
arXiv:hep-lat/0105003 v2   28 May 2001

M
ay

20
01

B
ico

cca-F
T
-01-12

C
E
R
N
-T
H
/2001-120

H
U
-E
P
-01/16

M
S
-T
P
-01-2

D
E
S
Y
01-052

M
P
I-P

h
T
/2001-12

L
T
H
501

F
irst

re
su
lts

o
n
th
e
ru
n
n
in
g
c
o
u
p
lin

g
in

Q
C
D

w
ith

tw
o
m
a
ssle

ss


a
v
o
u
rs

L
P

H
A

A
C

ollaboration

A
ch
im

B
o
d
e
a,
R
o
b
erto

F
rezzo

tti
b
;c,
B
ern

d
G
eh
rm

a
n
n
d,

M
a
rtin

H
a
sen

b
u
sch

d,
J
o
ch
en

H
eitg

er
e,
K
a
rl
J
a
n
sen

f,
S
tefa

n
K
u
rth

d,

J
u
ri
R
o
lf

d,
H
u
b
ert

S
im
m
a
g,
S
tefa

n
S
in
t
c
;h,

R
a
in
er

S
o
m
m
er

g,

P
eter

W
eisz

i,
H
a
rtm

u
t
W
ittig

j
a
n
d
U
lli
W
o
l�

d

a
C
S
IT
,
T
alla

h
a
ssee,

U
S
A

b
D
ip
t.

d
i
F
isica,

U
n
iv
.
d
i
M
ilan

o
B
ico

cca,
M
ilan

o,
Italy

c
C
E
R
N
-T
H
,
G
en
eva,

S
w
itzerlan

d
d
In
stitu

t
f�u
r
P
h
y
sik

,
H
u
m
b
o
ld
t
U
n
iversit�at,

B
erlin

,
G
erm

an
y

e
In
stitu

t
f�u
r
T
h
eor.

P
h
y
sik

,
U
n
iversit�at

M
�u
n
ster,

M
�u
n
ster,

G
erm

an
y

f
N
IC
,
Z
eu
th
en
,
G
erm

an
y

g
D
E
S
Y
,
Z
eu
th
en
,
G
erm

a
n
y

h
D
ip
t.

d
i
F
isica

,
U
n
iv
.
d
i
R
o
m
a,
T
or

V
ergata,

R
om

e,
Italy

i
M
ax
-P
lan

ck
-In

stitu
t
f�u
r
P
h
y
sik

,
M
�u
n
ch
en
,
G
erm

an
y

j
D
ep
t.

o
f
M
ath

em
a
tica

l
S
cien

ces,
U
n
iv
.
of

L
iverp

o
ol,

L
iv
erp

o
ol,

U
K

A
b
s
tr
a
c
t
W
e
rep

ort
o
n
th
e
n
on
-p
ertu

rb
ative

com
p
u
tation

of
th
e
ru
n
n
in
g
cou

-

p
lin
g
of

tw
o
-

avou

r
Q
C
D

in
th
e
S
ch
r�od

in
ger

fu
n
ction

al
sch

em
e.

T
h
e
corre-

sp
on
d
in
g
�
-p
aram

eter,
w
h
ich

d
escrib

es
th
e
cou

p
lin
g
stren

gth
at

h
igh

en
ergy,

is

related
to

a
low

en
ergy

sca
le
w
h
ich

still
rem

ain
s
to

b
e
con

n
ected

to
a
h
ad
ron

ic

\
ex
p
erim

en
ta
lly
"
ob
servab

le
q
u
a
n
tity.

W
e
�
n
d
th
e
n
o
n
-p
e
rtu

rba
tiv

e
ev
olu

tion

of
th
e
cou

p
lin
g
im
p
o
rta

n
t
to

elim
in
ate

a
sign

i�
can

t
con

trib
u
tion

to
th
e
total

error
in

th
e
estim

ated
�
-p
a
ra
m
eter.

K
e
y
w
o
rd
s:

la
ttice

Q
C
D
;
d
y
n
am

ical
ferm

ion
s;
ru
n
n
in
g
cou

p
lin
g;

ren
orm

aliza-

tio
n
.

P
A
C
S
:
1
1.15

.H
a;
1
2
.38.G

c;
1
2
.38.B

x
;
11.10.G

h
;
11.10.H

i



1 Introduction

Under lattice regularization predictions of renormalized quantum �eld theories

emerge as universal properties of critical points of models in the appropriate

universality class. In this way the theory is de�ned independently of perturba-

tion theory and may for instance be evaluated numerically. Predictive power

resides in a surplus of relations between observables over free parameters in

the model, and it becomes a well-de�ned question which part of these relations

is amenable to approximation by renormalized perturbation theory. In QCD

the standard expectation is that quantities associated with energies large com-

pared to typical hadron masses can be perturbatively related to each other.

