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Abstract

A search for pair-produced doubly charged Higgs bosons has been performed using data
samples corresponding to an integrated luminosity of about 614 pb−1 collected with the OPAL
detector at LEP at centre-of-mass energies between 189 GeV and 209 GeV. No evidence for a
signal has been observed. A mass limit of 98.5 GeV/c2 at the 95% confidence level has been set
for the doubly charged Higgs particle in left-right symmetric models. This is the first search for
doubly charged Higgs bosons at centre-of-mass energies larger than 91 GeV.
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M. Hamann25, G.G. Hanson12, K. Harder25, A.Harel21, M. Harin-Dirac4, M.Hauschild8,
J.Hauschildt25, C.M. Hawkes1, R. Hawkings8, R.J. Hemingway6, C.Hensel25, G. Herten10,

R.D. Heuer25, J.C.Hill5, K.Hoffman9, R.J. Homer1, D. Horváth29,c, K.R.Hossain28, R.Howard27,
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S. Spagnolo20, F. Spano9, M. Sproston20, A. Stahl3, K. Stephens16, D. Strom19, R. Ströhmer31,
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1 Introduction

Doubly charged Higgs bosons (H±±) appear in theories beyond the Standard Model [1]. Many
authors have pointed out that these doubly charged scalar particles occur naturally in the left-
right symmetric models which allow small neutrino masses [2], and stress the importance of looking
for their existence [3]. Supersymmetric left-right models in which the SU(2)R gauge symmetry is
broken by triplet Higgs fields do not conserve baryon and lepton numbers. They also yield a natural
embedding of a large mass for the right-handed Majorana neutrino needed for the implementation
of the see-saw mechanism for small neutrino masses. Recently, it has pointed out that such models
can lead to “light” doubly charged Higgs particles, in the 100 GeV/c2 mass range [4]. An important
feature of the doubly charged Higgs bosons is that they couple, at tree level, only to charged
leptons and to other Higgs and gauge bosons, in order to conserve electric charge. Thus doubly
charged Higgs bosons could be copiously produced in pairs via e+e− → H++H−− at LEP II with a
differential cross section at tree level depending on the doubly charged Higgs boson mass and the
centre-of-mass energy of the colliding beams. In left-right symmetric models, two Higgs triplets
arise, conventionnaly labelled left and right handed. The cross section of e+e− → H++

L H−−

L is not
equal to that for e+e− → H++

R H−−

R . The events are characterized by the sin2 θ dependence, where
θ is the angle of the H++ with respect to the electron beam axis, anticipated for the production of
a pair of spin 0 particles via the s-channel Z or γ exchange.

The partial widths of the dominant decay modes, H++ → ℓ+ℓ+ and H−− → ℓ−ℓ−, have been
calculated by Huitu and collaborators [5] and by Swartz [6]. For instance for H decaying into ττ it
is, at tree level:

Γττ (H
±± → τ±τ±) =

h2
ττ

8π
MH

(

1 − 2m2
τ

M2
H

)(

1 − 4m2
τ

M2
H

)1/2

(1)

where MH is the mass of the doubly charged Higgs boson, mτ is the mass of the tau lepton and hττ

is the unknown Hττ Yukawa coupling constant. If MH ≫ mτ , values of hττ & 10−7 can ensure the
fast decay of the Higgs particle (. 10−11 s). Observation of a four lepton final state would provide a
clean signature for the identification of the event. On the other hand for values of hττ smaller than
about 10−7 long lived doubly charged Higgs bosons could be detected as events with large impact
parameter tracks, kinked tracks, or stable doubly charged massive particles. OPAL has searched for
charged massive particles at centre-of-mass energies up to 183 GeV [7].

Previous searches for H±± pair production have been performed with the MARKII [8] and the
OPAL [9] detectors using data collected near the Z peak and have excluded the existence of the
H±± with mass less than 45.6 GeV/c2 and for values of hττ that extend down to zero, apart from
a small band around hττ ∼ 10−7.

