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Abstract

A weak-strong simulation code similar to the one written
by Irwin for the Superconducting Super Collider (SSC) [1]
is used to study the single-particle stability in the pres-
ence of triplet field errors, head-on collisions and long-
range beam-beam interactions at the Large Hadron Collider
(LHC). We present the dependence of the simulated trans-
verse diffusion rate on various parameters, such as starting
amplitude, working point in tune diagram, crossing angle,
beta function at the interaction points (IPs), beam current,
triplet nonlinearities, tune modulation and a transverse off-
set at one of the two IPs. For several examples, we perform
a frequency map analysis `a la Laskar, to obtain tune foot-
prints and the tune variation in time. A cursory look at the
effect of a Möbius lattice is also reported.

1 INTRODUCTION

The long-range force is expected to become important for
amplitudes where particles pass near the center of the op-
posing beam at the parasitic collision points. Using this
criterion, a diffusive aperture can be estimated as

xda ≈ θc

θx
σx , (1)

whereθc denotes the full crossing angle,θx the rms diver-
gence, andσx the rms beam size at the IP. For the nominal
LHC parameters, listed in Table 1,xda amounts to about
9.5σx. Simulation studies showed that, in the presence of
tune modulation, the diffusive aperture of the SSC was ac-
tually about 2.5σx smaller, a reduction which was found
to be independent of the crossing angle [1]. Hence, extrap-
olating from these results we would predict the LHC dif-
fusive aperture at about 7σx. However, the LHC and SSC
parameters differ substantially, e.g. the SSC bunch popula-
tion was only7.3×109, 15 times less than that of the LHC.
Thus, a simple extrapolation may not be valid. In addition,
since the beam-beam interaction is the most important limi-
tation of the LHC performance at top energy, it is important
to study the effect on the beam stability of various related
parameters, such as the beam current, the beams’ crossing
angle or the IP beta function, whose values have a direct
impact on the luminosity.

Here, we report the results of a dedicated simulation
study for the LHC.1 The paper is organised as follows. In

1Note that similar dynamic aperture studies were performed earlier by
Ritson and Chou [3].

parameter symbol value
particles per bunch Nb 1.05 × 1011

beam energy Eb 7 TeV
rms beam size at IP σx,y 16µm
rms divergence at IP θx,y 31.7µrad
IP beta function β?

x,y 50 cm
full crossing angle θc 300µrad
rms bunch length σz 7.7 cm
collision points nIP ≥ 2
bunches per beam nb 2835
bunch spacing Lsep 7.48 m
beam-beam parameter ξ 0.00342
revolution frequency frev 11.25 kHz
synchrotron tune Qs 0.00212
luminosity per collision Lcoll 3.14 × 1026 cm−2

total luminosity Ltot 1034 cm−2 s−1

Table 1: LHC collision parameters [2].

Section 2, we describe the employed weak-strong model.
Section 3 presents the simulation results. We summarise
and conclude in Section 4.

2 MODEL

The simulation study was performed following the recipe
given by Irwin [1], and using the LHC parameters of Ta-
ble 1. The simulation is 4-dimensional: the horizontal and
vertical motion of single particles is calculated under the
influence of the field of the opposing beam. An optional
tune modulation can also be selected. We treat two IPs,
symmetrically spaced around the ring, one with a horizon-
tal crossing angle, the other with a vertical crossing angle,
so that the linear tune shifts induced by the long-range in-
teractions cancel between the IPs. At each IP, we apply a
series of five kicks: the first represents the lumped effect of
the triplet nonlinearities, the next corresponds to the long-
range beam-beam interactions on the incoming side; then a
kick for the head-on collision effect is applied, another for
the long-range interaction on the outgoing side, and finally
a kick due to the triplet nonlinearities on the outgoing side.
These tracking elements are described now in more detail.
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ordern meanbn,M uncertaintybn,U rmsbn,rms meanan,M uncertaintyan,U rmsan,rms

3 0. 0.3 0.8 0. 0.3 0.8
4 0. 0.2 0.8 0. 0.2 0.8
5 0. 0.2 0.3 0. 0.2 0.3
6 0.14 0.6 0.7 0. 0.085 0.11
7 0. 0.05 0.06 0. 0.04 0.06
8 0. 0.03 0.05 0. 0.03 0.04
9 0. 0.02 0.03 0. 0.02 0.02
10 −0.027 0.02 0.043 0. 0.027 0.037

Table 2: Harmonic multipole content in low-β quadrupoles (Fermilab Design), after application of tuning shim correction
[5,6]. The harmonic values are quoted in units of10−4 of the main quadrupole field, for a reference radiusr0 = 17 mm.
The uncertainty in the mean, as well as the estimated standard deviation are also listed.