If one is limited to this calculational framework, a small number of input

parameters associated with large normalization energy �, like the coupling

�s(�) and the quark masses for each 
avour mf(�), have to be determined

from experiment and then lead to many successful predictions of perturbative

QCD.

By lattice techniques it becomes possible to look beyond the perturbative

horizon. Consequently a lot of activity goes and went into extracting infor-

mation on the hadronic low energy sector. In particular the free parameters

are determined in this case by inputting quantities like some hadron masses

or F� . Then the high energy sector can in principle be predicted by evaluating

�s(�) and the quark masses for � � F� . Such calculations relating di�er-

ent orders of magnitude of physical scales represent a formidable numerical

problem. Beside the dissimilar physical scales, infrared and ultraviolet cuto�s

have to be extrapolated to their respective limits. A number of such direct

approaches have nevertheless been tried, and some have found their entry into

the particle data table [1{4] as one of the most accurate determinations of

�(MZ). In view of the very limited parameter range accessible to simula-

tion we �nd it diÆcult to be con�dent about the systematic errors of these

determinations. A computation requiring more steps but also o�ering much

more control of systematic errors becomes feasible by the recursive �nite size

method using the Schr�odinger functional. This technique has been developed

by our collaboration over the last years and is reviewed in [5] and [6].

In this publication we present �rst numerical results toward the extension

of the method from the zero 
avour (quenched) approximation to QCD with

two light 
avours which are taken massless. Sect. 2 summarizes the most

essential results of our previous work in the present context. In sect. 3 the

computational strategy for the �-parameter characterizing the coupling at

large energy is outlined, followed by numerical results in sect. 4 and some

conclusions.
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2 Schr�odinger functional setup

To connect hadronic and perturbative scales in QCD an intermediate renor-

malization scheme has been devised where the �nite system size L is used as a

renormalization scale. More precisely, we consider the Schr�odinger functional

given by the partition function of QCD on a cylinder of size T�L3 in euclidean

space

e�� =
Z
T�L3

D[U;  ; � ] e�S : (2.1)

In the lattice regularized form we integrate over SU(3) gauge �elds U with

the Wilson action and two 
avours of O(a) improved Wilson quarks  ; � .

Boundary conditions in the spatial directions of length L are periodic [7] for

U and periodic up to a global phase [8] � = �=5 for  ; � . In Euclidean time

Dirichlet boundary conditions are imposed at x0 = 0; T by �xing spatial links

to diagonal SU(3) matrices that are precisely speci�ed in terms of L and two

angles � and � (point `A' in [9]), and we also take T = L. The quark �elds

on the boundary surfaces [10] are given by Grassmann values �; �� and �0; ��0,

which are used as sources that are set to zero after di�erentiation.

To achieve the convergence to the continuum limit at a rate proportional

to the squared lattice spacing a2 a number of irrelevant operators have to be

tuned. The coeÆcient cSW of the clover term [11] is set to the non-perturbative

values quoted in parameterized form in [12]. In the Schr�odinger functional at

vanishing quark mass, that we consider here, the coeÆcients ct and ~ct of two

additional boundary counter terms [10] have to be adjusted. Here we have to

content ourselves with perturbative estimates at one and two-loop accuracy

[13,14].

Since for Wilson fermions chiral symmetry only emerges in the continuum

limit, the bare mass parameter is additively renormalized. For this reason we

trade it for a quark mass de�ned by the PCAC relation evaluated using suitable

states [17]. Let fA(x0) and fP(x0) be the matrix elements of the axial current

and the pseudoscalar density de�ned in (2.1) and (2.2) of [17] with the gluonic

boundary �elds assuming the values quoted above. We form the ratio

m(x0) =
1
2(@0 + @�0)fA(x0) + cAa@0@

�

0fP(x0)

2fP(x0)
(2.2)

with forward (backward) derivative @0 (@�0). For the current improvement

coeÆcient cA its one-loop value [13] is taken. We now de�ne the bare current

mass

m1 =

(
m(T=2) for even T=a

[m((T � a)=2) +m((T + a)=2)]=2 for odd T=a.
(2.3)
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An alternative de�nition m2 just di�ers by averagingm(x0) and m
0(x0), where

the latter is de�ned [17] with the sources �0; ��0 at the x0 = T boundary leading

to f 0A; f
0

P. These masses are expected to di�er at O(a2). With either of them

vanishing, the chirally symmetric continuum limit may be approached.

