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Abstract

Correlations among hadrons with the same electric charge produced in Z0 decays are
studied using the high statistics data collected from 1991 through 1995 with the OPAL
detector at LEP. Normalized factorial cumulants up to fourth order are used to measure
genuine particle correlations as a function of the size of phase space domains in rapidity,
azimuthal angle and transverse momentum. Both all-charge and like-sign particle com-
binations show strong positive genuine correlations. One-dimensional cumulants initially
increase rapidly with decreasing size of the phase space cells but saturate quickly. In
contrast, cumulants in two- and three-dimensional domains continue to increase. The
strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-
sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some
of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the
Monte Carlo model Pythia, are found to reproduce reasonably well the measured second-
and higher-order correlations between particles with the same charge as well as those in
all-charge particle multiplets.

To be submitted to Phys. Lett. B
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R. Howard27, P. Hüntemeyer25, P. Igo-Kemenes11, K. Ishii23, A. Jawahery17, H. Jeremie18,
C.R. Jones5, P. Jovanovic1, T.R. Junk6, N. Kanaya26, J. Kanzaki23, G. Karapetian18,

D. Karlen6, V. Kartvelishvili16, K. Kawagoe23, T. Kawamoto23, R.K. Keeler26, R.G. Kellogg17,
B.W. Kennedy20, D.H. Kim19, K. Klein11, A. Klier24, S. Kluth32, T. Kobayashi23, M. Kobel3,

T.P. Kokott3, S. Komamiya23, R.V. Kowalewski26, T. Krämer25, T. Kress4, P. Krieger6, J. von
Krogh11, D. Krop12, T. Kuhl3, M. Kupper24, P. Kyberd13, G.D. Lafferty16, H. Landsman21,
D. Lanske14, I. Lawson26, J.G. Layter4, A. Leins31, D. Lellouch24, J. Letts12, L. Levinson24,

J. Lillich10, C. Littlewood5, S.L. Lloyd13, F.K. Loebinger16, G.D. Long26, M.J. Losty6,a, J. Lu27,
J. Ludwig10, A. Macchiolo18, A. Macpherson28,l, W. Mader3, S. Marcellini2, T.E. Marchant16,

A.J. Martin13, J.P. Martin18, G. Martinez17, G. Masetti2, T. Mashimo23, P. Mättig24,
W.J. McDonald28, J. McKenna27, T.J. McMahon1, R.A. McPherson26, F. Meijers8,

P. Mendez-Lorenzo31, W. Menges25, F.S. Merritt9, H. Mes6,a, A. Michelini2, S. Mihara23,
G. Mikenberg24, D.J. Miller15, S. Moed21, W. Mohr10, T. Mori23, A. Mutter10, K. Nagai13,

I. Nakamura23, H.A. Neal33, R. Nisius8, S.W. O’Neale1, A. Oh8, A. Okpara11, M.J. Oreglia9,
S. Orito23, C. Pahl32, G. Pásztor8,i, J.R. Pater16, G.N. Patrick20, J.E. Pilcher9, J. Pinfold28,

D.E. Plane8, B. Poli2, J. Polok8, O. Pooth8, A. Quadt3, K. Rabbertz8, C. Rembser8, P. Renkel24,
H. Rick4, N. Rodning28, J.M. Roney26, S. Rosati3, K. Roscoe16, Y. Rozen21, K. Runge10,

D.R. Rust12, K. Sachs6, T. Saeki23, O. Sahr31, E.K.G. Sarkisyan8,m, C. Sbarra26, A.D. Schaile31,
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1 Introduction

Correlations in momentum space between hadrons produced in high energy interactions have
been extensively studied over many decades in different contexts [1]. Being a measure of event-
to-event fluctuations of the number of hadrons in a phase space domain of size ∆, correlations
provide detailed information on the hadronisation dynamics, complementary to that derived
from inclusive single-particle distributions and global event-shape characteristics.

The suggestion in [2] that multiparticle dynamics might possess (multi-)fractal properties or
be “intermittent”, emphasized the importance of studying correlations as a function of the size
of domains in momentum space. A key ingredient for such studies is the normalized factorial
moment and factorial cumulant technique (see Sect. 2), which allows statistically meaningful
results to be obtained even for very small phase space cells.

Unlike factorial moments, cumulants of order q are a direct measure of the stochastic in-
terdependence among groups of exactly q particles emitted in the same phase space cell [3–5].
Therefore, they are well suited for the study of true or “genuine” correlations between hadrons.

Whereas earlier work dealt mainly with correlations between pairs i.e. second-order correla-
tions, the use of factorial cumulants in high-statistics experiments has established the presence
of genuine correlations among groups comprising three or more hadrons, hereafter referred to
as higher-order correlations.

Experimental results on hadron correlations are reviewed in [1,6]. Except for heavy ion colli-
sions, where correlations beyond second order are found to be small, as can be understood from
a superposition of independent particle-production sources [7], in all other types of reactions,
significant positive higher-order correlations are seen. In two- or three-dimensional (typically
rapidity, azimuthal angle, transverse momentum) phase space cells, they rapidly increase as the
cell-size, ∆, becomes smaller. Further studies of the dependence on particle charge confirm that,
as conjectured in [8], correlations between hadrons with the same charge play an increasingly
important role as ∆ decreases, thus pointing to the influence of Bose-Einstein (BE) interference
effects [9, 10]; for a recent review see [11]. In contrast, correlations in multiplets composed of
particles with different charges, which are more sensitive to multiparticle resonance decays than
like-sign ones, tend to saturate in small phase space domains [12, 13].

