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The self-affine analysis and erraticity analysis of pseudorapidity gaps are performed
for the data of 400GeV/c pp collisions. The self-affine analysis has been shown
to exhibit a better scaling behavior. The self-affine multifractal dimensions and
multifractal spectrum have been obtained. The simulated results using FRITIOF
program can not reproduce the scaling behavior. The analysis of event-to-event
fluctuations has been performed. The increase of event-space moments Cp,q(M)
with decreasing phase-space scale is dominated by the statistical fluctuations. The
erraticity analysis based on measuring the pseudorapidity gaps is also performed.
The entropy-like quantities Sq and Σq deviate from 1 significantly, implying that
both of them are useful to serve as effective measures of erraticity in multiparticle
production. The lnSq versus q has a quite linear behavior, but the lnΣq versus q
has only an approximate linear behavior. The FRITIOF simulated results follow
the same scaling behavior, but the deviations from the experimental data are rather
large.

1 The data

In the present investigation, the angular distribution of charged particles pro-
duced in pp collisions at 400GeV/c was measured by using the LEBC films of-
fered by the CERN NA27 collaboration. A total of 3950 non-single-diffractive
events (N ≥ 4) were measured. The accuracy in pseudorapidity in the region
of interest (-2 ≤ η ≤ 2) is of the order of 0.1 pseudorapidity units. In order
to compare with the experimental data, we used a Monte-Carlo (MC) gen-
erator FRITIOF version 7.02 and JETSET 7.3 to simulate the multiparticle
production in 400GeV/c pp collisions. A total of 4500 non-single-diffractive
events (N ≥ 4) have been created.

2 Self-affine analysis

Since Bia las and Peschanski proposed to study nonstatistical fluctuation in
multiparticle production by the method of factorial moments Fq(δ) [1], a large
variety of experiments were performed to search for the anomalous scaling
behavior Fq(δ) ∝ (δ)−φq (δ → 0). The results have shown that the power-
law behavior does not hold exactly for high energy hadron-hadron collisions
[2]. The reason for this is that the usual procedure for calculating higher-
dimensional factorial moments is to divide phase space into bins with the
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same M in each direction. This is called self-similar analysis. However, phase
space in high energy multiparticle production is anisotropic. Wu and Liu
have proposed a new method to calculate the higher-dimensional factorial
moments which is called self-affine analysis [3]. In self-affine analysis, the two-
dimensional phase space region ∆η∆ϕ is divided by ληλϕ. The shrinking ratios
λη and λϕ are characterized by a parameter H = ln λη/ln λϕ, called Hurst
exponent, which can be deduced from the data by fitting two corresponding
one-dimensional second-order factorial-moment saturation curves

F
(i)
2 (Mi) = Ai −BiM

−Ci

i (i = η, ϕ) , Hηϕ = (1 + Cϕ)/(1 + Cη) (1)

In order to obtain the Hurst exponent from NA27 data, the second order
factorial moment for one-dimensional phase space were calculated and are
fitted to Eq.(3), cf. Table 1.

Table 1 The fitting parameters obtained according to (3).

Variables A B C χ2/NDF
η 1.371± 0.025 0.222± 0.018 0.425± 0.109 8.449/36
ϕ 1.509± 0.018 0.420± 0.039 0.057± 0.021 11.16/34

From these parameter values, we obtain the Hurst exponent Hηϕ = 0.74±
0.07. The second order two-dimensional factorial moments are then calculated
with the method of continuously varying scale [4] for H = 0.5, 0.74, Mη = MH

ϕ

; H = 1.0, 2.0, Mϕ = M
1/H
η . The results are shown in Fig.1 and are fitted

both linearly (dashed lines) and quadratically (full lines). The parameters of
quadratic fit (y(x) = a + bx + cx2) are shown in Table.2. We can see that the
coefficient b which characterizes the strength of anomalous scaling is positive
only for H = 0.74. The coefficient c of the quadratic term, characterizing the
degree of upward-bending is the smallest for H = 0.74. These results mean
that the self-affine analysis exhibits a better scaling behavior.

Table 2 The fitting parameters obtained according to (4).
H a b c

0.50 0.181± 0.007 −0.0213± 0.0051 0.0131± 0.0015
0.74 0.144± 0.014 0.0243± 0.0075 0.0049± 0.0014
1.00 0.194± 0.006 −0.0197± 0.0031 0.0130± 0.0011
2.00 0.192± 0.015 −0.0062± 0.0020 0.0100± 0.0030

In order to obtain the self-affine multifractal spectrum, the two-
dimensional factorial moments of continuous order [5] (q from -1 to 4 with
step 0.2) are calculated and shown in Fig.2. The dotted lines in the figure are
from FRITIOF Monte-Carlo, the dashed lines are from another MC having the
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same multiplicity distribution and same number of events as the experimental
data, but no correlations. It can be seen that no intermittency behavior can
be observed in both MC’s.

Using the intermittency exponents φ(q) for continuous order q obtained
by fitting lnF (q, M) versus lnM , the multifractal dimension D(q) and multi-
fractal spectrum f(α) of the self-affine fractal can be calculated through the
following relations

τ(q) = q − 1− φ(q), D(q) = τ(q)/(q − 1), α = dτ(q)/dq, f(α) = qα− τ(q).