Significant couplings to electrons or muons are not likely as there are indirect constraints [6, 10] on
the decays of H++ → e+e+ from high energy Bhabha scattering, of H++ → µ+µ+ from the absence
of muonium – anti-muonium transitions, and of H++ → e+µ+ from limits on the flavour changing
decay µ− → e+e−e−. In this paper, however, we will present our results based on general searches
for e+e− → four leptons with missing energy (A), and four leptons without missing energy (B). We
have considered the following channels: (A) H++H−− → τ+τ+τ−τ−, e+e+τ−τ− and µ+µ+τ−τ−,
and (B) H++H−− → e+e+e−e−, µ+µ+µ−µ− and e+e+µ−µ−.

The data set is from e+e− collisions recorded with the OPAL detector at LEP, and is composed
of events at centre-of-mass energies between

√
s = 189 GeV and 209 GeV with a total integrated
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luminosity of about 614 pb−1. A complete description of the OPAL detector can be found in [11,
12, 13].

2 Monte Carlo Simulation

Monte Carlo samples are used to model the pair production of doubly charged Higgs bosons as well
as to estimate the expected background due to Standard Model processes.

The simulation of the signal events with one non-zero hℓℓ′ coupling at a time and with zero lifetime
has been done with the Monte Carlo generator PYTHIA [14] modified according to [5]. H++H−−

events have been generated for various mass points ranging from 45 GeV/c2 to half the centre-of-
mass energy,

√
s. At each point on the (MH,

√
s) plane, 10000 events for each of the six H±± → ℓ±ℓ±

decays have been generated.

The main sources of background arise from Standard Model four-fermion final states (e+e− → 4f)
and a small contribution from two-photon (e+e− → γγ → hadrons, ℓ+ℓ−) and two-fermion (e+e− →
Z → ff) processes. For two-photon processes, the PHOJET [15], PYTHIA [14], and HERWIG [16]
generators have been used to simulate hadronic final states. The Vermaseren [17] generator has
been used to estimate the background contribution from all two-photon e+e−ℓ+ℓ− final states. All
other four-fermion final states have been simulated with grc4f [18]. For the two-fermion final states,
BHWIDE [19] was used for the ee(γ) final state, and KORALZ [20] and KK2f [21] for the µµ and
ττ states. The multi-hadronic events, qq(γ), were simulated using PYTHIA and KK2f.

All events were processed through the full simulation of the OPAL detector [22], with the same
analysis chain being applied to simulated events and to data.

3 Data Analysis

The final states resulting from e+e− → H++H−− processes followed by H±± → ℓ±ℓ± decays consist of
four leptons. Two different analyses are applied depending on the decay assumed: for H±± → τ±e±,
τ±µ± or τ±τ±, a selection for four lepton candidates plus missing energy (resulting from the decays
of the tau leptons) is applied, while for H±± → e±e±, µ±µ± or e±µ±, a selection for four leptons
(electrons or muons) without missing energy is used. Although lepton identification is used in the
event selection, it is not used for splitting the selected events into the different channels within the
two analyses.

The analyses are similar to the R-parity violation search [23, 24] that considers four leptons with
or without missing energy topologies. These event selection procedures are described in detail in
[23, 24] and are only briefly outlined below. The cut values used in the present analysis are optimized
for the searches for H±± → τ±τ± (in the missing energy analysis) and for H±± → e±e± (in the no
missing energy analysis). The selections are then applied as such for the other channels considered,
and the efficiencies are calculated separately for each channel.

The visible energy and the momentum of the event are calculated using the method described in [25].
A preselection is applied, consisting of

• Data quality requirements as described in [26];
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• Vetoes on the energy deposited in the forward detectors to reduce background due to two-
photon events and interactions of beam particles with the beam pipe or residual gas: the
energy deposited in each silicon-tungsten forward calorimeter and in each forward detector
has to be less than 5 GeV (these detectors are located in the forward region, with polar
angle 1 | cos θ| > 0.99, surrounding the beam pipe); there should be no signal in the MIP plug
scintillators 2.