Two-particle Bose-Einstein correlations (BEC) have been observed in a wide range of mul-
tihadronic processes [11]. Such correlations were extensively studied at LEP [14–16]. Evidence
for BEC among groups of more than two identical particles has also been reported [13,17]. The
subject has acquired particular importance in connection with high-precision measurements of
the W -boson mass at LEP-II [18, 19]. For these, better knowledge of correlations in general is
needed, as well as realistic Monte Carlo modelling of BEC [20,21].

The OPAL collaboration recently reported an analysis of the domain-size dependence of
factorial cumulants in hadronic Z0 decays, using much larger statistics than in any previous
experiment [22]. In that study, no distinction was made between multiplets composed of like-
charge particles and those of mixed charge. Clear evidence was seen for large positive genuine
correlations up to fifth order. Hard jet production was found to contribute significantly to the
observed particle fluctuation patterns. However, Monte Carlo models based on parton showers
and string or cluster fragmentation, gave only a qualitative description of the ∆-dependence
of the cumulants. Quantitatively, the model studied, which did not explicitly include BE-type
correlation effects, underestimated significantly correlations between hadrons produced very



close together in momentum space.
In the present paper, the high statistics OPAL data collected at and near the Z0 centre-of-

mass energy are used to measure cumulants for multiplets of particles with the same charge,
hereafter referred to as “like-sign cumulants”. They are compared to “all-charge” cumulants,
corresponding to multiplets comprising particles of any (positive or negative) charge. Using
the factorial cumulant technique, results of much higher precision than previously available are
obtained on like-sign correlations up to fourth order. The role of Bose-Einstein-type effects is
studied, using recently proposed BEC algorithms1 in the Monte Carlo event generator Pythia
for e+e− annihilation [24]. Proceeding beyond the usual analyses of two-particle correlations,
we show that, at least within the framework of this model, a good description can be achieved
of the factorial cumulants up to fourth order in one-, two- and three-dimensional phase space
domains.

The paper is organized as follows. Section 2 explains the normalized factorial cumulant
method which allows genuine particle correlations to be measured. The OPAL detector, the
event selection and the track selection criteria are detailed in Sect. 3. The data on factorial
cumulants are presented in Sect. 4. They are compared with Pythia predictions and, in
particular, with several variants of a model to simulate the Bose-Einstein effect. The results
are summarized in Sect. 5. A brief overview of some of the BEC algorithms implemented in
Pythia is given in the appendix.

2 Factorial cumulant method

To measure genuine multiparticle correlations in multi-dimensional phase space cells, we use
the technique of normalized factorial cumulant moments, Kq, or “cumulants” for brevity, as
proposed in [5].

In the present paper, the cumulants are computed as in a previous OPAL analysis [22]. A
D-dimensional region of phase space (defined in Sect. 3) is partitioned into MD cells of equal
size ∆. From the number of particles counted in each cell, nm (m = 1, . . . , MD), event-averaged

unnormalized factorial moments, 〈n[q]
m 〉, and unnormalized cumulants, k

(m)
q , are derived, using

the relations given e.g. in [3]. For q = 2, 3, 4, one has

k
(m)
2 = 〈n[2]

m 〉 − 〈nm〉2, (1)

k
(m)
3 = 〈n[3]

m 〉 − 3 〈n[2]
m 〉〈nm〉 + 2 〈nm〉3 (2)

k
(m)
4 = 〈n[4]

m 〉 − 4 〈n[3]
m 〉 〈nm〉 − 3 〈n[2]

m 〉2 + 12 〈n[2]
m 〉 〈nm〉2 − 6 〈nm〉4. (3)

Here, 〈n[q]〉 = 〈n(n− 1) . . . (n− q + 1)〉 and the brackets 〈·〉 indicate that the average over all
events is taken.

Normalized cumulants are calculated using the expression

Kq = (N )qk̄(m)
q /N

[q]
m . (4)

1A variety of methods which try to simulate BE-effects in Monte Carlo generators have been developed. A
detailed exposition of the basic physics issues involved and a review of the presently most popular models and
algorithms can be found in [23].
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As proposed in [25], this form is used to correct for statistical bias and non-uniformity of the
single-particle spectra. Here, Nm is the number of particles in the mth cell summed over all N
events in the sample, Nm =

∑N
j=1(nm)j. The horizontal bar indicates averaging over the MD

cells in each event, (1/MD)
∑MD

m=1.
The factorial moment of order q of the multiplicity distribution of particles of the same

species (e.g. all charged, negatives only, . . . ) in a phase space domain ∆ is equal to the integral
of the q-particle inclusive density, ρq, over that domain [1]. As in the cluster expansion in
statistical mechanics, ρq can be decomposed into the sum of contributions from “accidental”
coincidences of particles in ∆ and the true or “genuine” correlations. The latter are denoted
here by the unnormalised cumulants, kq, being the bin-averaged factorial cumulant functions,
or “correlation functions”, for short [4].

Whereas 〈n[q]〉 depends on all correlation functions of order 1 6 p 6 q, kq is a direct
measure of stochastic dependence in multiplets of exactly q particles. By construction, kq

vanishes whenever a particle within the q-tuple is statistically independent of one of the others.
For Poissonian multiplicity fluctuations, the cumulants of all orders q > 1 vanish identically.
Non-zero cumulants therefore signal the presence of correlations.

In the following, data are presented for “all-charge” and for “like-sign” multiplets. For the
former, the cell-counts nm are determined using all charged particles in an event, irrespective
of their charge. For the latter, the number of positive particles and the number of negative
particles in a cell are counted separately. The corresponding cumulants are then averaged to
obtain those for like-sign multiplets. It is to be noted that the cell-counting technique does
not allow correlations to be measured directly among groups composed of particles of different
charge. For these, other methods, such as correlation integrals (see e.g. Sect. 4.8 in [1]) have
to be used. Nevertheless, cumulants for unlike-sign pairs can be indirectly derived using the
equation

Kall
2 =

1

2
K ls

2 +
1

2
Kus

2 , (5)

which relates second-order cumulants for all-charge pairs to those of like-sign (ls) and unlike-sign
(us) pairs.

