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Abstract

In this paper two algorithms for the compression of the data generated by the

Time Projection Chamber (TPC) detector of the ALICE experiment at CERN are

described. The first algorithm is based on a lossless source code modeling technique,

i.e. the original TPC signal information can be reconstructed without errors at the

decompression stage. The source model exploits the temporal correlation that is

present in the TPC data to reduce the entropy of the source. The second algorithm

is based on a source model which is lossy if samples of the TPC signal are considered

one by one. Conversely, the source model is lossless or quasi-lossless if some phys-

ical quantities that are of main interest for the experiment are considered. These

quantities are the area and the location of the center of mass of each TPC signal

pulse.

Obviously entropy coding is applied to the set of events defined by the two source

models to reduce the bit rate to the corresponding source entropy. Using TPC

simulated data according to the expected ALICE TPC performance, the lossless

Preprint submitted to Nuclear Instruments and Methods A 5 October 2001



and the lossy compression algorithms achieve a data reduction respectively to 49.2%

and in the range of 34.2% down to 23.7% of the original data rate. The number of

operations per input symbol required to implement the compression stage for both

algorithms is relatively low, so that a real-time implementation embedded in the

TPC data acquisition chain using low-cost integrated electronics is a realistic option

to effectively reduce the data storing cost of ALICE experiment.
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Introduction

ALICE (A Large Ion Collider Experiment) is an experiment that will be held

in 2005 at the LHC (Large Hadron Collider) at CERN [1,2]. The experiment

will study collisions between heavy ions with energies around 5.5 TeV. The

collisions will take place at the center of a set of several detectors, which are

designed to track and identify the particles produced.

One of the main detectors of the ALICE experiment is the Time Projec-

tion Chamber (TPC). The TPC is a large horizontal cylinder, filled with gas,

where a suitable axial electric field is present. When particles pass through,

they ionize the gas atoms, and the resulting electrons drift in the electric field.
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Belikov, Vincent Colin de Verdiere, Boris Breidenbach and Marian Ivanov (CERN)

for the help on the ALICE experiment and for the provided simulated data.
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By measuring the arrival of electrons at the end of the chamber, the TPC can

reconstruct the path of the original charged particles. The electrons are col-

lected by more than 570 000 sensitive pads where the signal is acquired in the

form of pulses, each corresponding to the passage of one particle. This signal is

amplified by a preamplifier/shaper and digitalized by a 10-bit A/D converter

at a sampling frequency of 5.66 MHz. The digitalized signal is processed and

formatted by an Application Specific Integrated Circuit (ASIC) called AL-

TRO (ALICE TPC Read-Out). At this stage, the overall throughput of the

570 000 channels is around 8.4 GByte/s.

Considering that the duration of the experiment is forecasted in a few months

time lap, it is clear that the amount of data to be collected is expected to be

extremely large. So as to keep the complexity and cost of the data storage

equipment as low as possible, the goal is to reduce the volume of data using

suitable data compression methods. The cost reduction of the data storage sys-

tem can be considered roughly proportional to the data compression factor. It

is advisable to implement the compression system in the front-end electronics

at the output of the ALTRO circuit, so that the cost for the optical links,

which carry data out of the chamber to the following stages of the acquisition

chain, is also reduced [3,4].

Compression techniques can be classified into lossless and lossy depending on

how the model of the information source defines, or better models, the set of

events that are then entropy coded. Using a lossless source model the data

can be exactly reconstructed as they were before compression [5,6]. The use

of a lossy source model, justified by the fact that it generally can provide

significantly higher compression ratios compared to lossless models, has the

drawback that an error in the reconstruction of data must be accepted. Lossy
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source models have become very popular in the last decade in the field of audio

and video compression for their remarkable performance [7–10]. Lossy models

have been carefully designed so that reconstruction errors are not perceived

using psycovisual or psycoacoustic models or they remain comparable with

the intrinsic signal noise.

In this paper, after a brief description of the format of the TPC data that

are to be processed, first a lossless algorithm which exploits the temporal cor-

relation among the samples is described. Then, a rigorously speaking lossy

source model, in which however some quantities of physical interest such as

the energy (area of the electrical pulse) and the temporal position of each

pulse (center of mass of the pulse) registered by the TPC pads are exactly

preserved, is described. Such physical quantities carried by the signal are the

ones of interest for the overall ALICE experiment results [1], i.e. the recon-

struction of the particle trajectories. The performances of the two algorithms

are reported, and the corresponding computational complexity is discussed,

aiming at evaluating a possible implementation of the system on low-cost elec-

tronic devices.

1 The ALICE TPC read-out data format

Before describing the compression algorithm, it is necessary to spend a few

words on the format of data at the output of ALTRO circuit so as to under-

stand how the compression algorithms are applied; these data are indeed the

input of the compression system [1,11].