• A requirement that at least four and no more than 10 tracks are reconstructed.

After the preselection, a series of cuts is applied as follows.

For the missing energy selection:

(A1) In order to reduce the background from two-photon processes and from radiative return events
(e+e− → Zγ) with the γ escaping into the beam pipe:

• The event’s transverse momentum, pt, is required to be larger than 0.035
√

s/c.

• The polar angle, θmiss, of the missing momentum direction is required to satisfy
| cos θmiss| < 0.9.

• The event’s longitudinal momentum, pmiss
z , is required to be smaller than 0.25

√
s/c.

(A2) The visible energy, Evis, of the event is required to be between 0.35
√

s and 0.85
√

s.

(A3) There have to be at least three tracks with a transverse momentum with respect to the beam
axis larger than 1.5 GeV/c.

(A4) There have to be at least three well identified isolated leptons [24] (e, µ, τ), each with a
transverse momentum larger than 1.5 GeV/c.

(A5) The total leptonic momentum, plept, defined as the scalar sum of the momenta of all identified
leptons, is required to be greater than 0.40 Evis/c.

For the no missing energy selection:

(B1) The polar angle, θmiss, of the missing momentum direction has to satisfy | cos θmiss| < 0.9, in
order to reject events in which a possible missing momentum points towards the beam pipe.

(B2) Evis is required to be larger than 0.90
√

s.

(B3) There have to be at least three isolated tracks each with a transverse momentum larger than
1.5 GeV/c.

(B4) There have to be at least three well identified isolated leptons [24] (e, µ, τ), each with a
transverse momentum larger than 1.5 GeV/c.

(B5) The total leptonic momentum is required to be greater than 0.60 Evis/c.

1A right-handed coordinate system is adopted, where the x-axis points to the centre of the LEP ring, and positive
z is along the electron beam direction. The angles θ and φ are the polar and azimuthal angles, respectively.

2The MIP plug scintillators [13] are an array of thin scintillating tiles with embedded wavelength shifting fibre
readout which have been installed to improve the hermiticity of the detector. They cover the polar angular range
between 43 and 200 mrad.
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(B6) In order to select events with a pair of particles with identical masses, the following procedure
is applied. Pairs are formed using the four most energetic tracks, and the invariant mass
is computed for each pair. Events are selected if one of the three possible pairings satisfies
|mi,j −mk,l|/(mi,j + mk,l) < 0.3, where mi,j is the invariant mass of the pair (i, j). Only pairs
with invariant masses mi,j greater than 20 GeV/c2 are used in the computation.

The numbers of events remaining after each cut are listed in Tables 1 and 2. The poor agreement
between data and Monte Carlo expectation in the early stages of the selections is due to the beam-
related backgrounds and incomplete modelling of two-photon processes. When the background
from these processes has been effectively reduced, the agreement between data and Monte Carlo is
satisfactory.

Figure 1 shows the distributions of some of the variables used in the selections for the data and
the background simulation (the contributions from all centre-of-mass energies are added). For the
missing energy selection, figure 1a) shows the distributions of the number of tracks with a transverse
momentum with respect to the beam axis larger than 1.5 GeV/c after cut (A2) has been applied.
The distributions for a signal sample for MH = 90 GeV/c2 and H±± → τ±τ± at

√
s = 206 GeV

are also shown with arbitrary normalisation. Similarly, figure 1b) shows the distributions of the
total leptonic momentum divided by the visible energy of the event after all but cut (A5) have been
applied.

For the no missing energy selection, figure 1c) shows the distributions of the number of well identified
isolated leptons after cut (B3) and figure 1d) the distributions of the total leptonic momentum
divided by the visible energy of the event after cut (B4). The distributions for a signal sample for
MH = 90 GeV/c2 and H±± → e±e± at

√
s = 206 GeV are also shown with arbitrary normalisation.