3 Experimental details

The present analysis uses a sample of approximately 4.1×106 hadronic Z0 decays collected from
1991 through 1995. About 91% of this sample was taken at the Z0; the remaining part has a
centre-of-mass energy,

√
s, within ±3 GeV of the Z0 peak.

The OPAL detector has been described in detail in [26]. The results presented here are
mainly based on the information from the central tracking chambers, which consist of a silicon
microvertex detector, a vertex chamber, a jet chamber with 24 sectors each containing 159 axial
anode wires, and outer z-chambers to improve the z coordinate resolution2. These detectors

2The right-handed OPAL coordinate system is defined with the z axis pointing in the direction of the e−

beam and the x axis pointing towards the centre of the LEP ring. r is the coordinate normal to the beam axis,
ϕ the azimuthal angle with respect to the x axis, θ the polar angle with respect to the z-axis.
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are located in a 0.435 T axial magnetic field and measure pt, the track momentum trans-
verse to the beam axis, with a precision of (σpt/pt) =

√
(0.02)2 + (0.0015 pt)2 (pt in GeV/c) for

| cos θ| < 0.73. The jet chamber also measures the specific energy loss of charged particles,
dE/dx, with a resolution σ(dE/dx)/(dE/dx) ' 3.5% for a track having 159 hits in the jet
chamber. The energy loss is used to identify charged particles [27].

A sample of over 2 million events was generated with Jetset7.4/Pythia6.1 [24], including
a full simulation of the detector [28]. The model parameters were previously tuned to OPAL
data [29, 30] but Bose-Einstein effects were not explicitly incorporated. These events were
used to determine the efficiencies of track and event selection and for correction purposes. In
addition, for the evaluation of systematic errors, over 1.1 million events were simulated with
Pythia including BEC with the algorithm3 BE32.

The event selection criteria are based on the multihadronic event selection algorithms de-
scribed in [22]. It was required that tracks have at least 20 hits in the jet chamber, a first
measured point at a maximum radial distance from the interaction point of 70 cm, a mini-
mum transverse momentum with respect to the beam direction, pt, of 0.15 GeV/c, a measured
momentum p smaller than 10 GeV/c, a measured polar angle satisfying | cos θ| < 0.93, and a
measured distance of closest approach to the origin of less than 5 cm in the r − ϕ plane, and
less than 40 cm in the z direction.

The mean energy loss, dE/dx, of a track was required to be less than 9 keV/cm, thereby
rejecting electrons and positrons. About 97% of photon conversion pairs were rejected, reducing
the conversion background in the sample to less than 0.1% of the number of tracks [27]. The
fraction of pions in the track sample was estimated from Monte Carlo simulation to be about
80%.

Selected multihadron events were required to have at least 5 good tracks, a momentum
imbalance (the magnitude of the vector sum of the momenta of all charged particles) of less
than 0.4

√
s and the sum of the energies of all tracks (assumed to be pions) greater than

0.2
√

s. These requirements provide rejection of background from non-hadronic Z0 decays,
two-photon events, beam-wall and beam-gas interactions. In addition, the polar angle of the
event sphericity axis, calculated using tracks that passed the above cuts, as well as unassociated
electromagnetic and hadronic calorimeter clusters, had to satisfy | cos θsph| < 0.7 in order to

accept only events well contained in the detector. A total of about 2.3×106 events were finally
selected for further analysis.

The cumulant analysis is performed in the kinematic variables rapidity, y, azimuthal angle,
Φ, and the transverse momentum variable, ln pT , all calculated with respect to the sphericity
axis.

• Rapidity is defined as y = 0.5 ln[(E + p‖)/(E − p‖)], with E and p‖ the energy (assuming
the pion mass) and longitudinal momentum of the particle, respectively. Only particles
within the central rapidity region −2.0 6 y 6 2.0 were retained.

• In transverse momentum subspace, the logarithm of pT , instead of pT itself, is used to
eliminate as much as possible the strong dependence of the cumulants on cell-size arising

3We used algorithm BE32 (see [23] and the appendix) in subroutine PYBOEI with parameters MSTJ(51)=2,
MSTJ(52)=9, PARJ(92)=1.0, PARJ(93)=0.5 GeV. PARJ(92) is equal to λ in Eqs. (8) and (9) of the appendix;
the parameter R is given by ~c/PARJ(93).
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from the nearly exponential shape of the p2
T -distribution. Only particles within the range

−2.4 6 ln(pT ) 6 0.7 (pT in GeV/c) were used.

• The azimuthal angle, Φ, is calculated with respect to the eigenvector of the momentum
tensor having the smallest eigenvalue in the plane perpendicular to the sphericity axis.
The angle Φ spans the interval 0 6 Φ < 2π.

The phase space is partitioned into M bins of equal size for each of the three variables. M
varies between 1 (full interval) and 400, corresponding to a smallest bin size in one dimension
of δymin = 0.01, δΦmin = 0.9◦ and δ(ln pT )min = 0.008, each significantly larger than the
experimental resolution of the OPAL detector.

The cumulants for like-sign and all-charge multiplets, measured as a function of M , have
been corrected for geometrical acceptance, kinematic cuts, initial-state radiation, resolution,
secondary interactions and decays in the detector, using correction factors, Uq(M), calculated
for all-charge particle combinations and evaluated as in [22] using the Jetset/Pythia Monte
Carlo without BEC.

