a new type of
membrane-like defects which we call drum vortons, across
which the change in the phase of the string order pa-
rameter is localized, and whose tension is given by the
symmetry breaking mass, the pion mass in the case of
hadrodynamics. We have seen that drum vortons can be
stabilized by rotation.

In the case of hadrodynamics, the pion mass is too
large for the superconducing vortices and drum vortons
studied here to be stable. This is due to the large value
of the pion mass relative to the QCD symmetry breaking
scale, and due to the large value of the self coupling con-
stant λ relative to the small value of the gauge coupling
e2. However, in many Grand Unified Models, we expect

†After completion of this manuscript a preprint [32] ap-
peared which discusses the stabilization of certain unstable
strings and textures by the cosmological expansion.

λ to be small, and the explicit symmetry breaking terms
to be absent. In this case, the embedded strings with
asymmetric core studied in this paper and their drum
vortons would be stable.

Thus, we have identified a new class of defects which
could be of great cosmological importance in the early
Universe. They could be used for baryogenesis (see e.g.
[33]) or for the generation of primordial magnetic fields
(see e.g. [34]). There are also severe cosmological con-
straints on models which admit such defects, a topic
which we will come back to in a subsequent publication
[35].
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XV. APPENDIX A: MEAN SQUARE
AMPLITUDE IN THERMAL DISTRIBUTION

To derive the coefficient in the ubiquitously useful for-
mula (18), it will suffice to consider the case of a sin-
gle component field, with small amplitude δϕ say, which
can be analysed as a sum of contributions from from
plane waves with angular frequency ω in different direc-
tions. From any such plane wave wave contribution, the
mean square field fluctuation amplitude will receive an
infinitesimal contribution d〈 (δϕ)2〉 that will be related
to the corresponding infinitesimal contribution dE to the
energy density E by a proportionality formula that (sub-
ject to use of the standard field normalisation convention
as above) will have the simple form

dE = ω2 d〈 (δϕ)2〉 . (128)

In a thermal distribution with temperature Θ, the en-
ergy density contribution corresponding to an infinites-
imal angular frequency range dω will be given (in our

units, for which the speed of light c, the Boltzmann con-
stant k, and the Dirac Planck constant h̄ = h/2π are
all set to unity, i.e. c = k = h̄ = 1) by the well known
Bose-Einstein gas formula

dE =
ω3dω

2π2
(
e ω/Θ − 1

) . (129)

Combining this with (128), and integrating with the sub-
stitution u = ω/Θ, we find that the total mean square
fluctuation amplitude will be given by

〈 (δϕ)2〉 =
Θ2

2π2

∫ ∞

0

u du

eu − 1
. (130)

Since the integral involved is well known to be given as
a Riemann zeta function by∫ ∞

0

u du

eu − 1
= ζ{2} =

π2

6
, (131)

we immediately obtain the simple final formula

〈 (δϕ)2〉 =
Θ2

12
, (132)

of which the required multicomponent generalisation (18)
is now an obvious corollary.

XVI. APPENDIX B: VARIATIONAL
FORMULATION

The conducting string model set up in Sections VIII
and IX can easily be cast into variational form in terms
of an action integral

I =
∫
L |γ|1/2 d2σ , (133)

that is taken over a the string world sheet with internal
coordinates σa (a = 0, 1) and corresponding induced met-
ric γab for a suitably chosen Lagrangian density scalar L.
In particular, in terms of the phase scalar ϕ used above
and of an appropriately specified auxiliary scalar Φ, this
Lagrangian can be given the standard form

L = −1
2
Φ2 ϕ|aϕ|a − V {Φ} , (134)

with ϕ and Φ as independently variable 2-surface sup-
ported fields using the general prescription [24]

V =
1
2
(
U + T ) (135)

with

ϕ|aϕ|a = ν2 , κ = Φ2 . (136)
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In the present application to the model characterised
by the equation of state (70), this prescription simply
gives

Φ2 =
ν 2

Q
− ν2

λ (m 2
χ + ν2)

, (137)

and hence

ν2 =
ν2

Q
−m 2

χλΦ2

1 + λΦ2
, (138)

so it immediately follows from (70) and (71) that the
required potential function V {Φ} will be given by

V =
m 2

χλΦ2 − ν 2
Q

m 2
χ + ν 2

Q

+
1
2

ln
{R 2

φ(m 2
χ + ν 2

Q
)

1 + λΦ2

}
. (139)
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