The signal detection efficiencies are given in Table 3. For values of hℓℓ smaller than approximately
10−7, the efficiency to detect H±± → ℓ±ℓ± decreases due to the long decay length of the H±±. At
very small hℓℓ (10−8 to 10−9) the H±± could traverse the tracking chambers of the detector without
decaying. We assume zero detection efficiency for values of hℓℓ smaller than 10−7.

4 Inefficiencies and Systematic Uncertainties

The following systematic errors on the signal detection efficiencies have been considered: the statisti-
cal uncertainty on the determination of the efficiency from the Monte Carlo simulation (less than 1%
absolute uncertainty); the systematic uncertainty on the measurement of the integrated luminosity
(0.20% to 0.24%); and the errors due to the modelling of the physics variables (between 0.5% and
4.5% absolute uncertainty). These last errors are determined by shifting each cut by the maximum
amount such that distributions from high statistics Monte Carlo samples remain in agreement with
the data.

For the expected number of background events, an uncertainty due to Monte Carlo statistics (4%
to 8%) and a systematic error due to the modelling of the physics variables (5% to 7%) have been
taken into account.

The total systematic uncertainty was calculated by summing in quadrature the individual errors.
Correlations between systematic uncertainties at different centre-of-mass energies have been taken
into account.
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In addition to effects included in the detector simulation, a relative efficiency loss of 1.5% to 2.9%
arises from beam-related background in the silicon-tungsten forward calorimeter and in the forward
detector. This is estimated using random beam crossing events.

5 Interpretation

As shown in Table 3 the observed numbers of events selected by the missing energy and the no
missing energy selections (17 and 10) are consistent with the numbers expected from Standard Model
processes (25.19 ± 0.92 ± 1.06 and 6.57 ± 0.50 ± 0.31). No evidence for H++H−− production has
therefore been observed and limits on the doubly charged Higgs boson production cross-section and
mass have been derived.

For each selected event, a reconstructed mass is computed. Figure 2 shows data and background as
well as typical signal reconstructed mass distributions for the e+µ+e−µ− and τ+τ+τ−τ− states. The
momenta of the four lepton candidates are constrained so that the total energy is the centre-of-mass
energy, and the total momentum adds to zero. For events with unambiguous charge assignments
(two positive lepton candidates and two negative lepton candidates), the charge is used to assign
leptons to the hypothesized doubly-charged Higgs bosons. The reconstructed mass is then the
average of the invariant masses reconstructed for the two boson hypotheses in the event. For events
for which the charge assignment is ambiguous (three or more lepton candidates of the same sign), the
assignment of lepton candidates to hypothesized Higgs bosons is chosen to minimize the difference
between the two reconstructed masses of the Higgs bosons, and the average reconstructed mass of
the two bosons is used as the event reconstructed mass. In the channel without missing energy, the
reconstructed mass resolution is characterized by two components: a core of width 400 MeV/c2 with
approximately 96% of the signal, and a tail of width 3 GeV/c2, with approximately 4% of the signal.
In the channel with missing energy, for the τ+τ+τ−τ− final state, for example, approximately 40%
of the signal is concentrated within a peak of width 2.5 GeV/c2, while the remainder has a long tail.
The first bin of the histograms collects events which fail to have a reconstructed mass (e.g. missing
a lepton candidate), and the last bin contains all overflows (events with a reconstructed mass larger
than 130 GeV/c2.

The distributions of the reconstructed masses of signal Monte Carlo events for various test masses are
formed, with bin widths of 500 MeV/c2. To obtain the expected signal distribution for an arbitrary
test mass, the available signal histograms are interpolated [27]. Histograms of the reconstructed
masses of Standard Model Monte Carlo events, averaging over 22 GeV/c2 wide mass intervals, are
used as the background.

A likelihood ratio method [28] has been used to determine an upper limit for the production cross-
section. This method combines the results obtained at different centre-of-mass energies, taking into
account the number of candidates and their reconstructed masses, the signal detection efficiencies,
the expected number of background events and the distributions of the reconstructed masses for
background and for signal events. The confidence levels are computed by binning the data in
the reconstructed mass separately for the different centre-of-mass energies3, and combining them.
Systematic uncertainties on the efficiencies and on the number of expected background events have
been taken into account in the limit calculation according to [29].