2.1 Arcs

Between the two IPs, denoted by sub-indicesi andj, we
perform a linear rotation of the form


x
x′

y
y′




IPi

= Rij




x
x′

y
y′




IPj

, (2)

with the rotation matrix

Rij =




cosφx β?
x sin φx 0 0

− 1
β?

x
sinφx cosφx 0 0
0 0 cosφy β?

y sinφy

0 0 − 1
β?

y
sinφy cosφy


 .

(3)

The coordinates are those at the successive IPs and primes
denote the particle slopes. Unless noted otherwise, we as-
sume that the two rotation matrices, from IP 1 to IP 2 and
from IP 2 to IP 1, are identical (i.e. R12 = R21), and also
that the beta functions at the interaction points,β?

x andβ?
y ,

are the same in both planes and at both IPs and equal to the
LHC design valueβ?

x = β?
y = 0.5 m. The bare half-ring

phase advances were chosen asφx = 2 × π × 31.655, and
φy = 2×π×29.66, corresponding to the nominal working
point of LHC optics version 5.

2.2 Head-On Collision

For the beam-beam interaction we assume round Gaussian
beam profiles. The effect of head-on collisions is then
given by

∆x′ =
2rpNb

γ

x

r2

(
1 − e−

r2

2σ2

)
∆y′ =

2rpNb

γ

y

r2

(
1 − e−

r2

2σ2

) , (4)

with σ ≡ σx = σy the rms beam size at the IP,r =√
x2 + y2 the radial distance to the origin,rp the classi-

cal proton radius,γ the Lorentz factor, andNb the bunch
population.

2.3 Long-Range Interactions

For the long-range interactions, we lump together the effect
of all npar parasitic collisions on each side of the IP. Since
they occur at a betatron phase close toπ/2, the kick can be
approximately expressed as a change in the IP coordinate,
while the trajectory slope at the IP stays unchanged. In case
of a horizontal crossing we have:

∆x = − npar
2rpNb

γ

[
x′ + θc

θ2
t

(
1 − e

− θ2
t

2θ2
x,y

)

− 1
θc

(
1 − e

− θ2
c

2θ2
x,y

) ]

∆y = − npar
2rpNb

γ

y′

θ2
t

(
1 − e

− θ2
t

2θ2
x,y

)
, (5)

where θt ≡
(
(x′ + θc)2 + y′2

)1/2

and θx,y is the rms

beam divergence at the IP. The effective number of para-
sitic crossings per side of one IP,npar, is about 18 [4]. In
the first part of Eq. (5), we subtract the average horizon-
tal dipole kick on the bunch, since its effect would be cor-
rected by steering correctors. Note that the kick is the same
on both sides of the IP, because the betatron phase advance
of about180◦ compensates for the opposite direction of the
beam-beam separation. The vertical crossing is treated in
complete analogy.

2.4 Triplet Nonlinearities

The integrated effect of the higher-order multipoles in the
low-β quadrupoles can be written in complex form. Un-
der some simplifying assumptions (equalβ functions in the
two transverse planes), the nonlinear kick on the incoming
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ordern meanbn,M uncertaintybn,U rmsbn,rms meanan,M uncertaintyan,U rmsan,rms

3 0. 0.51 1. 0. 0.51 1.
4 0. 0.29 0.57 0. 0.29 0.57
5 0. 0.19 0.38 0. 0.19 0.38
6 0.38 0.5 0.19 0.01 0.1 0.19
7 0. 0.05 0.06 0. 0.05 0.06
8 0. 0.02 0.03 0. 0.02 0.03
9 0. 0.01 0.01 0. 0.01 0.01
10 0.22 0.03 0.01 −0.003 0.01 0.01

Table 3: Harmonic multipole content in low-β quadrupoles (KEK Design) [6,7]. The harmonic values are quoted in units
of 10−4 of the main quadrupole field, for a reference radiusr0 = 17 mm.