In the so-called ALTRO data format, only the samples over a given threshold
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are considered, while the others are discarded. This means that, if we call bunch

a group of adjacent over-threshold samples coming from one pad, the signal

can be represented “bunch by bunch”. More precisely, a bunch is described

by three fields: temporal information (temporal position of the last sample in

the bunch, one 10-bit word 1 ), bunch length (i.e., number of samples 2 in the

bunch, one 10-bit word), and sample amplitude values (10-bit words, i.e. a

range between 0 and 1023).

2 Lossless compression of TPC signals

The lossless technique described in this paper is mainly based on an appro-

priate probability model for each data field of the ALTRO data format. More

precisely, specific probability models for each sample in a bunch are developed.

Such models intend to capture both temporal correlation among samples and

the characteristic shape of TPC electrical pulses. For what concerns the time

information, i.e. position of the bunches they are not represented as an abso-

lute value, like in the ALTRO data format, but they are differentially coded

using the number of zero samples preceding the bunch. Finally, the bunch

length is directly entropy coded.

1 It may be noted that, for each trigger selected collision, the acquisition process

completes in 88 µs, which implies, at a sampling frequency of 5.66 MHz, a range for

time information between 0 and 499, so that one 10-bit word suffices.
2 Actually, the value transmitted by the ALTRO circuit is the number of samples

plus one [1].
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2.1 Sample values coding

This subsection describes a first basic model, and then introduces a more so-

phisticated one that can provide higher performances in terms of compression

efficiency.

2.1.1 Coding model based on the sample position

Data compression can be obtained by directly applying entropy coding to the

sample values without any modeling of the information source (this method

will be referred to as EC, Entropy Coding, in Sec. 4). However, improvements

in compression performance can be obtained by appropriate modeling. A first

improvement has been achieved by observing that the statistics of the signal

sample values depends on the position of the sample itself in the bunch. For

example, Fig. 1 shows a short interval of a TPC signal on a pad, according

to [12]; the signal has been obtained by Monte Carlo simulations of the TPC

behaviour. Observing the signal, it is clear that, due to the pseudo Gaussian

shape of most of the bunches, the first and the last sample of each bunch

are likely to have a smaller value with respect to those in central positions.

Similarly, small values are also expected for isolated samples, i.e. belonging to

one-sample bunches. Therefore, it resulted to be useful to classify samples into

three classes: one class for isolated samples, one for samples at the beginning

or at the end of multiple sample bunches, and one for samples in the cen-

tral positions of a bunch. Such classification is schematically shown in Fig. 2,

where dots represent samples, and rows relate to bunches classified by length,

(i.e. the first row represents one-sample bunches, the second row two-sample

bunches, etc.); the regions represent the classes. By using three different prob-
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Fig. 1. Simulated TPC data (according to [12]) showing the possible temporal be-

haviour of the signal on a TPC pad.

ability distributions for entropy coding, each class results optimized versus the

statistics of the corresponding event (shown in Fig. 3); thus, sample values can

be coded more efficiently than using only one probability distribution. This

coding scheme will be referred to as SP, Sample Position, in Sec. 4.

2.1.2 Source models exploiting temporal correlation

Generally, an improvement on compression performances can be expected by

also exploiting temporal correlation, i.e. the correlation between consecutive

samples; this can be done by implementing a suitable prediction scheme. For

TPC data, experiments have shown that a simple correlation between adjacent

samples does not provide an efficient prediction of the sample values [13].
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4.39 bits/sample

2.56 bits/sample

6.73 bits/sample
(52% of  samples)

(44% of samples)

Fig. 2. Classification of samples according to their position in the bunch. In the

figure, different rows refer to bunches having different length. Three classes are

used: isolated sample, first or last sample, and sample in intermediate position. The

entropy and the percentage of the samples belonging to each of the three classes are

also reported; the average entropy of this model is 5.59 bits per sample.

However, a more sophisticated scheme, which captures sample correlation, can

be derived achieving a further reduction of the overall bit rate. More precisely,

with reference to Fig. 1, it can be observed that large samples are likely to

be followed by samples of the same value range (and, conversely, for small

samples), so that, for each sample, it may be advisable to choose a different

code according to the range of values of the preceding one.

More in detail, the developed approach is explained with an example in Fig. 4,

where a three-sample bunch is considered. Let us suppose that the first two

samples have already been coded and that the third one has to be coded.

The code to be used for sample No. 3 may be chosen among eight possible
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Fig. 3. Probability distributions for the samples belonging to the 3 classes shown in

figure 2.

codes according to the value of sample No. 2. In particular, this is done by

subdividing the range of sample No. 2 (i.e. 0. . . 1023) into 8 intervals, and

associating a different code (for the third sample) to each of these intervals.