Within supersymmetric left-right symmetric models, this results in limits on σ(e+e− → H++H−−)×
3When calculating limits, cross-sections at different

√

s are estimated by weighting by β3/s, where β is pH±±/Ebeam
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BR2(H±± → ℓ±ℓ
′
±) given as a function of the H±± mass, where BR(H±± → ℓ±ℓ

′
±) is the branching

ratio of the decay H±± → ℓ±ℓ
′
±. Figure 3 shows the 95% confidence level upper limit on σ(e+e− →

H++H−−)×BR2(H±± → ℓ±ℓ
′
±) for each of the six possible leptonic decays assuming conservatively

that the efficiency for all other decays is negligible.

As an example, Figure 4 shows the 95% confidence level upper limit on the cross-section for pair
production of H±± followed by a decay into τ±τ± at

√
s = 206 GeV, obtained from the data collected

at centre-of-mass energies between 189 GeV and 209 GeV. Comparing this limit with the expected
cross-sections for left-handed H±±

L and right-handed H±±

R pair production [5], σL and σR, yields 95%
C.L. lower mass limits of 99.0 GeV/c2 and 98.5 GeV/c2, respectively, assuming a 100% decay into
τ±τ±. As listed in Table 4 the left-handed H±±

L mass limits for all channels taken independently lie
between 99.0 GeV/c2 (for 100% decay into τ±τ±) and 100.5 GeV/c2 (for µ±µ±). For right-handed
H±±

R the mass limits lie between 98.5 GeV/c2 and 100.1 GeV/c2.

6 Conclusion

The OPAL data sets at centre-of-mass energies between 189 GeV and 209 GeV, corresponding to a
total luminosity of about 614 pb−1, have been searched for evidence of the reaction e+e− → H++H−−

followed by the decays H±± → ℓ±ℓ
′
± in R-parity conserving supersymmetric left-right symmetric

models. No significant excess of events has been observed in the data. Production cross-section
limits have been derived for values of the Yukawa coupling constant hℓℓ′ larger than 10−7. A lower
mass limit of 98.5 GeV/c2 at the 95% confidence level has been obtained for Higgs bosons decaying
via a single channel H±± → ℓ±ℓ

′± with 100% branching ratio.
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Cut data total bkg ℓ+ℓ−(γ) qq̄(γ) ‘γγ’ 4-f signal

Pres. 80543 51158.7 1667.5 1210.5 47580.5 700.2 86.8 %
A1 1550 1318.1 676.6 194.6 156.5 290.4 73.9 %
A2 684 601.0 379.3 28.3 6.8 186.5 62.7 %
A3 417 375.0 230.3 17.7 3.0 123.9 54.0 %
A4 25 30.0 5.6 0.5 0.9 22.9 47.7 %
A5 17 25.2 5.3 0.1 0.9 18.9 44.5 %

± 1.4 ± 0.4 ± 0.1 ± 0.5 ± 1.2 ± 1.0 %

Table 1: The remaining numbers of events after each cut of the missing energy
selection for various background processes normalised to 614 pb−1 are
compared with data collected at

√
s between 189 GeV and 209 GeV.

Efficiencies for a simulated event sample of H++H−− with H±± → τ±τ±

and MH = 90 GeV/c2 at
√

s = 206 GeV are also given.

Cut data total bkg ℓ+ℓ−(γ) qq̄(γ) ‘γγ’ 4-f signal

Pres. 80543 51158.7 1667.5 1210.5 47580.5 700.2 84.7 %
B1 20655 13878.8 909.9 271.8 12341.4 355.7 71.9 %
B2 571 557.3 277.5 204.4 5.0 70.3 71.3 %
B3 53 50.9 5.2 26.2 1.1 18.4 59.4 %
B4 24 18.8 2.3 3.3 1.0 12.2 59.3 %
B5 16 11.3 0.8 0.2 0.9 9.4 57.2 %
B6 10 6.6 0.2 0.1 0.4 5.8 54.2 %

± 0.6 ± 0.1 ± 0.1 ± 0.3 ± 0.5 ± 0.8 %

Table 2: The remaining numbers of events after each cut of the no missing energy
selection for various background processes normalised to 614 pb−1 are
compared with data collected at

√
s between 189 GeV and 209 GeV.