side of the IP with horizontal crossing is given by

∆x = −K̄ Re

[
nmax∑
n=3

Gn

(
− 1

r0

)n−1
((

x′ +
θc

2
+ iy′

)n−1

− (n − 1)
(θc

2

)n−2

(x′ + iy′) −
(θc

2

)n−1
) ]

∆y = K̄ Im

[
nmax∑
n=3

Gn

(
− 1

r0

)n−1
((

x′ +
θc

2
+ iy′

)n−1

− (n − 1)
(θc

2

)n−2

(x′ + iy′) −
(θc

2

)n−1
) ]

,

(6)

where the complex coefficientGn represents the effective
strength of thenth order multipole kick, through the sum

Gn = β? n/2
x,y

(
4∑

k=1

(an,k + ibn,k)βn/2
k

)

over the 4 low-beta quadrupoles on one side of the IP. The
latter expression is evaluated prior to the tracking, withβk

the geometric mean of the horizontal and vertical beta func-
tion at the center of thekth quadrupole, andan,k andbn,k

the skew and normal multipole components relative to the
main quadrupole field at the same reference radiusr0 (see
Tables 2 and 3). The coefficient̄K in Eq. (6) is equal to
K̄ = lquad r0 K1, wherelquad denotes the quadrupole
length (lquad ≈ 5 m) andK1 the non-integrated quadrupole
gradient (K1 ≈ 0.01 m−2). As before,x′ andy′ are the
trajectory slopes at the IP. Note that the dipole kick as well
as the static quadrupole and skew quadrupole components
induced by the crossing angle are subtracted, because we
assume that in the real machine the changes in the closed
orbit, tunes and coupling, due to the field errors, will all
be corrected by standard tuning methods. This could be a
difference with respect to previous applications of similar
kick-map codes for the SSC and the LHC [1,3].

For the outgoing side, we use the same formulae, but
without the “−” sign in ( 1

r0
)n−1. This means that the net

effect of the systematic field errors of even ordern would
cancel if there were no head-on collisions at the IP. Finally,
the case of the vertical crossing is treated identically except
thatθc/2 is added toy′ instead ofx′.

In the present study, we consider a single random seed
for the errors calculated according to Tables 2 and 3.

2.5 Tune Modulation

As a further ingredient in our simulation a tune modulation
can be added. It is described by a linear transport matrix of
the form

M =




cos∆φx β?
x sin ∆φx 0 0

−1
β?

x
sin∆φx cos∆φx 0 0
0 0 cos∆φy β?

y sin∆φy

0 0 −1
β?

y
sin ∆φy cos∆φy


 ,

(7)

where

∆φx = 2π ∆Qx sin(2πfxt)
∆φy = 2π ∆Qy sin(2πfyt)

.

Here, ∆Qx,y and fx,y denote the modulation amplitude
and frequency, respectively, andt is the time. For instance,
synchrotron oscillations and residual chromaticity result in
a modulation of the betatron tune for off-energy particles.
AssumingQ′ ≈ 1, a particle at1σδ experiences an ef-
fective tune modulation of amplitude10−4 at the 22 Hz
synchrotron frequency. Ground motion, magnet vibrations,
and power supply ripple may also induce tune modulation
at similar amplitudes and frequencies.

2.6 Möbius Insertion

In addition, a Möbius transformation [8] may be inserted,
in order to study the stabilising, or destabilising, properties
of such a scheme. The M¨obius twist is of the simple form:


x
x′

y
y′




IPi

=




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0






x
x′

y
y′




IPj

.

(8)

Because of the additional symmetry of a M¨obius lattice,
there is only one independent tune value. The two tune
lines,Q±, are placed symmetrically above and below 0.25:

Q± = Qx + Qy ± 0.25 (9)
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whereQx and Qy denote the nominal tunes without the
Möbius twist.

3 RESULTS

3.1 Tune Footprints and Diffusion Maps

Frequency map analyses have long been used in celestial
mechanics and recently in accelerator models [10, 11]. In
this section we present results from an application of this
technique to the beam-beam interaction, through the kick-
map model discussed previously.