The coupling �g2 and the additional universal dimensionless observable �v

are related to the Schr�odinger functional by

@�

@�
= k

�
1

�g2(L)
� ��v(L)

�
; (2.4)

where k is a known [9] normalization �xed by demanding �g2 = g20+O(g40) with

the bare coupling g0.

3 Computational strategy for the �-parameter

Our method to extract �, which characterizes the behaviour of �g2 at asymp-

totically large energy, follows the strategy used in [18]. By continuum extrap-

olation we construct the non-perturbative step scaling function (SSF)

�(u) = �g2(2L)j�g2(L)=u;m1=0
(3.1)

for a number of u-values such that by interpolation we control it over the range

that will be needed. Then a value umax is selected (initially by guesswork) such

that the associated scale Lmax where �g
2(Lmax) = umax is in the hadronic range.

By recursively solving n times

�(�g2(L=2)) = �g2(L) (3.2)

starting with L = Lmax we obtain values for �g2(2�nLmax). Finally, for suÆ-

ciently large n, this coupling is perturbative and we use

�Lmax = 2n(b0�g
2)�b1=2b

2
0 exp

�
�

1

2b0�g2

�

� exp

�
�

Z �g

0
dx

�
1

�(x)
+

1

b0x3
�

b1
b20x

��
(3.3)

to derive � in terms of Lmax. Here the three-loop �-function1 for the SF-

scheme with two 
avours [14] is used and b0; b1 are its universal coeÆcients.

On the right-hand side �g2 is understood to be inserted at the scale 2�nLmax.
1 We now use b2 = 0:06=(4�)3 given in the second erratum to [14] which has become

necessary due to the revision of [15] in May 2001. Since our analysis depends on these

results, an independent check seems desirable. It will be partially supplied in the near future

[16].
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The admissibility and accuracy of renormalized perturbation theory can be

probed by checking the stability of the result when varying n.

In a later series of simulations we shall have to relate Lmax to a truly

physical scale, for instance by computing LmaxF� . The guess for umax will

be con�rmed then, if a number of order one is found, i. e. the multiple scale

problem is avoided. The relation between �, which corresponds to the SF-

scheme, and the MS-scheme is given by [8,14]

�MS = 2:382035(3)�: (3.4)

4 Numerical results

The continuum SSF is given by the limit

�(u) = lim
a=L!0

�(u; a=L); (4.1)

where � is de�ned like � in eq. (3.1) but interpreted at �nite resolution a=L.

Since PCAC becomes an operator relation in the continuum limit only, we

adopt the convention to always tune m1(L=a) to zero on the small lattice.

The corresponding value m1(2L=a) measured at resolution a=2L is expected

to di�er by O(a2) from m1(L=a). In the same way we expect m1(L=a) �

m2(L=a) = O(a2) for our alternative de�nition m2 of the bare current quark

mass. We tested these expectations on our data and compared with one-loop

perturbation theory in Fig. 1 for several couplings. Where available we include

together with our present Nf = 2 data also quenched and bermion [19] (Nf =

�2) results. We conclude that lattice artefacts behave non-pathologically and

similar to perturbative expectations. For the accessible range of resolutions

they happen to be dominated by terms of higher order than the expected

a2-contributions.

Another place to study the approach to universal continuum behaviour is

the relation between �v and �g de�ned in (2.4),

�v = !(�g2) = lim
a=L!0


(�g2; a=L): (4.2)

In perturbation theory 
 is known to two-loop order,


(u; a=L) = (v1 + v2u)
h
1 + �1(a=L) + �2(a=L)u

i
+O(u2); (4.3)

and �1; �2 encode the perturbative artefacts. In Fig. 2 data for two di�erent

values of the coupling are plotted. The square symbols refer to the improved

4



Figure 1: Lattice artefacts of PCAC masses. Perturbative results for integer

L=a are connected by lines.

observable, where the Monte Carlo results have been divided by the pertur-

bative lattice artefacts 1 + �1(a=L) + �2(a=L)u as �rst discussed in [20]. We

conclude that a much smoother continuum limit is achieved in this way.

At present, due to limitations of computing power, we have results with

suÆcient statistics only for �g2 on lattices with L=a � 12 . The resulting values

of � are collected in table 1. The algorithmic aspects of these simulations have

been presented in [21].