Efficiencies for a simulated event sample of H++H−− with H±± → e±e±

and MH = 90 GeV/c2 at
√

s = 206 GeV are also given.

Decay efficiencies (%)

ee 42–61
µµ 66–71
ττ 42–46
eµ 55–65
eτ 33–40
µτ 44–47

Table 3: Ranges of signal detection efficiencies (in %) for the different H±± masses
(between 45 GeV/c2 and 102 GeV/c2) for the various decays.
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Decay H±±

L H±±

R

ee 100.2 GeV/c2 99.9 GeV/c2

µµ 100.5 GeV/c2 100.1 GeV/c2

ττ 99.0 GeV/c2 98.5 GeV/c2

eµ 100.4 GeV/c2 100.0 GeV/c2

eτ 99.3 GeV/c2 98.7 GeV/c2

µτ 99.6 GeV/c2 99.3 GeV/c2

Table 4: Mass limits at the 95% confidence level for left-handed and right-handed
doubly charged Higgs bosons H±±.
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Figure 1: Distributions of some essential observables used in the selections: a) The number of
tracks with transverse momentum larger than 1.5 GeV/c, Ntracks, after cut (A2) in the missing
energy selection. b) The total leptonic momentum divided by the total visible energy of the event,
plept/Evis, after cut (A4) in the missing energy selection. c) The number of well identified isolated
leptons, Nlept, after cut (B3) in the no missing energy selection. d) plept/Evis after cut (B4) in
the no missing energy selection. The data are shown with error bars and distributions from the
background processes are shown as solid line histograms: dilepton events (open area), multihadronic
events (double hatched area), two-photon processes (negative slope hatching area), and four-fermion
processes (positive slope hatching area). The arrows, pointing into the accepted regions, show where
the analysis cuts are applied. The dashed line histograms show the predictions for a doubly-charged
Higgs boson signal with MH = 90 GeV/c2 at

√
s = 206 GeV with 100% decay into ττ for a) and b)

and 100% decay into ee for c) and d). The normalisations of the signal histograms are arbitrary.
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Figure 2: Distributions of the reconstructed Higgs boson mass for a) background (solid-line his-
togram) and data (points with error bars) and b) a signal with MH = 75 GeV/c2 with 100% decay
into ττ at

√
s = 206 GeV, in the missing energy selection, and c) background (solid-line histogram)

and data (points with error bars) and d) a signal with MH = 100 GeV/c2 with 100% decay into ee,
at

√
s = 206 GeV, in the no missing energy selection.
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Figure 3: The 95% confidence level upper limits on σ(e+e− → H++H−−)× BR2(H±± → ℓ±ℓ
′±) for

each of the six possible leptonic decays at
√

s = 206 GeV. On each plot, the solid line shows the
observed limit, while the dotted line shows the limit expected for background only. The dark/light
shaded bands around the background expectation represent the ±1/± 2 standard deviation spread.
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Figure 4: The solid line shows the 95% confidence level upper limit on the H±± pair production
cross-section at

√
s = 206 GeV assuming 100% branching ratio for the decay of H±± into τ±τ±.

The dashed line shows the limit expected for background only. The dark/light shaded bands around
the background expectation represent the ±1/±2 standard deviation spread. The dotted and dash-
dotted lines show the expected production cross-sections of H++

L H−−

L and H++
R H−−

R in left-right
symmetric models. All data collected at

√
s between 189 GeV and 209 GeV have been combined

and the production cross-section σ has been assumed to vary linearly with β3/s.
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