Figure 1 presents tune footprints `a la Laskar [10,11], ob-
tained by tracking single particles over 1000 turns and, sub-
sequently, frequency analysing the tracking data with the
SUSSIX program [9]. Through this analysis, we compute
with a very high precision [12] the fundamental frequen-
cies of motion, for a large number of initial conditions, with
initial horizontal and vertical amplitudes varying from 0 to
10 σx,y, and initial slopes set to zero. By plotting the fun-
damental frequencies in tune space, phase-space distortions
representing resonances or chaotic regions become visible.

The dramatic effect of the long-range collisions is re-
vealed through the comparison of Figs. 1b and a, which
show footprints obtained with and without the long-range
kicks. Up to initial particle amplitudes of around 6σx,y, the
effect of the head-on collisions dominates. Then, the long-
range effect takes over and the frequency footprint flips, as
the tune shift with amplitude changes direction. This non-
monotonic dependence of the tune with respect to the am-
plitude is potentially dangerous for the stability of particles
beyond this limit.

The additional detrimental influence of the triplet non-
linearities can be observed in the plots 1c and d, where we
include the effect of the errors in the quadrupoles designed
in FNAL and KEK, respectively. The tune shift with am-
plitude gets larger and the difference resonances of order
5 and above are getting more pronounced. From this rep-
resentation, however, it is difficult to say which of the two
type of magnet families is more harmful with respect to the
beam stability.

The two remaining images 1e and f show the pure ef-
fect of the KEK triplet errors and the combined influence
of triplet errors and parasitic collisions, respectively. It is
clear, that the long-range effect is dominant. Indeed, the
tune spread induced for amplitudes up to 10σx,y is of sim-
ilar size as with the head-on collisions included (compare
Figs. 1b and f).

In all the cases, except the one with head-on collisions
only, some particles diffuse out to the(1,−1) resonance,
as our working point is quite close to the frequency space
diagonal.

An additional outcome of the frequency map analysis is
displayed in the plots of Fig. 2, where we depict the vari-
ation of the betatron tunes|∆Q| that occurs between the
first and second sets of 500 turns, as a function of the start-
ing amplitude [10,11]. The different colours correspond to

different amounts of tune variation on a logarithmic scale,
extending from|∆Q| ≤ 10−7 to |∆Q| > 10−2. The grey
regions correspond to particles with a tune variation less
than or equal to the precision of the tune calculation for
this number of turns. Thus, their tune variation is consis-
tent with no variation at all, and they may be considered as
completely stable. The two types of green areas are weakly
unstable. We speculate that the blue, magenta and brown
regions are strongly chaotic, and that particles in the black
areas also might be lost, after a larger number of turns.
In these plots we can observe directly the traces of reso-
nances which limit the region of stability. The conclusions
of the previous paragraph regarding the dominant destabil-
ising role of the long-range collisions are also confirmed
here. The additional effect of head-on collisions and triplet
non-linear fields is negligible.

A further frequency analysis was performed for a model
with a reduced crossing angle of 200µrad (Fig. 3). The
two images can be directly compared to Figs. 2d and 1d,
which correspond to the same model, but at the nominal
crossing angle (300µrad). For the smaller crossing angle,
the diffusive aperture should be diminished, according to
Eq. (1). Indeed, the tune shift with amplitude is further
increased (Fig. 3a) and the particle motion is heavily per-
turbed at amplitudes beyond about 4σx,y (Fig. 3b).

The influence of the application of a M¨obius twist (8)
to the phase space of the system is presented in the diffu-
sion map of Fig. 4. In that case, tune footprints cannot be
provided, as there is only one independent tune. The diffu-
sion map now presents features which are symmetric with
respect to the diagonal of the initial amplitude space. It
seems that by this twist, instead of stabilising the system,
we mirror instabilities in other parts of the phase space.
This was also reported in a recent experimental study [13].

