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Abstract

Double-tag events in two-photon collisions are studied using the L3 detector at
LEP centre-of-mass energies from

√
s = 189 GeV to 209 GeV. The cross sections

of the e+e− → e+e−hadrons and γ∗γ∗ → hadrons processes are measured as a
function of the photon virtualities, Q2

1 and Q2
2, of the two-photon mass, Wγγ , and of

the variable Y = ln(W 2
γγ/Q1Q2), for an average photon virtuality 〈Q2〉 = 16 GeV2.

The results are in agreement with next-to-leading order calculations for the process
γ∗γ∗ → qq̄ in the interval 2 ≤ Y ≤ 5. An excess is observed in the interval
5 < Y ≤ 7, corresponding to Wγγ greater than 40 GeV. This may be interpreted as
a sign of resolved photon QCD processes or the onset of BFKL phenomena.
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1 Introduction

This letter presents a measurement of cross sections of two-photon collisions: e+e− → e+e−hadrons
obtained with the L3 detector [1] using double-tag events, where both scattered electrons 1)

are detected in the small angle electromagnetic calorimeters. The virtuality of the two photons
is defined as Q2

i = 2EiEb(1 − cos θi), where Eb is the beam energy, Ei and θi are the energy
and scattering angle of the detected electron (i = 1) or positron (i = 2). The centre-of-mass
energy of the two virtual photons, Wγγ , is related to the e+e− centre-of-mass energy,

√
s, by

W 2
γγ ≈ sy1y2, with yi = 1 − (Ei/Eb) cos2(θi/2). It is convenient to define the dimensionless

scaling variable Y :

Y = ln
W 2

γγ

Q1Q2
, (1)

which depends mainly on the angles of the scattered electrons and allows the combination of
the data collected at different values of

√
s.

Taking advantage of the good energy resolution of the small angle electromagnetic calorime-
ters, Wγγ is calculated as the missing mass of the two scattered electrons, Wee. This avoids an
unfolding procedure to calculate Wγγ from the effective mass of the hadrons observed in the
detector, Wvis, which is the dominant source of systematic uncertainty on the measurement of
the e+e− → e+e−hadrons cross sections for untagged [2,3] and single-tag [4,5] events. However
the Wee variable is more strongly affected by QED radiative corrections than Wvis.

In perturbation theory, the cross section of the γ∗γ∗ → hadrons process is described in terms
of a fixed order expansion in the strong coupling constant, complemented with the DGLAP [6]
evolution of the parton density of the photon. All two-to-two leading order (LO) processes, such
as γγ → qq̄ (QPM) or, for example, γg → qq̄ or γq → gq (single resolved) and gg → qq̄ (double
resolved), are taken into account in the Monte Carlo generators used to analyse the data. If
the virtualities of the two photons are large and comparable, LO processes are expected to be
suppressed relative to diagrams where multiple gluons are exchanged between the qq̄ dipoles [7]
coupling to each virtual photon. Examples of possible diagrams are given in Figure 1. In
leading logarithmic approximation, the resummed series of perturbative gluonic ladders can be
described by the BFKL equation [8], which predicts a rise in cross sections as a power of Wγγ , as
if a “hard Pomeron” [9] was exchanged. The cross section measurement of two virtual photons
is considered as a “golden” process to test BFKL dynamics [10]. After our first publication
on the double-tag data at

√
s = 91 GeV and 183 GeV [11], an effort was made to improve

the QPM calculation by including QCD corrections [12]. The effects of varying the charm
mass and the strong coupling constant were studied as well as the contribution of longitudinal
photon polarization states [13]. The relative importance of perturbative and non perturbative
QCD effects was also addressed by considering Reggeon and Pomeron contributions [14, 15].
There are also many efforts to include next-to-leading order (NLO) corrections in the BFKL
model [16].

The data, discussed in this letter, were collected at 189 GeV ≤ √
s < 209 GeV and corre-

spond to an integrated luminosity of 617 pb−1. The value of Q2
i is in the range 4−44 GeV2 with

an average value of 〈Q2〉 = 16 GeV2. A study of asymmetric double-tag events at
√

s = 91 GeV
was previously reported [17].

1)Electron stands for electron or positron throughout this paper.
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2 Event Generators

Two Monte Carlo generators, PHOJET [18] and TWOGAM [19], are used to simulate double-
tag two-photon events. Both use the GRV-LO [20] parton density in the photon and include
all two-to-two LO γγ diagrams. They describe well single-tag events [4].