As systematic uncertainties, we include the following contributions:

• The statistical error of the correction factors Uq(M). Statistical errors due to the finite
statistics of the Monte Carlo samples are comparable to those of the data.

• Track and event selection criteria variations as in [22]. To this end, the cumulants have
been computed changing in turn the following selection criteria: the first measured point
was required to be closer than 40 cm to the beam, the requirement of the transverse
momentum with respect to the beam axis was removed, the momentum was required to
be less than 40 GeV/c, the track polar angle acceptance was changed to | cos θ| < 0.7, and
the requirement on the mean energy loss was removed. These changes modify the results
by no more than a few percent in the smallest cells, and do not affect the conclusions.

• The difference between cumulants corrected with the factors Uq(M) derived from Monte-
Carlo calculations with and without Bose-Einstein simulation. The correction factors in
these two cases differ by at most 5% in the smallest bins.

• The difference between cumulants corrected with Uq(M)-factors, calculated for all-charge
particle combinations and those calculated for like-sign combinations. The correction
factors coincide within 1%.

The total errors have been calculated by adding the systematic and statistical uncertainties
in quadrature. It was further verified that our conclusions remain unchanged when events taken
at energies off the Z0 peak are excluded from the analysis.
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4 Results

4.1 Like-sign and all-charge cumulants

The fully corrected normalized cumulants Kq (q = 2, 3, 4) for all-charge4 and like-sign particle
multiplets, calculated in one-dimensional (y and Φ) (1D), two-dimensional y × Φ (2D) and
three-dimensional y × Φ× ln pT (3D) phase space cells, are displayed in Fig. 1 and Fig. 2.

From Fig. 1 it is seen that, even in 1D, positive genuine correlations among groups of two,
three and four particles are present: Kq > 0. They are substantially stronger in rapidity than
in azimuthal angle. The cumulants increase rapidly with increasing M , the inverse of the bin
size, for relatively large domains but saturate rather quickly. For K2 this behaviour follows
from the shape of the second-order correlation function which is known to be approximately
Gaussian [1] in the two-particle rapidity difference ∆ ≡ δy. The rapid rise and subsequent
saturation can be understood from hard gluon jet emission. For small M , the cumulants are
sensitive to the large-scale structure of the event, where any jet non-collinear with the event
axis produces a strong fluctuation in the particle density. With M increasing, the structure
inside a single jet is progressively probed.

In contrast to 1D cumulants, those in 2D and 3D (Fig. 2) continue to increase towards small
phase space cells. Moreover, the 2D and 3D cumulants are of similar magnitude at fixed M ,
indicating that the contribution from correlations in transverse momentum is small. This can
be understood from the importance of multi-jet production in e+e− annihilation, which is most
prominently observed in y×Φ space [22]. Indeed, the 1D cumulants in pT are found to be close
to zero and therefore not shown.

It is to be noted that oscillations of the cumulants, clearly seen in the data as well as in the
Monte Carlo predictions (see e.g. Kq(Φ) in Fig. 1) are not due to statistical fluctuations. They
arise from the jet structure of the events in rapidity-azimuthal angle subspace, and from the
phase space partitioning technique used to calculate the cumulants as a function of M .

The 1D cumulants of all-charge and of like-sign multiplets (Fig. 1) show a similar dependence
on M . The latter, however, are significantly smaller, implying that, for all M , correlations
among particles of opposite charge are important in one-dimensional phase space projections.
Using Eq. (5), it is found e.g. that the one-dimensional cumulants for unlike-charge pairs are
larger by a factor of 1.6−1.7 than those of like-sign pairs for M & 5. This can be expected in
general from local charge conservation and in particular from resonance decays.

In 2D and 3D (Fig. 2), like-sign cumulants increase faster and approach the all-charge ones
at large M . From Eq. (5), it can be inferred that K2 for unlike-charge pairs remains essentially
constant for M larger than about 6. Consequently, as the cell-size becomes smaller, the rise of
all-charge correlations is increasingly driven by that of like-sign multiplets.

Similar features, but based on measurements of factorial moments, were observed in other
experiments [12] and, mainly on qualitative grounds, taken as evidence for the large influence of
the Bose-Einstein effect on all-charge correlations in small phase space domains5. In the next
section, we add quantitative support to those earlier observations, showing that algorithms
which simulate BEC indeed allow a quite successful description of the measurements.

4The data points for all-charge particle combinations are the same as those published in [22] but include
different systematic uncertainties.

5For a recent critical review we refer to [31].
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4.2 Model comparison

In this section, we compare the cumulant data with predictions of the Pythia Monte Carlo
event generator (version 6.158) without and with Bose-Einstein effects. Samples of about 106

multihadronic events were generated at the Z0 energy. The model parameters, not related to
BEC, were set at values obtained from a previous tune to OPAL data on event-shape and
single-particle inclusive distributions [29]. In this tuning, BE-effects were not included.

To assess the importance of BE-type short-range correlations between identical particles,
and their influence on all-charge cumulants, we concentrate on the algorithm BE32, described
in the appendix, using parameter values PARJ(93) = 0.26 GeV (R = 0.76 fm) and PARJ(92) ≡
λ = 1.5. These values were determined by varying independently PARJ(93) and λ within the
range 0.2–0.5 GeV and 0.5–2.2, respectively, in steps of 0.05 GeV and 0.1, leaving all other
model-parameters unchanged, until satisfactory agreement with the measured cumulants K2

for like-sign pairs was reached6. Whereas a detailed multi-dimensional best-fit tuning procedure
was considered to be outside the scope of the paper, we find that calculations with PARJ(93)

in the range 0.2 − 0.3 GeV, and the corresponding λ in the range 1.7 − 1.3, still provide an
acceptable description of the second-order like-sign cumulants.