An illustrative comparison of the phase space stability
for all the previous cases is given in Fig. 5. We plot the
average tune difference in logarithmic scale over all the
tracked particles. The two curves correspond to a sim-
ple average of the tune change and another average of the
tune variation normalised by the particles’ initial ampli-
tudes. The head-on case presents the smallest tune diffu-
sion coefficient. By just adding the long-range the coeffi-
cient jumps by two orders of magnitude. The addition of
triplet non-linearities further perturbs the system and we
can even distinguish a small difference between the case
with FNAL and KEK design triplets. Interestingly enough,
the case without head-on but with long-range and triplet er-
rors seems more unstable: the linear tune shift due to the
head-on effect puts the tune to a position further away from
the dangerous(0, 3) skew resonance. The situation, as we
have seen before will get worse by diminishing the cross-
ing angle to 200µrad or by including a M¨obius twist [13].
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Figure 1: Tune footprints obtained by tracking single particles over 1000 turns and subsequent analysis with SUSSIX.
Red dots represent particles with initial transverse amplitudes up to 5σx,y; blue dots show results for an extended range
with initial amplitudes up to 10σx,y; (a) head-on collisions only,(b) head-on and long-range collisions(c) head-on plus
long-range collisions and FNAL triplet errors (1 random seed)(d) head-on plus long-range collisions and KEK triplet
errors (1 random seed),(e) KEK triplet errors only (1 random seed),(f) long-range collisions and KEK triplet errors (1
random seed), but no head-on collisions.
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Figure 2: Diffusion maps representing the change of the betatron tunes with time as a function of horizontal and vertical
starting amplitude. The tune change was inferred by tracking single particles over 2 times 500 turns and subsequent
analysis with SUSSIX. The colour assignment is logarithmically scaled with the tune change|∆Q| over 500 turns;(a)
head-on collisions only,(b) head-on and long-range collisions(c) head-on plus long-range collisions and FNAL triplet
errors (1 random seed)(d) head-on plus long-range collisions and KEK triplet errors (1 random seed),(e) KEK triplet
errors only (1 random seed),(f) long-range collisions and KEK triplet errors (1 random seed), but no head-on collisions.
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Figure 3: Tune footprint and diffusion map for a model including the head-on and long-range collision effect and the KEK
triplet nonlinearities for a 200µrad crossing angle. The symbols are the same as in Figs. 1 and 2.
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Figure 6: The variance in action (in units of rms emittance)
for a group of 100 particles as a function of turn num-
ber. The particles were launched with identical transverse
action corresponding to 5σx,y in both transverse planes
and with random betatron phase. The figure demonstrates
the effects of head-on collisions, long-range collisions and
triplet nonlinearities, respectively.

3.2 Starting Amplitude

We study the evolution of the rms action spread for a group
of particles, launched with random phases at the same val-
ues of transverse action. To suppress short-time fluctua-
tions, e.g., caused by static deformations of the invariant
tori in phase space due to resonances, we compute the run-
ning average over 1000 turns of the rms action spread. The
evolution of the rms spread at a starting amplitude of 5σx,y

in both transverse planes is illustrated in Fig. 6, compar-
ing the situation of head-on collisions only, with the cases
of long-range collisions and triplet errors. In all pictures,
the diffusion is quite limited. Thus, an amplitude of 5σx,y

seems to lie inside the diffusive aperture.
Figure 7 shows a similar picture for a starting ampli-

tude of 6σx,y. While the head-on case looks comparable,
the action spread shows notably larger variation when the
long-range collisions are present. If the triplet errors are
also switched on, some of the tracked particles experience
a rapid growth in amplitude, leading to a steep growth in
the calculated spread of action values. When the first par-
ticle is lost, we stop the simulation. This accounts for the
much shorter time scale on the two bottom pictures.

More systematically, we can compute the diffusion at
many different amplitudes and for each case compute the
average increase in the rms action spread per turn. The re-
sult is illustrated in Fig. 8, which compares different com-

Figure 7: The variance in action (in units of rms emittance)
for a group of 100 particles as a function of turn num-
ber. The particles were launched with identical transverse
action corresponding to 6σx,y in both transverse planes
and with random betatron phase. The figure demonstrates
the effects of head-on collisions, long-range collisions and
triplet nonlinearities, respectively.

binations of head-on collisions, long-range interactions,
triplet field errors, tune modulation, and M¨obius twist. The
tune modulation has little, if any, effect on the diffusion.
The Möbius twist appears to increase the diffusion at low
amplitudes, while the diffusion at larger amplitudes re-
mains unaffected. In all cases including long-range col-
lisions, there is a well defined diffusive aperture, between
5.5 and 6σx,y, beyond which the motion is unstable. In
the case of the SSC the equivalent limit without tune mod-
ulation was found to be between 6 and 7σx,y [1], a simi-
lar number (however, the long-range bunch separation was
only 7.5σx,y).