PHOJET is an event generator for pp, γp and two-photon interactions, based on the Dual
Parton Model. The electron-photon vertex for transversely polarized photons [21] is simulated.
A transverse momentum cutoff of 2.5 GeV is applied to the partons of the resolved photons
to separate soft from hard processes [22]. PHOJET gives also a good description of untagged
γγ → hadrons events [2].

TWOGAM generates three different processes separately: QPM, QCD resolved photon pro-
cesses and non perturbative soft processes described by the Vector Dominance Model (VDM).
The normalization of the LO QPM process is determined by the quark masses (mu = md =
0.3 GeV, ms = 0.5 GeV and mc = 1.6 GeV), that of the VDM process is fixed by our measure-
ment of the cross section of real photons [2], while the normalization of the QCD contribution
is adjusted to reproduce the observed number of data events.

TWOGAM was recently upgraded to take into account QED soft and hard radiation from
initial (ISR) and final state (FSR) electrons. The accuracy of the implementation of QED
radiative corrections is checked with the program RADCOR [23], using the channel e+e− →
e+e−µ+µ−. The data are mainly sensitive to initial state radiation which modifies the shape
of the Y spectrum. Since the various processes have different Y dependences, the radiative
correction affects them differently, as shown in Figure 2a. The relative contributions of QPM,
VDM and QCD, as predicted by the TWOGAM program, including QED radiative effects, are
given in Figure 2b and listed in Table 1. The VDM contribution is small and almost constant in
our kinematical region. The resolved photon QCD contribution is negligible at low values of Y
and increases to about 50% at high values. In Figure 2c the generated value of Y is compared
to Yee and to Yvis. The distortion and limited range of the Yvis spectrum, due to the effect of
undetected particles, is evident.

The dominant backgrounds are e+e− → e+e−τ+τ− events, simulated by JAMVG [24], and
single-tag two-photon hadronic events, where a hadron mimics a scattered electron. Other back-
ground processes are simulated by PYTHIA [25] (e+e− → hadrons), KORALZ [26] (e+e− →
τ+τ−) and KORALW [27] (e+e− → W+W−).

All Monte Carlo events are passed through a full detector simulation of the L3 detector
which uses the GEANT [28] and the GEISHA [29] packages and are reconstructed in the same
way as the data. Time dependent detector inefficiencies, as monitored during the data taking
period, are also simulated.

3 Event Selection

Double-tag two-photon events are recorded by two independent triggers: the central track
trigger [30] and the single- and double-tag energy triggers [31] leading to a total trigger efficiency
greater than 99%.

Two-photon hadronic event candidates, e+e− → e+e−hadrons, are selected using the fol-
lowing criteria:

• There must be two identified electrons, forward and backward, in the small angle elec-
tromagnetic calorimeters. Each electron is identified as the highest energy cluster in one
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of the calorimeters, with energy greater than 40 GeV. The scattering angles of the two
tagged electrons have to be in the range 30 mrad < θ1,2 < 66 mrad. The opening angle
between the scattered electrons must be smaller than 179.5◦, to reject Bhabha events.
Figure 3 shows the distributions of Ei/Eb, Q2

i , θi and log(Q2
1/Q

2
2) for scattered electrons.

TWOGAM describes the distributions of θi and Q2
i better than PHOJET.

• The number of particles, defined as tracks and isolated calorimeter clusters in the polar
angle region 20◦ < θ < 160◦, must be greater than 5. The tracks are selected by requiring
a transverse momentum greater than 100 MeV and a distance of closest approach, in the
transverse plane, to the interaction vertex smaller than 10 mm. Isolated energy clusters
are required to have energy greater than 100 MeV and no nearby charged track inside a
cone of 35 mrad half-opening angle.

• The visible hadronic mass Wvis, calculated from the four-vectors of all measured par-
ticles, must be greater than 2.5 GeV in order to exclude beam-gas and off-momentum
electron backgrounds. The distributions of Wvis and of the corresponding variable Yvis =
ln(W 2

vis/
√

Q2
1Q

2
2) are compared to Monte Carlo distributions in Figure 4a and b.

After these requirements, 491 events are selected with an estimated background of 49
misidentified single-tag events and 32 events from the process e+e− → e+e−τ+τ−. Other
background processes are estimated to contribute 6 events. The variable Wγγ and the corre-
sponding value of Y are calculated from the scattered electron variables, Wee and Yee, shown
in Figure 4c and d.