Additional studies have revealed some sensitivity of single-particle spectra and event shapes
to the inclusion of BEC in Pythia. Nevertheless, it was found that minor variations of the
QCD and fragmentation parameters are sufficient to restore agreement with these data, while
the changes in the predicted cumulants remain well within the systematic uncertainties of
the measurement. These parameters were, therefore, not changed from their values listed in
footnote 6.

The dashed lines in Figs. 1 and 2 show Pythia predictions for like-sign multiplets for the
model without BEC. Model and data agree for small M (large phase space domains), indicating
that the multiplicity distribution in those regions is well modelled. However, for larger M , the
predicted cumulants are too small, the largest deviations occuring in 2D and 3D. The model
predicts negative values for K4(Φ) which are not shown.

The solid curves in Figs. 1 and 2 show predictions for like-sign multiplets using the BE32

algorithm. Inclusion of BEC leads to a very significant improvement of the data description.
Not only two-particle but also higher order correlations in 1D rapidity space are well accounted
for. In Φ-space (Fig. 1), K3 and especially (the very small) K4 are less well reproduced. Figure 2
also shows that the predicted 2D and 3D cumulants agree well with the data.

For more clarity and later reference, the 1D, 2D and 3D cumulants for particle pairs with
the same charge are repeated in Fig. 3. Since BEC occur only when two identical mesons are
close-by in all three phase space dimensions, projection onto lower-dimensional subspaces, such
as rapidity and azimuthal angle, leads to considerable weakening of the effect. Nevertheless,
the high precision of the data in Fig. 3 allows to demonstrate clear sensitivity to the presence
or absence of BEC in the model, which was much less evident in earlier measurements [1].

Whereas the BE-algorithm used implements pair-wise BEC only, it is noteworthy that the
procedure also induces like-sign higher-order correlations of approximately correct magnitude.
This seems to indicate that high-order cumulants are, to a large extent, determined by the
second-order one (see further Sect. 4.3). It is not clear, however, whether the agreement is acci-

6Non-BEC related model-parameters were set at the following values: PARJ(21)=0.4 GeV, PARJ(42)=0.52
GeV−2, PARJ(81)=0.25 GeV, PARJ(82)=1.9 GeV.
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dental or implies that the physics of n-boson (n > 2) BE effects is indeed correctly simulated7.
The influence of like-sign BE-type correlations on the correlations in all-charge multiplets

becomes clear from Figs. 4 and 5 where all-charge cumulants are compared with Pythia
predictions without BEC, and for various BE algorithms.

Large discrepancies, already discussed in [22] and for factorial moments in [12], are seen for
the model without BEC. Inclusion of BE-effects using the BE32 algorithm leads to considerably
better agreement, in particular in domains of y, y × Φ and y × Φ× ln pT . In Φ, disagreements
similar to those for like-sign multiplets are also seen here. In addition, K2(Φ) may be somewhat
overestimated for large M .

To assess the sensitivity of the cumulants to variations in the BEC algorithms available in
Pythia, we have further considered the algorithms BEλ and BE0 (see appendix).

Using the same parameter values as for BE32, we observe that BEλ slightly underestimates
K2(y) and overestimates K2(Φ) for like-sign pairs (Fig. 3), whereas the results coincide with
those from BE32 in 2D and 3D. For all-charge multiplets (Figs. 4 and 5), the predicted cumulants
generally fall below those for BE32, except for K3 and K4 in 2D and 3D, where the differences
are small. We note, in particular, that the predicted K2(y) (Fig. 4) essentially coincides with the
Pythia results without BEC. The differences with respect to BE32 are related to the different
pair-correlation functions g2(Q) (Eqs. 8 and 9 of the appendix) used in the algorithms. Although
a different choice of the parameters R and λ may improve the agreement with the data, we
have not attempted such fine-tuning.

In W -mass studies using the fully hadronic decay channel of the reaction e+e− → W+W−,
and assuming that pairs of pions from different W ’s are fully affected by BEC, algorithm BE32

is found to introduce a negative mass-shift, whereas BEλ generates a positive shift [23]. The
mass-shift occurs since the BE-induced momentum changes increase the likelihood that soft
particles in an event are assigned to the wrong jet. This, in turn, depends on the strength of
the particle correlations in 3D momentum space. Since BE32 and BEλ provide a reasonable
description of the domain-size dependence of all-charge cumulants in 3D, both algorithms should
be considered in WW studies.

Finally, we consider the model predictions based on the algorithm BE0 (dash-dotted curves
in the figures) for the same parameter values as quoted above. For like-sign pairs (Fig. 3), K2(y)
and especially K2(Φ) are overestimated. This is also the case for K2(Φ) for all-charge pairs
shown in Fig. 4. In contrast, all-charge higher-order cumulants differ little from those obtained
with BE32. It should be noted that the BE0 algorithm, contrary to BE32 and BEλ, enforces
energy conservation by a global rescaling of all final-state hadron momenta. This procedure
affects the full hadronic final state and induces a large artificial shift in the W -mass when
applied to the reaction e+e− → W+W− → hadrons. It is, for that reason, disfavoured by the
authors of [23].

Traditional studies of the Bose-Einstein effect most often consider only the second-order
correlation function for like-sign particle pairs, which is measured as a function of Q2, the
square of the difference in four-momenta pi (i = 1, 2) of particles in the pair. The variable Q2

is related to the 3D cell-size used in this paper, via the approximate relation [33]:

Q2 ≈ m2

[
β2δΦ2 + (1 + β2)δy2 +

β4δx2

(1 + β)2

]
, (6)

7For a recent theoretical discussion of multi-boson BEC, see [32].
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valid for small domains in y, Φ and ln pT . Here β = pT /m, m is the particle mass and
δx = ln(pT1/pT2). It follows that a small cell-size in 3D corresponds to small Q2. The reverse is
not true. Equation (6) implies that a measurement of K2 versus M in 3D is roughly equivalent
to that of the inclusive two-particle Q-distribution.