Figure 9 compares the diffusion generated by head-on
plus long-range beam-beam interactions with that due to
the uncorrected triplet field errors alone. The latter give rise
to strong diffusion at an amplitude of about 8σx,y, which is
2σ larger than for the beam-beam effect. The differences
between FNAL and KEK field errors appear to be marginal.

We can use the tune variation of the tracked particles in
order to confirm the established diffusive aperture thresh-
olds. In Fig. 10, we plot the tune difference versus the am-
plitude, averaged over all initialx− y amplitude ratios (a),
and for a fixed ratioφ ≡ arctan y/x = 45◦ correspond-
ing to particles with equal initial positions (b), for the same
cases as in Fig. 1. We also mark two thresholds correspond-
ing to the precision boundary and to an empirical crude
loss boundary for tune changes bigger than10−4. For all
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Figure 8: The change of action variance per turn as a func-
tion of the starting amplitude. Compared are the cases:
head-on collisions only; head-on and long-range collisions;
long-range collisions plus KEK triplet field errors; both
types of collisions plus KEK triplet field errors; the addi-
tional effect of a tune modulation at the synchrotron fre-
quency (22 Hz) of amplitude10−4; and the additional ef-
fect of a Möbius twist.

the cases where long-range collisions and triplet field er-
rors are included, the loss boundary is located at the same
point, around5.5σx,y. For the case where the triplet field
errors are not added to the beam-beam effect, the threshold
is reached a little further, around6σx,y. The case with only
the KEK triplets is clearly more stable, but indeed there
is still a visible effect for larger initial amplitudes. No ef-
fect whatsoever can be observed for the head-on only case,
where the tune variation is very close to the precision limit
of the method.

The complementary picture (Fig. 10b) for a fixed ini-
tial amplitude ratio gives the same qualitative information
regarding the dynamical influence of the various perturba-
tions included in the model. The fluctuation of the tune
variation with the initial amplitudes is due to the presence
of some high order resonances which are identified and in-
dicated in the plot.

In the following we study the dependence of the diffu-
sion on various parameters. For simplicity, we choose a
fixed launch amplitude of 5σx,y in both transverse direc-
tions, which is close to the limit of stability in the nominal
case.

3.3 Tune Scan

Figure 11a presents the change of the action spread per turn
as a function of the horizontal tune. The vertical tune was

Figure 9: The change of action variance per turn as a func-
tion of the starting amplitude. Compared are the effect
of beam-beam collisions with that of the KEK and FNAL
triplet field errors.

held constant and equal to 59.32. The nominal horizontal
tune ofQx = 63.31 is close to a valley. The highest peaks
correspond to tunes close to the 3rd, 7th and 4th integer
resonances. Figure 11b shows the result of another tune
scan performed parallel to the tune space diagonal,i.e., at
a constant distance to the coupling resonance. This scan
indicates that the nominal working point is close to optimal.

3.4 Phase-Advance Scan

Figure 12 demonstrates that a difference in horizontal
phase advance between the two half arcs has little effect
on the diffusion rate. Thus, the weak-strong beam-beam
interaction does not constrain this parameter, which might
be adjusted for optimum chromatic correction or for min-
imising strong-strong beam-beam effects.

3.5 Offset

We have also investigated the effect of a transverse offset
between the two colliding beams. Figure 13 presents the
change of the action spread per turn as a function of the
horizontal amplitude for different values of horizontal sep-
aration at one of the two IPs. There is no noticeable effect
for an offset varying from0.2σx,y up to2σx,y.

3.6 Beam Current

Figure 14 depicts the effect of the bunch population on the
diffusive aperture. We tracked particles with the same ini-
tial amplitude for 4 different bunch populations. The de-
pendence of the difference between the diffusive aperture
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Figure 10: The change of frequency per 500 turns(a) averaged over all initial amplitude ratiosx − y, and(b) for a fixed
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Figure 11: The change of action variance per turn (in units of rms emittance times10−8) as a function of the horizontal
tune(a) for a constant vertical tune, and(b) for both the tunes varying so as to keep a constant distance to the (1,−1)
coupling resonance. The starting amplitude is 5σ in both planes.
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Figure 12: The change of action variance per turn (in units
of rms emittance times10−8) as a function of the difference
in horizontal phase advance between the two half arcs. The
total horizontal tune is held constant, equal to the nominal.
The vertical phase advance per arc is not changed.