4 Results

The differential cross sections of the e+e− → e+e−hadrons process with respect to the variables
Q2 = Q1Q2, Wγγ and Y are measured in the kinematic region:

• E1,2 > 40 GeV and 30 mrad < θ1,2 < 66 mrad

• Wγγ > 5 GeV

The ranges 10 GeV2 ≤ Q2 ≤ 32 GeV2, 5 GeV ≤ Wγγ ≤ 100 GeV and 2 ≤ Y ≤ 7 are cov-
ered. The results are given in Table 2 for different bins together with the number of observed
events and the selection efficiencies. Values before and after the application of QED radiative
corrections are given.

The systematic uncertainty on the cross sections due to the selection is 5%. It is dominated
by the effect of a variation of the multiplicity cut from 4 to 6 particles. The uncertainty from
the background estimation of single-tag events is 3.5% and that due to Monte Carlo statistics
amounts to 1%. The additional uncertainty due to Monte Carlo modelling is estimated as 6.4%
by comparing PHOJET and TWOGAM without QED radiative corrections. To estimate the
uncertainty on the radiative correction, the TWOGAM predictions for the e+e− → e+e−µ+µ−

process are compared to those of RADCOR. The difference is within 3% which is included as a
systematic uncertainty. The different systematic uncertainties are added in quadrature to give
a total of 9.4% as summarised in Table 3.

The e+e− → e+e−hadrons cross sections after the application of QED radiative corrections
are compared in Figure 5 to the PHOJET Monte Carlo and to LO and NLO calculations of the
QPM process [12]. In these calculations the mass of quarks is set to zero and αem is fixed to
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the value for on-shell photons. The predictions of these models are also listed in Table 4. These
calculations describe well the Q2 dependence of the data. For the Wγγ and Y distributions,
the QPM calculations describe the data except in the last bin, where the experimental cross
section exceeds the predictions. Such an excess is expected if the resolved photon QCD processes
become important at large Y , as illustrated in Figure 2b. The predictions of PHOJET, which
includes the LO QPM and QCD processes in the framework of the DGLAP equation, also
describe the data. A similar behaviour may also be obtained by considering the “hard Pomeron”
contribution in the framework of BFKL [15] theories, while LO BFKL calculations were found
to exceed the experimental values by a large factor [11].

From the measurement of the e+e− → e+e−hadrons cross section we extract the two-photon
cross section, σγ∗γ∗ , by using the transverse photon luminosity function [21,32], σee = LTT ·σγ∗γ∗ .
This measurement gives an effective cross section containing contributions from transverse (T )
and longitudinal (L) photon polarisations:

σγ∗γ∗ = σTT + ε1σTL + ε2σLT + ε1ε2σLL εi =
2(1− yi)

1 + (1− yi)2
(2)

where εi is the ratio of longitudinal to transverse photon luminosity functions. In the kine-
matical region studied, the average value of εi is about 0.95. The experimental values of σγ∗γ∗

are presented in Table 5 and Figure 6 in the same ranges considered above with and with-
out QED radiative corrections. The measurements as a function of Q2 are fitted by the form
f = A/(Q2), expected by perturbative QCD [10, 14]. The fit reproduces the data well with
A = 81.8± 6.4 nb/GeV2 and χ2/d.o.f = 1.2/3. The average value of σγ∗γ∗ in the kinematical
region considered is 4.7± 0.4 nb. The NLO QPM calculations [12] predict a decrease of σγ∗γ∗

as a function of Wγγ or Y , which is inconsistent with the measurements at large values of Wγγ

and Y .

Acknowledgements

We thank M. Przybycien and R. Nisius for pointing out the importance of QED radiative cor-
rections in this process and S. Todorova for numerous discussions about their implementations
in the TWOGAM Monte Carlo.

5



References

[1] L3 Collab., B. Adeva et al., Nucl. Instr. Meth. A 289 (1990) 35;
J.A. Bakken et al., Nucl. Instr. Meth. A 275 (1989) 81;
O. Adriani et al., Nucl. Instr. Meth. A 302 (1991) 53;
B. Adeva et al., Nucl. Instr. Meth. A 323 (1992) 109;
K. Deiters et al., Nucl. Instr. Meth. A 323 (1992) 162;
M. Acciari et al., Nucl. Instr. Meth. A 351 (1994) 300.

[2] L3 Coll., M. Acciarri et al., Phys. Lett. B 408 (1997) 450;
L3 Coll., M. Acciarri et al., Preprint CERN-EP/2001-012, Phys. Lett. B accepted.