It may be noted that, in general, small value samples are more likely to occur

than large values; consequently, so as to optimize the use of the 8 codes, it

is not advisable to use intervals having the same length, because in this case

codes related to large values would be very rarely used. On the contrary, the

range 0. . . 1023 is partitioned in such a way that the probability for the sample

No. 2 to fall into each interval be the same; this leads to have shorter intervals

in the low amplitude side of the available range. In Fig. 5 the 8 possible

distributions of sample 3 are shown (again with reference to the simulated
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sample 1

sample 3

sample 2

Fig. 4. Example of conditioned probability model exploiting temporal correlation

between sample 2 and sample 3 in a three-sample bunch. One out of eight different

codes is chosen for sample 3, according to the value of sample 2.

data [12]) according to the interval which sample 2 belongs to.

This conditioned probability model can be extended to all the samples that

are not in the first position in the bunch, for every bunch length. However, if

real-time implementation constraints are taken into account, and in particular

the need to reduce the memory size of the model, it is not advisable to have

an exceedingly large number of codes. Consequently, samples are partitioned

into only four classes, as shown in Fig. 6, to keep the complexity of the model

low. This limitation does reduce the efficiency of the model but the reduction

is only of the order of 0.6% [13]. Class 1 and 2 are dedicated to isolated
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Fig. 5. Distributions of sample 3 according to the value of sample 2, or, more pre-

cisely, to the interval (one out of 8) to which sample 2 belongs (see Fig. 4).

samples and to samples that are at the beginning of bunches, respectively; a

simple probability model is applied to each of these classes, because obviously

the use of multiple codes as mentioned above does not apply. Class 3 is for

samples in intermediate position in the bunches, and class 4 for samples at

the end of bunches; samples in these classes are coded exploiting temporal

correlation with the conditioned probability model described above. Eight

symbol frequency tables are used for each of these two classes.

This coding scheme will be referred to as TC, Temporal Correlation, in Sec. 4.
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Class 3

Class 1

Class 2
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Fig. 6. Classification of samples exploiting both position in the bunch and temporal

correlation. As in Fig. 2, different rows refer to bunches having different length. A

total of 20 codes is used: one each for classes 1 and 2, eight for class 3, eight for

class 4, and two for bunch length and time information.

2.2 Time information

As already mentioned, in the so-called ALTRO data format time information

is represented as the 10-bit cardinal number of the time-bin of the last sample

of the bunch. This representation can be easily and effectively substituted by

the distance between two consecutive bunches, i.e. the number of zero samples

between the bunches. Entropy coding can then be applied to this distances.
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2.3 Bunch length

In the ALTRO data format, the bunch length is represented as a 10-bit number

of samples in the bunch.

Since no apparent correlation with other data (e.g., length of adjacent bunches)

exists and no better model (i.e. a model of events with lower entropy) could be

found, this information has been coded directly using the simple probability

distribution.

2.4 Other lossless coding models

In this subsection, other coding models that have been investigated, but have

not provided sensible improvement for lossless compression of the TPC data,

are briefly described.

Space correlation

In the trial to exploit space correlation, two models have been considered. The

first is based on spatially conditioned probability, the second on a predictive

model.

The former is the equivalent, in the spatial domain, to what has been done

for time correlation. More precisely, different codes are available to code the

samples; for each sample, the appropriate conditioning is selected according to

the value of the samples in the same time-bin but in adjacent pads. However,

this method resulted in providing poorer performances when compared with

the one which exploits time correlation (the comparison being done using the
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same model complexity, i.e. number of probability distributions available in

memory). Moreover, these two techniques cannot be easily combined, i.e. it is

not possible to exploit both temporal and spatial correlation at the same time,

because this would require a very large number of probability distributions (i.e.

code tables).

The second method that has been investigated consists in predicting the sam-

ple values from the values of the samples in adjacent pads and coding the error

of this prediction; unfortunately, also for this model, performances resulted not

to be very good.

It has also been noted that pulses on one channel often resemble temporally

shifted versions of those in adjacent channels; then, with the aim of improving

performances, both the two methods described above have been modified by

adding a first stage which shifts pulses so as to increase spatial correlation with

adjacent channels. However, although performances have slightly improved,

the increase in efficiency was much lower than expected.