Figure 13: The change of action variance per turn (in units
of rms emittance times10−8) as a function of the starting
amplitude for different transverse offsets at one of the two
main IPs.

and beam separation at the parasitic collision points on cur-
rent follows the square root law found for the SSC, which
is also expected from a simple scaling argument for a long-
range force of the form1/r [1].

3.7 Crossing Angle

Figure 15 shows a scan of the diffusion rate versus the
crossing angle. For crossing angles smaller than 300µrad,

the diffusion increases by many orders of magnitude. The
design crossing angle thus appears to be a good choice.

The tune variation averaged over initial amplitude ratios
versus the initial amplitude for the two crossing angles of
300 and 200µrad is displayed in Fig. 16. There is more
than 1σ difference between the locations of the empirical
loss boundary, for the two cases.

3.8 β? Scan

Figure 17 depicts the dependence of the diffusion on the IP
beta function. The crossing angleθc was varied simulta-
neously with the beta function so as to maintain a constant
value ofθc/θx,y, i.e., a constant separation at the parasitic
collision points. The figure indicates a minimum accept-
able beta function of about 0.35 m, below which the diffu-
sion at 5σx,y becomes prohibitively large, for uncorrected
triplet errors.

4 CONCLUSIONS

We have performed a series of weak-strong beam-beam
simulations for the LHC. The simulation model is similar
to the approach followed by John Irwin for the SSC [1],
studying the diffusion in the action variable of a group of
particles launched at the same transverse amplitude with
random betatron phase. We added some new features, such
as a Möbius twist element, and the tracking data was fur-
ther processed by a frequency map analysis.

Preliminary simulation results indicate that the stability
of particle motion is completely determined by the long-
range beam-beam interaction, which causes substantial dif-
fusion at amplitudes beyond about 6σx,y. If triplet non-
linearities are also taken into account, unstable particles
at these amplitudes can be lost within a few 10000 turns,
while without triplet errors no particle loss is observed
within the first105 turns. In the presence of long-range col-
lisions, the simulation results for the FNAL and the KEK
triplet errors are almost indistinguishable in the action and
small in the average tune changes. The uncorrected triplet
field errors alone cause a strong diffusion at a threshold am-
plitude of about 8σx,y, i.e. 2σ larger than for the long-range
collisions. Compared with both long-range interactions
and triplet errors, the effect of the head-on collisions is neg-
ligible. A tune modulation of amplitude10−4 at 22 Hz has
only marginal effect on the diffusion. Equally small effect
has a transverse offset between the two beams in one of
the head-on collisions. With long-range collisions present,
the diffusive aperture of about 6σx,y is 3.5σ smaller than
the beam-beam separation at the parasitic collision points.
The distance between the diffusive aperture and the beam-
beam separation increases as the square root of the bunch
population, in accordance with previous studies [1].

The present nominal working point in the tune diagram
corresponds to a broad local minimum in the diffusion rate
calculated for a starting amplitude of 5σx,y. The diffusion
rate is unaffected by a difference in the horizontal phase
advance between the two IPs. For crossing angles below
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(a) (b) (c)

Figure 14: Dependence of diffusion due to long-range collisions on the beam current:(a) the change of action variance
per turn as a function of the bunch population;(b) approximate diffusive aperture as a function of the bunch population;
(c) same as the left picture, but the vertical axis is the distance to the other beam at the parasitic collision point; a square
root dependence is also indicated for comparison.

Figure 15: The change of action variance per turn as a func-
tion of the full crossing angle. The start amplitude is 5σx,y

in both planes. The vertical axis gives the variance in units
of the design rms emittance times10−8.

250µrad the diffusion at 5σx,y increases by many orders
of magnitude. For large crossing angles, the diffusion is
roughly constant. Therefore, the design crossing angle of
300µrad appears to be optimal. Finally, the IP beta func-
tion could be squeezed down to about 0.35 m without ap-
preciable increase in the diffusion rate at5σx,y. For even
smaller values ofβ?

x,y the 5σx,y diffusion rate increases
dramatically, if the triplet errors remain uncorrected. At
β?

x,y = 0.25 m there is strong diffusion below4σ.
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Figure 16: The tune variation per 500 turns averaged over
the initial x − y amplitude ratio, for two different crossing
angles of 300 and 200µrad.
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