[3] OPAL Coll., G. Abbiendi et al., Eur. Phys. J. C 14 (2000) 99.

[4] L3 Coll., M. Acciarri et al., Phys. Lett. B 436 (1998) 403;
L3 Coll., M. Acciarri et al., Phys. Lett. B 447 (1999) 147.

[5] OPAL Coll., G. Abbiendi et al., Eur. Phys. J. C 18 (2000) 15;
ALEPH Coll., D. Barate et al., Phys. Lett. B 458 (1999) 152;
DELPHI Coll., P. Abreu et al., Z. Phys. C 69 (1996) 223.

[6] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438 and 675;
L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94;
Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641;
G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298.

[7] H.G. Dosch, T. Gousset and H.J. Pirner, Phys. Rev. D 56 (1997) 6957.

[8] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 45 (1977) 199;
Ya.Ya. Balitski and L.N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822.

[9] A. Donnachie and P.V. Landshoff, Phys. Lett. B 437 (1998) 408.

[10] J. Bartels, A. De Roeck and H. Lotter, Phys. Lett. B 389 (1996) 742;
S.J. Brodsky, F. Hautmann and D.E. Soper, Phys. Rev. D 56 (1997) 6957.

[11] L3 Coll., M. Acciarri et al., Phys. Lett. B 453 (1999) 333.

[12] M. Cacciari et al., JHEP 102 (2001) 29.
We wish to thank the authors for providing us with the program with theoretical calcula-
tions.

[13] J. Bartels, C. Ewerz and R. Staritzbichler, Phys. Lett. B 492 (2000) 56.

[14] A. Donnachie, H.G. Dosch and M. Rueter, Eur. Phys. J. C 13 (2000) 141.

[15] J. Kwiecinski and L. Motyka, Eur. Phys. J. C 18 (2000) 343.

[16] V.S. Fadin and L. N. Lipatov, Phys. Lett. B 429 (1998) 127;
G. Camici and M. Ciafaloni, Phys. Lett. B 430 (1998) 349 and references therein;
C.R. Schmidt, Phys. Rev. D 60 (1999) 74003;
J.R. Forshaw, D.A. Ross and A. Sabio Vera, Phys. Lett. B 455 (1999) 273;

6



S.J. Brodsky et al., JETP Lett. 70 (1999) 15;
G. Salam, JHEP 9807 (1998) 19;
M. Ciafaloni, D. Colferai and G.P. Salam, Phys. Rev. D 60 (1999) 114036;
M. Ciafaloni and D. Colferai, Phys. Lett. B 452 (1999) 372;
R.S. Thorne, Phys. Rev. D 60 (1999) 54031.

[17] L3 Coll., M. Acciarri et al., Phys. Lett. B 483 (2000) 373.

[18] PHOJET version 1.05c is used.
R. Engel, Z. Phys. C 66 (1995) 203;
R. Engel and J. Ranft, Phys. Rev. D 54 (1996) 4244.

[19] TWOGAM version 2.04 is used.
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32 INFN-Sezione di Perugia and Università Degli Studi di Perugia, I-06100 Perugia, Italy
33 Nuclear Physics Institute, St. Petersburg, Russia
34 Carnegie Mellon University, Pittsburgh, PA 15213, USA
35 INFN-Sezione di Napoli and University of Potenza, I-85100 Potenza, Italy
36 Princeton University, Princeton, NJ 08544, USA
37 University of Californa, Riverside, CA 92521, USA
38 INFN-Sezione di Roma and University of Rome, “La Sapienza”, I-00185 Rome, Italy
39 University and INFN, Salerno, I-84100 Salerno, Italy
40 University of California, San Diego, CA 92093, USA
41 Bulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 Sofia, Bulgaria
42 The Center for High Energy Physics, Kyungpook National University, 702-701 Taegu, Republic of Korea
43 Utrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands
44 Purdue University, West Lafayette, IN 47907, USA
45 Paul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland
46 DESY, D-15738 Zeuthen, FRG
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∆Q2(GeV2) 10− 14 14− 18 18− 24 24− 32
QPM 0.778 0.844 0.890 0.919
VDM 0.079 0.061 0.051 0.049
QCD 0.143 0.095 0.059 0.032

∆Wγγ(GeV) 5− 10 10− 20 20− 40 40− 100
QPM 0.924 0.885 0.740 0.466
VDM 0.071 0.063 0.079 0.084
QCD 0.005 0.052 0.181 0.450