To estimate a continuum value for � from lattices with L=a = 4; 5; 6

(together with the lattices at the doubled lengths) we adopt the following

procedure. First we perturbatively correct the data with a factor analogous

to the one in eq. (4.3)

�(u; a=L)! �(2)(u; a=L) =
�(u; a=L)

1 + Æ1(a=L)u+ Æ2(a=L)u2
(4.4)

with the series for the artefacts known up to two-loop order. They depend,

of course, on the details of the action chosen. As the two-loop boundary

improvement coeÆcient ct(g0) became available only during our simulations

5



Figure 2: Circular symbols are data for �v including a continuum extrapolation.

Square symbols have perturbative lattice artefacts cancelled.

they were partly carried out with its one-loop value (left part of table 1) and

only later with the two-loop value. Hence two di�erent sets of Æ2 had to be

used in (4.4). We found the values of �(2)(u; a=L) for L=a = 5; 6 constant

within errors and �tted them to a constant (i. e. just combined them) as our

present continuum estimates. They are found in table 2 together with �(2)

at resolution L=a = 4 for the estimation of systematic errors (see below). In

Fig. 3 the analogous procedure can be judged in the quenched case, where

many more data are available. The averages of the points at L=a = 5; 6

in each series lead to the dotted lines and are to be compared with the full

extrapolation (points at a=L = 0).

We interpolate the values of table 2 by �tting �(u) to a sixth order poly-

nomial with the �rst three coeÆcients constrained to their perturbative values.

The resulting SSF is shown in Fig. 4. It di�ers from the quenched SSF by an

amount predicted well by perturbation theory for weak coupling. For values

above about 2.5 the three-loop term contributes signi�cantly to the �-function

but actually enhances the growing gap between Monte Carlo results and per-

turbation theory.

The �tted form for � is employed to estimate �Lmax in the way described

in sect. 2 starting from umax = 3:3 and from umax = 5. Statistical errors are

obtained by propagating the errors of the primary Monte Carlo data through

the whole analysis, and the inclusion of another parameter in the interpolating

6



L=a u � u �

4 0:9793(7) 1:0643(34) 1:5031(12) 1:720(5)

5 0:9793(6) 1:0721(39) 1:5033(26) 1:737(10)

6 0:9793(11) 1:0802(44) 1:5031(30) 1:730(12)

4 1:1814(5) 1:3154(55) 2:0142(24) 2:481(17)

5 1:1807(12) 1:3287(59) 2:0142(44) 2:438(19)

6 1:1814(15) 1:3253(67) 2:0146(56) 2:508(26)

4 1:5031(10) 1:731(6) 2:4792(34) 3:251(28)

5 1:5031(20) 1:758(11) 2:4792(73) 3:336(50)

6 1:5031(25) 1:745(12) 2:4792(82) 3:156(55)

4 1:7319(11) 2:058(7) 3:334(11) 5:298(85)

5 1:7333(32) 2:086(21) 3:334(15) 5:41(12)

6 1:7319(34) 2:058(20) 3:326(20) 5:68(13)

Table 1: Data for the lattice step scaling function �(u; a=L). For the left part

ct(g0) was set to its one-loop value, whereas the two rightmost columns have

been obtained with the two-loop result [14].

u �(u) �(2)(u; 1=4)

0.9793 1.0768(30) 1.0686(35)

1.1814 1.3277(46) 1.3199(55)

1.5031 1.7489(85) 1.7332(60)

1.7319 2.063(15) 2.0562(72)

1.5031 1.750(8) 1.7477(56)

2.0142 2.494(16) 2.535(18)

2.4792 3.304(38) 3.338(28)

3.3340 5.65(10) 5.491(90)

Table 2: Numerical results for �(u).
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Figure 3: Quenched results for �(2) to illustrate our extrapolation procedure.

Data are mostly from the literature [9,16] apart from the two �nest resolutions

at u = 2:1 which were obtained on APEmille at Zeuthen.

Figure 4: Step scaling function for Nf = 2 and Nf = 0 for comparison. Dashed

lines are perturbative results from integrations with the one-loop and, hardly

distinguishable, with the two- and three-loop �-function.
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�t for �(u) gave only negligible changes. In this way we �nd the numbers in

table 3. In the columns labelled by L=a = 4 we have replaced our continuum

�g2(Lmax) = 3:3 �g2(L0max) = 5

n continuum L=a = 4 n continuum L=a = 4

5 1.84(4) 1.80 6 1.24(5) 1.19

6 1.86(5) 1.78 7 1.26(5) 1.17

7 1.88(6) 1.76 8 1.28(6) 1.15

Table 3: Values estimated for � ln(�Lmax) for two examples of Lmax.