As a check of the consistency of our results, we have compared predictions for the inclusive
two-particle Q-distribution of like-sign pairs (single-particle rapidity restricted to the interval
−2 6 y 6 2) from the BE32 model to that extracted from the data and fully corrected for
detector effects. For the values of the BEC parameters R and λ quoted above, satisfactory
agreement is obtained (not shown).

In recent work, several LEP experiments have analyzed the second-order like-sign correla-
tion function in terms of individual components of the four-vector Q [16]. If interpreted as a
measurement of the space-time extent of the particle emitting source, such results show that
the emission volume has an elongated shape with respect to the event axis. The BE algo-
rithms discussed here, which treat all components of Q symmetrically, are unable to reproduce
these measurements [34]. It is therefore possible, although to be verified, that the measured
anisotropy of the two-particle correlation function may be responsible for some of the Pythia
model discrepancies, e.g. for 1D cumulants in Φ domains, observed in the present analysis.

In summary, a comparison with Pythia predictions shows that short-range correlations
of the BE-type are needed, at least in this model, to reproduce the magnitude and the ∆-
dependence of the cumulants for like-sign multiplets. This further leads to a much improved
description of not only two-particle but also of higher-order correlations in all-charge multiplets.
Since Bose-Einstein correlations are a well-established phenomenon in multiparticle production,
it is likely that the above conclusion has wider validity than the model from which it was derived.

4.3 The Ochs-Wosiek relation for cumulants

The success of the Pythia model with BEC in predicting both the magnitude and domain-size
dependence of cumulants, has led us to consider the inter-dependence of these quantities in
more detail.

In Fig. 6 we plot K3 and K4 in 2D and 3D, for each value of M as a function of K2.
We observe that the 2D and 3D data for all-charge, as well as for like-sign multiplets follow
approximately, within errors, the same functional dependence. The solid lines is a simple fit to
the function

ln Kq = aq + rq ln K2. (7)

The fitted slope values are r3 = 2.3 and r4 = 3.8. This is evidence that the slope rq increases
with the order of the cumulant. The q-dependence of the slopes is of particular interest in
multiplicative cascade models of hadronisation, and indicative of the mechanism causing scale-
invariant fluctuations [2, 35].

Figure 6 suggests that the cumulants of different orders obey simple so-called “hierarchical”
relations, analogous to the Ochs-Wosiek relation, first established for factorial moments [36].
Interestingly, all-charge as well as like-sign multiplets are seen to follow, within errors, the
same functional dependence. Hierarchical relations of similar type are commonly encountered,
or conjectured, in various branches of many-body physics (see e.g. [5]), but a satisfactory
explanation within particle production phenomenology or QCD remains to be found.
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Simple relations among the cumulants of different orders exist for certain probability dis-
tributions, such as the Negative Binomial distribution, which often parameterizes successfully
the multiplicity distribution of hadrons in restricted phase space regions [37]. For this distri-
bution, one has Kq = (q − 1)! Kq−1

2 (q = 3, 4, . . . ), showing that the cumulants are here solely
determined by K2. This relation is shown in Fig. 6 (dashed line). Comparing to the data, we
conclude that the multiplicity distribution of all charged particles, as well as that of like-sign
particles, deviates strongly from a Negative Binomial in small phase space domains. For further
discussion, in the present context, of this and other much studied multiplicity distributions we
refer to [38].

The Ochs-Wosiek type of relation exhibited by the data in Fig. 6 may explain why the
BE algorithms in Pythia generate higher-order correlations of (approximately) the correct
magnitude. Assuming that the hadronization dynamics is such that higher-order correlation
functions can be constructed from second-order correlations only, methods that are designed to
ensure agreement with the two-particle correlation function, could then automatically generate
higher-order ones of the correct magnitude.

5 Summary and conclusions

In this paper we have presented a comparative study of like-sign and all-charge genuine corre-
lations between two and more hadrons produced in e+e− annihilation at the Z0 energy. The
high-statistics data on hadronic Z0 decays recorded with the OPAL detector from 1991 through
1995 were used to measure normalized factorial cumulants as a function of the domain size,
∆, in D-dimensional domains (D = 1, 2, 3) in rapidity, azimuthal angle and (the logarithm of)
transverse momentum, defined in the event sphericity frame.

Both all-charge and like-sign multiplets show strong positive genuine correlations up to
fourth order. They are stronger in rapidity than in azimuthal angle. One-dimensional cumulants
initially increase rapidly with decreasing size of the phase space cells but saturate rather quickly.
In contrast, 2D and especially 3D cumulants continue to increase and exhibit intermittency-like
behaviour.

Comparing all-charge and like-sign multiplets in 2D and 3D phase space cells, we observe
that the rise of the cumulants for all-charge multiplets is increasingly driven by that of like-
sign multiplets as ∆ becomes smaller. This points to the likely influence of Bose-Einstein
correlations.

The 2D and 3D cumulants K3 and K4, considered as a function of K2, follow approximately
a linear relation of the Ochs-Wosiek type: ln Kq ∼ ln K2, independent of D and the same
for all-charge and for like-sign particle groups. This suggests that, for a given domain ∆,
correlation functions of different orders are not independent but determined, to a large extent,
by two-particle correlations.