∆Y 2.0− 2.5 2.5− 3.5 3.5− 5.0 5.0− 7.0
QPM 0.913 0.866 0.724 0.443
VDM 0.069 0.069 0.081 0.091
QCD 0.018 0.065 0.195 0.466

Table 1: Fractional contributions of the three processes, QPM, VDM, and QCD in different
Q2, Wγγ and Y intervals as predicted by the TWOGAM Monte Carlo including QED radiative
corrections.
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∆Q2 〈Q2〉 Before Radiative corrections After Radiative corrections
(GeV2) (GeV2) Events ε dσee/dQ2 (pb/GeV2) dσee/dQ2 (pb/GeV2)
10− 14 12.0 155 0.58 0.0898± 0.0087± 0.0081 0.0718± 0.0070± 0.0065
14− 18 15.9 122 0.68 0.0612± 0.0067± 0.0055 0.0522± 0.0057± 0.0047
18− 24 20.5 97 0.74 0.0298± 0.0036± 0.0027 0.0273± 0.0033± 0.0025
24− 32 27.0 30 0.77 0.0065± 0.0014± 0.0006 0.0066± 0.0014± 0.0006

∆Wγγ 〈Wγγ〉 Before Radiative corrections After Radiative corrections
(GeV) (GeV) Events ε dσee/dWγγ (pb/GeV) dσee/dWγγ (pb/GeV)
5− 10 7.2 75 0.37 0.0594± 0.0076± 0.0053 0.0747± 0.0096± 0.0067

10− 20 13.9 158 0.66 0.0332± 0.0031± 0.0030 0.0263± 0.0024± 0.0024
20− 40 27.9 123 0.72 0.0114± 0.0012± 0.0010 0.0062± 0.0007± 0.0006
40− 100 61.6 96 0.67 0.0026± 0.0004± 0.0002 0.0014± 0.0002± 0.0001

∆Y 〈Y 〉 Before Radiative corrections After Radiative corrections
Events ε dσee/dY (pb) dσee/dY (pb)

2.0− 2.5 2.2 61 0.52 0.322± 0.049± 0.029 0.315± 0.048± 0.028
2.5− 3.5 2.9 130 0.73 0.258± 0.025± 0.023 0.184± 0.018± 0.017
3.5− 5.0 4.2 134 0.74 0.160± 0.017± 0.014 0.085± 0.009± 0.008
5.0− 7.0 5.9 80 0.63 0.069± 0.011± 0.006 0.037± 0.006± 0.003

Table 2: Number of events, selection efficiencies, ε, and differential cross sections dσ(e+e− →
e+e−hadrons)/dQ2, dσ(e+e− → e+e−hadrons)/dWγγ and dσ(e+e− → e+e−hadrons)/dY . All
measurements are given before and after applying QED radiative corrections. The first uncer-
tainty is statistical and the second systematic.

Selection procedure 5.0%
Background estimation 3.5%
Monte Carlo statistics 1.0%
Monte Carlo modelling 6.4%
QED radiative correction 3.0%
Total 9.4%

Table 3: Contributions to the total systematic uncertainties on the measured cross sections.
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∆Q2 LO QPM NLO QPM PHOJET
(GeV2) dσee/dQ2 (pb/GeV2) dσee/dQ2 (pb/GeV2) dσee/dQ2 (pb/GeV2)
10− 14 0.0596 0.0619 0.0653
14− 18 0.0547 0.0545 0.0616
18− 24 0.0330 0.0322 0.0336
24− 32 0.0114 0.0110 0.0105

∆Wγγ LO QPM NLO QPM PHOJET
(GeV) dσee/dWγγ (pb/GeV) dσee/dWγγ (pb/GeV) dσee/dWγγ (pb/GeV)
5− 10 0.0831 0.0786 0.0534

10− 20 0.0263 0.0269 0.0377
20− 40 0.0044 0.0052 0.0099
40− 100 0.0003 0.0004 0.0011

∆Y LO QPM NLO QPM PHOJET
dσee/dY (pb) dσee/dY (pb) dσee/dY (pb)

2.0− 2.5 0.334 0.338 0.373
2.5− 3.5 0.171 0.181 0.271
3.5− 5.0 0.052 0.063 0.121
5.0− 7.0 0.006 0.009 0.024

Table 4: Predictions of LO and NLO QPM models and the PHOJET Monte Carlo generator
as a function of Q2, Wγγ and Y .