D(q) versus q is shown in Fig.4. D(q) decreases with increasing q. The self-
affine multifractal spectrum f(α) is shown in Fig.5. It is concave downward
with a maximum at q = 0, f(α(0)) = D(0) = 1. These mean that multiparticle
production at 400GeV/c pp collisions is a self-affine multifractal process.

The index µ for Levy stable law, defined by the equation: φ(q)/φ(2) =
(qµ − q)/(2µ − 2) can be obtained using a method proposed by Hu Yuan et
al. [6]. From Eqs.(5) and (6) we can get the following relationship [6]

1− f(α) ∝ (B − α)µ/(µ−1), for α < B. (2)

where B is the value of α when f(α) = 1. From Fig.4, the value of α for
f(α) = 1 is found to be B = 1.0260. The ln(1-f(α)) versus ln(B − α) are
shown in Fig.5. The slope C = 2.0997 ± 0.0098 and the Levy index µ =
C/(C − 1) = 1.91± 0.01 are obtained through a linear fit.

3. The analysis of event-to-event fluctuations

The investigation of non-linear phenomena in high energy collisions has
lasted a long time. Cao and Hwa [7]. proposed to characterize the spacial
pattern of an event by using the horizontally normalized factorial moments.
However, their method is meaningful only for high multiplicity events [8].

When the event multiplicity N is low and the number of bins is high,
only a few events have nm ≥ q, so the statistical fluctuation may be very
large and very little information can be obtained. In Fig.6 the event space
moments lnCp,q(M) versus lnM from NA27 data are plotted on the left side
and lnCp,q(M) versus lnC2,2(M) on the right. In order to see whether the
variation of the ln Cp,q(M) versus lnM is caused by the statistical fluctua-
tions, we created a MC event sample which has same multiplicity distributions
within ∆η as experimental data, but the particles are randomly distributed
with equal probability. The results are shown in Fig.6 as dashed lines. We
can see that the increase of the moments Cp,q(M) with decreasing phase-space
scale is indeed dominated by the statistical fluctuations.
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In order to get the erraticity behavior of the low multiplicity system, a
new method based on measuring the rapidity gaps has been proposed by Hwa
and Zhang [9]. They have proposed the moments

Gq =
1

N + 1

n∑

i=0

xq
i , and Hq =

1
N + 1

n∑

i=0

(1− xi)−q (3)

as measures of spatial patterns in terms of rapidity gaps xi = Xi+1−Xi, i =
0, · · · , N , with X0 = 0 and XN+1 = 1. From this we can obtain the entropy-
like quantities

Sq =
〈Gq ln Gq >

< Gst
q ln Gst

q >
, and Σq =

〈Hq ln Hq >

< Hst
q ln Hst

q >
. (4)

where Gq and Hq for experimental data, Gst
q and Hst

q for pure statistical
fluctuations. How much degree of Sq and Σq deviate from 1 is a measure of
erraticity in multiparticle production based on rapidity gaps. We calculate
the Sq and Σq only in central region (-2 ≤ η ≤ 2) and drop the events which
has less than six particles in this region. A total of 2515 events for NA27 data
and 2723 events for FRITIOF have been selected.

The results for Sq are shown in Fig.7a. It can be seen that Sq deviate
from 1 significantly and the lnSq versus q has a quite linear behavior. This
means that Sq satisfies the exponential relationship Sq ∝ eαq. The straight
lines are the linear fit to the experimental data. The fit parameter is listed in
Table 3. This result is different from the power law behaviour claimed by Hwa
and Zhang [9], Sq ∝ qα1, cf. the linear fit to the lnSq versus lnq plotted in
Fig.7b and the fitting parameter listed in Table 3. The results from FRITIOF
MC are also shown in Fig.8 (open circles) and Table 3. We can see that there
is a same scaling behavior for the FRITIOF MC, although the values of Sq

deviate from experimental data sufficiently large.
Table 3 The fit parameters obtained according to (13) and (14).

EVENT SAMPLE α χ2/NDF α1 χ2/NDF
experimental data 0.133± 0.002 0.42 0.66± 0.06 18.8

FRITIOF 0.078± 0.002 0.92 0.38± 0.04 10.2

The results for Σq are shown in Fig.8. It can be seen that Σq deviate from
1 significantly, but lnΣq versus q only has an approximately linear behavior
Σq ∝ eβq, when q ≥ 2. For the experimental data, β = 0.30±0.04. For the
FRITIOF Monte-Carlo event sample, β = 0.15±0.03 .

The value of β (0.15±0.03) for the FRITIOF MC is much smaller than
that (β = 0.30±0.04) for the experimental data. The Sq and Σq deviate
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from 1 significantly implies that both of them are useful to serve as effective
measures of erraticity in multiparticle production.
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Figure Captions

Fig.1. lnF2 versus ln(MηMϕ) for different values of the Hurst-exponent.
Fig.2 lnFq versus lnM for continuous order q.
Fig.3 D(q) versus q.
Fig.4 f(α) versus α.
Fig.5 ln(1− f(α)) versus ln(B − α).
Fig.6 The event space moments lnCp,q(M) versus lnM .
Fig.7 lnSq versus q and lnq.
Fig.8 lnΣq versus q.
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