estimates �(u) by �(2)(u; 1=4). We regard the di�erence between the two

columns as our present systematic uncertainty2 and quote at the moment

ln(�Lmax) = �1:9(2) [�g2(Lmax) = 3:3] (4.5)

ln(�L0max) = �1:3(2) [�g2(L0max) = 5] ; (4.6)

which translates into �MSLmax = 0:36 and �MSL
0

max = 0:66 with about

20% total errors. A corresponding number in the quenched theory [18] for

�g2(Lmax) = 3:48 is ln(�Lmax) = �1:56(8) with the full continuum extrap-

olation and ln(�Lmax) = �1:47(2) under the present procedure with only

statistical errors indicated here.

Finally we plot the non-perturbative evolution toward high energy for

�(�) = �g2(L)=4� (� = 1=L) starting from �g2 = 5 in Fig. 5. Statistical errors

and the di�erence between evolving with �(u) and �(2)(u; 1=4) are smaller

than the symbol size. The overall scale error implied by the uncertainty in the

start-value in eq. (4.6), which corresponds to a rigid horizontal shift of all data

points, is not shown here. In comparing the non-perturbative results with the

perturbative curves we emphasize that the important point to appreciate is

that at high energies the expected perturbative behaviour for our coupling has

been shown to set in. On the other hand the fact that the perturbative curves

also describe the data quite well to rather low energies refers to a property of

our particular observable and is de�nitely not to be interpreted as a re
ection

of some universal property of QCD couplings.

If, instead of evolving non-perturbatively, we had used three-loop per-

turbation theory (eq. (3.3) with n = 0) directly at the largest couplings

�g2 = 3:3 $ � = 0:26 or �g2 = 5 $ � = 0:40, then we would have over-

estimated �Lmax by 12% and 23% respectively. This in turn translates into
2A somewhat smaller value would be obtained if we took the magnitude of our per-

turbative improvement for lattice artefacts, �(2)(u; 1=5) � �(u; 1=5), as an estimate of the

systematic error.
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Figure 5: Evolution of � = �g2=4� for the Schr�odinger functional coupling.

errors of 2% and 5% for � in the range where its value is close to 0.12 corre-

sponding to the physical value of �MS at MZ.
3

5 Conclusions

Our results demonstrate that with the generation of parallel computers being

installed now a computation of �MS including two massless 
avours is becom-

ing feasible with the ALPHA techniques. This includes { as in the quenched

case { the possibility to probe and reduce systematic errors and, in particular,

lattice spacing e�ects. Due to the high cost of the simulations, it is mandatory

to smoothen the continuum limit as far as possible. We have therefore spent

a signi�cant e�ort on accompanying perturbative calculations. As observed

earlier in the pure SU(2) gauge theory [20], we found that lattice artefacts

of several quantities constructed in the Schr�odinger functional are described

quite well by perturbation theory (see Figs. 1,2). This encourages us to trust

in perturbation theory to remove the lattice artefacts to a signi�cant extent

and this procedure is supported in the pure gauge theory in Fig. 3. As an esti-

mate of the remaining systematic errors we use the di�erence of our results on
3For the estimate in the quenched approximation mentioned above the analogous error is

smaller, since there the 3-loop �-function happens to be closer to the non-perturbative rate

of evolution over the relevant range.
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the �ner lattices to those on the coarsest one. Comparing with the quenched

theory, where a robust continuum extrapolation could be carried out [9,18],

this error appears safe but also not over-pessimistic. Nevertheless our results

still need to be corroborated by simulations closer to the continuum limit. We

are in the process of simulating up to L=a = 16 to both reduce our errors for

�Lmax and to put them on even �rmer grounds, which will however still take

some time.

Already now we have clearly observed the small Nf-dependence of our

discrete version of the � function (Fig. 4). For weak couplings its magnitude

is accurately predicted by perturbation theory, while for our largest coupling

(� � 0:25) it overestimates the e�ect signi�cantly. In particular, the use of

perturbation theory for couplings up to � � 0:4 in estimating �, would lead

to a signi�cant error already at our present level of accuracy. Moreover, this

error could hardly be quanti�ed within the framework of perturbation theory,

which appears rather well behaved when looked at in isolation.

Our low energy scale still has to be gauged by an experimentally observ-

able quantity, probably by computing LmaxF� . Also the extension to Nf = 2

of the non-perturbative renormalization of quark masses along the lines of

ref. [18] is within reach, once the scale dependence of � is known. In the more

distant future we would like to include the in
uence of further 
avours and

their masses on the evolution of the coupling.
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