The data have been compared with predictions from the Monte Carlo event generator
Pythia, previously tuned to single-particle and event-shape OPAL data. The model describes
well dynamical fluctuations in large phase space domains, e.g. caused by jet production, and
shorter-range correlations attributable to resonance decays. However, the results of this pa-
per, together with earlier less precise data, show that these ingredients alone are insufficient to
explain the magnitude and domain-size dependence of the factorial cumulants. To achieve a
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more satisfactory data description, short-range correlations of the Bose-Einstein type between
identical particles need to be included.

The importance of BE-type effects has been studied using algorithms implemented in
Pythia. We find that the model BE32 is able to simultaneously account for the magnitude
and ∆-dependence of like-sign as well as of all-charge cumulants. Other models, BE0 and BEλ,
when using the same parameters as for BE32, provide also a reasonable description of the data.
Although the algorithms implement pair-wise BEC only, surprisingly good agreement with the
measured third- and fourth-order cumulants is observed. This could be a consequence of the
Ochs-Wosiek type of inter-relationship between cumulants of different orders, exhibited by the
data.
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Appendix: Modelling BEC in PYTHIA

As emphasized in [23], no rigorous method exists to date which would allow to account for the
Bose-Einstein symmetrization of the production amplitudes in Monte Carlo event generators.
The algorithms implemented in the Monte Carlo event generator Pythia [24] which simulate
the BE effect, are all based on introducing BEC as local shifts of final-state particle momenta
among pairs of identical particles. They differ only in the way global energy and momentum
conservation is ensured. Other, so-called “global-weight” methods, have been proposed wherein
a single weight-factor is assigned to each event, calculated on the basis of a model for the
identical-pair two-particle correlation function [39, 40].

The Pythia algorithms take the hadrons produced by the string fragmentation, where
no BE effects are present, and shift the momenta of mesons i and j such that the inclusive
distribution of the relative separation Q of identical pairs is enhanced by a factor g2(Q) > 1.
The latter, as used here, is parameterized with the phenomenological form8

g2(Q) = 1 + λ e−R2Q2

, (8)

where Q is the difference in four-momenta of the pair, Q2 = −(p1 − p2)
2.

Short-lived resonances like the ρ and K∗ are allowed to decay before the BE procedure is
applied, while decay products of longer-lived ones (width Γ < 20 MeV/c2) are not affected.
The procedure also influences groups of non-identical particles causing e.g. a shift of the ρ0

mass peak [15, 41].
In this paper we compare the data to simulations based on the Pythia algorithms BE0,

BE32 and BEλ, following the nomenclature in [23].
In the BE0 algorithm, momentum is conserved exactly, but energy conservation is explicitly

broken in the treatment of individual particle pairs. It is restored only by a global rescaling of
all final-state hadron momenta, thus affecting the full hadronic final state.

The other algorithms avoid global energy rescaling by introducing additional momentum
shifts for some pairs of particles, (k, l), not necessarily identical, in a local region around each
identical pair (i, j).

The algorithm BE32, which is applied to identical pairs only, is based on the ansatz

g2(Q) =
{

1 + λ exp(−Q2R2)
} {

1 + αλ exp(−Q2R2/9)
(
1− exp(−Q2R2/4)

)}
, (9)

(α is an adjustable parameter) which attempts to mimic effects due to oscillations below and
above unity of the pair-weights, as found in some models [39].

In the algorithm BEλ, the form (8) of g2(Q) is retained. For each pair of identical particles
(i, j), a pair of non-identical particles, (k, l), neither identical to i or j, is found close to (i, j).
For each momentum shift among particles i and j, a corresponding shift among the particles k
and l is found so that the total energy and momentum in the i, j, k, l system is conserved. As
a measure of “closeness”, BEλ uses the so-called λ-measure [42], related to the string length in
the Lund string fragmentation framework.

A given particle is likely to belong to several identical pairs in an event. The net shift in
particle momenta and energies therefore depends on the complete configuration of all identical

8In naive BE models, based on the analogy with optics and assuming a static incoherent emission source, R
is related to the size of the source; λ quantifies the strength of the BE effect.
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particles. This introduces complex effects, not only among identical pairs but also among
unlike-sign pairs and higher multiplicity multiplets of nearby particles. As a result, genuine
higher-order correlations emerge. For a full description of the BE algorithms mentioned above,
ref. [23] should be consulted.
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T. Sjöstrand et al., Comp. Phys. Comm. 135 (2001) 238.

[25] K. Kadija and P. Seyboth, Z. Phys. C 61 (1994) 465.

[26] OPAL Collaboration, K. Ahmet et al., Nucl. Instr. Meth. A 305 (1991) 275;
O. Biebel et al., Nucl. Instr. Meth. A 323 (1992) 169;
P.P. Allport et al., Nucl. Instr. Meth. A 324 (1993) 34;
P.P. Allport et al., Nucl. Instr. Meth. A 346 (1994) 476.

[27] M. Hauschild et al., Nucl. Instr. Meth. A 314 (1992) 174.

[28] J. Allison et al., Nucl. Instr. Meth. A 317 (1992) 47.

[29] OPAL Collaboration, G. Alexander et al., Z. Phys. C69 (1996) 543.

19



[30] OPAL Collaboration, P. D. Acton et al., Z. Phys. C 58 (1993) 387;
OPAL Collaboration, M. Z. Akrawy et al., Z. Phys. C 47 (1990) 505.

[31] I.V. Andreev et al., Int. J. Mod. Phys. A 10 (1995) 3951.

[32] U. Heinz, P. Scotto and Q.H. Zhang, Ann. of Phys. (N.Y.) 288 (2001) 325.