Before Radiative corrections After Radiative corrections
∆Q2 (GeV2) 〈Q2〉 (GeV2) σγ∗γ∗ (nb) σγ∗γ∗ (nb)

10− 14 12.0 8.11± 0.79± 0.73 6.49± 0.64± 0.59
14− 18 15.9 5.68± 0.62± 0.51 4.84± 0.53± 0.44
18− 24 20.5 4.94± 0.60± 0.45 4.54± 0.55± 0.41
24− 32 27.0 3.36± 0.74± 0.30 3.38± 0.74± 0.30

Before Radiative corrections After Radiative corrections
∆Wγγ (GeV) 〈Wγγ〉 (GeV) σγ∗γ∗ (nb) σγ∗γ∗ (nb)

5− 10 7.2 5.04± 0.65± 0.45 6.34± 0.82± 0.57
10− 20 13.9 6.65± 0.62± 0.60 5.27± 0.49± 0.47
20− 40 27.9 6.84± 0.74± 0.62 3.71± 0.40± 0.33
40− 100 61.6 9.99± 1.50± 0.90 5.24± 0.79± 0.47

Before Radiative corrections After Radiative corrections
∆Y 〈Y 〉 σγ∗γ∗ (nb) σγ∗γ∗ (nb)

2.0− 2.5 2.2 5.78± 0.88± 0.52 5.65± 0.86± 0.51
2.5− 3.5 2.9 6.85± 0.68± 0.62 4.90± 0.48± 0.44
3.5− 5.0 4.2 7.52± 0.80± 0.68 3.99± 0.42± 0.36
5.0− 7.0 5.9 10.9± 1.82± 0.98 5.82± 0.97± 0.52

Table 5: The two-photon cross section, σγ∗γ∗ , before and after applying QED radiative cor-
rections, as a function of Q2, Wγγ and Y . The first uncertainty is statistical and the second
systematic.
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Figure 1: Examples of diagrams contributing to the process γ∗γ∗ → hadrons : a) QPM, b) and
c) O(αs) QCD corrections to the QPM diagram, d) photon-gluon fusion, e) one-gluon exchange
and f) multigluon ladder exchange.
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Figure 2: a) QED radiative corrections as a function of the variable Y , for QPM, VDM and
QCD processes separately; b) the relative contributions of QPM, VDM and QCD processes
in the TWOGAM Monte Carlo with QED radiative corrections included and c) Y determined
using Wvis or Wee compared to the generated value, Ygen.
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Figure 3: Distributions of a) Ei/Eb, b) Q2
i , c) θi and d) log(Q2

1/Q
2
2) for scattered electrons.

The data are compared to Monte Carlo predictions, normalised to the total number of events
in the data. The background is mainly due to e+e− → e+e−τ+τ− and misidentified single-tag
two-photon hadronic events.

15



10

10 2

10 3

0 10 20 30
0

50

100

-2 0 2 4 6

10

10 2

0 25 50 75 100

Wvis [GeV]

E
ve

nt
s/

3 
G

eV
a) L3 data

PHOJET
TWOGAM
Back.

Yvis

E
ve

nt
s/

0.
5

b)

Wee [GeV]

E
ve

nt
s/

10
 G

eV

c)

Yee

E
ve

nt
s/

0.
5

d)

0

25

50

75

100

0 2 4 6 8

Figure 4: Distributions of a) the effective mass of the detected particles, Wvis, b) Yvis, c) the
missing mass of the two scattered electrons, Wee and d) the variable Yee. The range of Wvis and
Yvis is limited to low values due to particles which escape detection. The data are compared to
Monte Carlo predictions, normalised to the number of data events.
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Figure 5: The differential cross sections of the e+e− → e+e−hadrons process, in the kinematical
region defined in the text, after applying QED radiative corrections, as a function of a) Q1Q2,
b) Wγγ and c) Y . The predictions of LO QPM and NLO QPM [12] for the process γ∗γ∗ → qq̄
are displayed as the dashed and solid lines respectively. The dotted line shows the prediction
of the PHOJET Monte Carlo.
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Figure 6: Cross sections of the γ∗γ∗ → hadrons processes as a function of a) Q1Q2, b) Wγγ , and
c) Y in the kinematical region defined in the text, after applying QED radiative corrections.
The dashed line represents the fit to the data described in the text. The NLO predictions of
Reference 12 for the process γ∗γ∗ → qq̄ are displayed as a solid line.
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