[33] K. Fia lkowski, Proc. 24th Int. Symp. Multiparticle Dynamics, Vietri sul Mare (Italy) 1994,
Eds. A. Giovannini et al. (World Scientific, Singapore, 1995), p. 104.

[34] K. Fia lkowski and R. Wit, Acta Phys. Pol. B 32 (2001) 1233.

[35] Ph. Brax and R. Peschanski, Phys. Lett. B 253 (1991) 225.

[36] W. Ochs and J. Wosiek, Phys. Lett. B 214 (1988) 617;
W. Ochs, Z. Phys. C 50 (1991) 339.

[37] For reviews see P. Carruthers and C.C. Shi, Int. J. Mod. Phys. A 2 (1987) 1447;
G. Giacomelli, Int. J. Mod. Phys. A 5 (1990) 223.

[38] E.K.G. Sarkisyan, Phys. Lett. B 477 (2000) 1.

[39] B. Andersson and M. Ringnér, Nucl. Phys. B 513 (1998) 627;
B. Andersson and M. Ringnér, Phys. Lett. B 421 (1998) 283;
J. Hakkinen and M. Ringnér, Eur. Phys. J. C 5 (1998) 275.

[40] A. Bia las and A. Krzywicki, Phys. Lett. B 354 (1995) 134;
T. Wibig, Phys. Rev. D 53 (1996) 3586;
S. Jadach and K. Zalewski, Acta Phys. Pol. B28 (1997) 1363;
K. Fia lkowski and R. Wit, Eur. Phys. J. C 13 (2000) 133;
V. Kartvelishvili and R. Kvatadze, Phys. Lett. B 514 (2001) 7.

[41] OPAL Collaboration, P.D. Acton et al., Z. Phys. C 56 (1992) 521;
G.D. Lafferty, Z. Phys. C 60 (1993) 659;
DELPHI Collaboration, P. Abreu et al., Z. Phys. C 65 (1995) 587;
ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 69 (1996) 379 .

[42] B. Andersson, P. Dahlqvist and G. Gustafson, Z. Phys. C 44 (1989) 455;
B. Andersson, G. Gustafson, A. Nilsson and C. Sjögren, Z. Phys. C 49 (1991) 79.
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Figure 1: The cumulants Kq in one-dimensional domains of rapidity (y) and azimuthal an-
gle (Φ) for all charged hadrons (solid symbols) and for multiplets of like-sign particles (open
symbols), versus M . Where two error-bars are shown, inner ones are statistical, and outer
ones are statistical and systematic errors added in quadrature. The lines connect Monte Carlo
predictions for like sign cumulants from Pythia without BEC (dashed) and with BEC (full)
simulated with algorithm BE32 [23] (see text).

21



10
-1

1

K
2

2D

all charges
like signs

OPAL data

PYTHIA+BE 32
PYTHIA no BE

10
-1

1

3D

10
-1

1

10

K
3

10
-1

1

10

10
-2

10
-1

1

10

10 2

1 10

K
4

10
-2

10
-1

1

10

10 2

1 10
M

Figure 2: The cumulants Kq in two-dimensional ∆y × ∆Φ (2D) and three-dimensional ∆y ×
∆Φ×∆ ln pT (3D) domains for all charged hadrons (solid symbols) and for multiplets of like-sign
particles (open symbols), versus M . Where two error-bars are shown, inner ones are statistical,
and outer ones are statistical and systematic errors added in quadrature. The lines connect
Monte Carlo predictions from Pythia without BEC (dashed) and with BEC (full) simulated
with algorithm BE32 [23] (see text).
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Figure 3: The cumulants K2 for like-sign pairs in one-dimensional domains of rapidity (y) and
azimuthal angle (Φ), and in two-dimensional ∆y×∆Φ (2D) and three-dimensional ∆y×∆Φ×
∆ ln pT (3D) domains versus M . The error-bars show statistical and systematic errors added in
quadrature. The lines connect Monte Carlo predictions from Pythia, without BEC and with
various Bose-Einstein algorithms [23] (see text).
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Figure 4: The cumulants Kq in one-dimensional domains of rapidity (y) and azimuthal angle
(Φ) for all charged hadrons, as in Fig. 1, versus M . Where two error-bars are shown, inner
ones are statistical, and outer ones are statistical and systematic errors added in quadrature.
The lines connect Monte Carlo predictions from Pythia, without BEC and with various Bose-
Einstein algorithms [23] (see text).

24



10
-1

1

K
2

2D

all charges
OPAL data

PYTHIA+BE 32

PYTHIA+BE λ 10
-1

1

PYTHIA+BE 0
PYTHIA no BE

3D

10
-1

1

10

K
3

10
-1

1

10

10
-2

10
-1

1

10

10 2

1 10

K
4

10
-2

10
-1

1

10

10 2

1 10
M

Figure 5: The cumulants Kq in two-dimensional ∆y × ∆Φ (2D) and three-dimensional ∆y ×
∆Φ×∆ ln pT (3D) domains for all charged hadrons as in Fig. 2, versus M . Where two error-
bars are shown, inner ones are statistical, and outer ones are statistical and systematic errors
added in quadrature. The lines connect Monte Carlo predictions from Pythia, without BEC
and with various Bose-Einstein algorithms [23] (see text).
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Figure 6: The Ochs-Wosiek plot in two-dimensional ∆y × ∆Φ (2D) and three-dimensional
∆y × ∆Φ × ∆ ln pT (3D) domains for all charged hadrons (solid symbols) and for multiplets
of like-sign particles (open symbols). The dashed line shows the function, Kq = (q − 1)! Kq−1

2

(q = 3, 4), valid for a Negative Binomial multiplicity distribution (NB) in each phase space cell.
The solid line shows a fit with Eq. (7).
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