From these experimental results it appears that it is not simple to exploit

spatial correlation (i.e. correlations between adjacent channels). There might

be more sophisticated and complex models able to exploit it, but relatively

simple models seem to fail. It may be noted that an advantage of exploiting

temporal correlation only is that the system remains very simple, since it has

to process only one channel at a time and does not need a large memory area

to store data from adjacent channels.
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Models for capturing higher order time correlation

The code for one sample could be chosen according to the value of several

previous samples instead of only the adjacent; however, even for samples which

are two time bins apart the temporal correlation resulted very low, so that

the improvement is so low that the gain achieved is not worth the increase in

complexity of the model given by the increased number and size of codes.

Correlation between bunch area and sample values

Let us define as area of the bunch the energy of the bunch, i.e. the sum of

its samples. It appeared that pulses with same area and length have similar

shapes; consequently, it could be possible to predict sample values from the

“shape” of the bunch they belong to. More precisely, the idea was to code first

the area of the bunch. Then, each sample value 3 is predicted according to the

length and area of the bunch, and from its position in the bunch; finally, the

prediction error of the sample value is entropy coded.

Experimental results showed that, even if a relevant gain may be obtained

using this coding model, unfortunately this is not enough to compensate for

the cost necessary to the coding of the area.

3 Lossy compression of TPC data

The objective of investigating lossy compression of TPC data is to explore

the possibility of further increase the compression ratio and at the same time

3 with the exception of one sample per bunch, which can be easily obtained by

subtraction.

15



to preserve in the compressed signal the quantities that are of main interest

for the experiment. These quantities are the energy, and the temporal and

the spatial positions of clusters [1,14], where a cluster is a group of non-zero

samples which are temporally and spatially adjacent, so that they belong to

adjacent time-bins or pads in the same pad row. In other words, one cluster

is made of several bunches in adjacent pads in the same pad row. Energy and

positions of clusters are the quantities by which particle trajectories inside the

TPC are measured, processing the data coming from each whole row of pads

(about 100 pads). Particle trajectories will be calculated off-line, at the end

of the experiment, by appropriate algorithms that are presently being devel-

oped and tuned at CERN using simulated data. The main idea is therefore

not to preserve the value of each single signal sample, but to code the sam-

ples with the lowest number of bits so that the energy and position of the

clusters, the only quantities by which the particle trajectories are measured,

are preserved. Ideally the optimal acquisition system would directly evaluate

such quantities on-line and directly compress these quantities before storage.

Unfortunately this approach would require data coming from one whole row.

The compression system receives data from up to 4 000 pads, and the order in

which they are received depends on the physical connections of front-end cards

to the read-out chambers and is not row-by-row. This means that, in order

to apply “row-oriented” algorithms, it would be necessary to store data from

all 4 000 channels before starting computation of energy and cluster positions

and coding. This process would introduce delay and memory requirements to

the acquisition system that cannot easily be satisfied.

Therefore, appropriate quantities have been defined which are related to the

signal coming from each pad, i.e. referred to bunches, from which the energy
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and the temporal and the spatial position of the clusters can be successively

computed. Such quantities are the area (or energy) of a bunch, defined as the

sum of its samples, and the Center Of Mass (CoM), defined as its temporal

position. In the post-processing phase the energy of the cluster can be calcu-

lated as sum of the energies of the bunches it contains, and the positions as

weighted averages of the bunch positions.

It has to be noticed that the area and the CoM of the bunches are coded

losslessly; this means that, even if the compression does not preserve the single

values of the samples, it does preserve these quantities without any loss. To

be more precise only a quantization error for CoMs remains present, but such

error can be reduced below the noise error of the original signal.

3.1 Area of bunches

The area of a bunch is simply evaluated as the sum of the values of its samples.

Direct coding on probability distribution is applied to the value obtained.

3.2 Center of mass of bunches

The position of the CoM of a bunch is evaluated as the average temporal

position of its samples, i.e. tCoM = (
∑

i si ti) / (
∑

i si), where si and ti are

the values and the temporal positions of the samples of the bunch, respec-

tively. Similarly to what has been done with the temporal information in the

lossless approach, CoM positions are coded differentially, i.e. their values are

substituted by the distances between CoMs of consecutive bunches. However,

the distance information cannot be coded as is, i.e. without quantization; in
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fact, the number of possible values, although finite, is very large, so that the

entropy of such source is very large. Moreover, direct coding of the exact CoM

differential positions is also useless in practice because such precision gives an

error which is far below the intrinsic noise of the original signal. Consequently,

a quantization step is appropriate before coding, in order to reduce the num-

ber of possible values that CoMs can assume, and consequently to reduce the

entropy.

Obviously, quantization can be applied with different quantization steps; by

increasing the resolution, i.e. decreasing the quantization interval, the quan-

tization error decreases while the entropy increases. In order to set the quan-

tization step, it makes sense to impose a quantization error comparable with

the error which is intrinsic to the data. The CoM, in fact, is affected by an

error that is due to the quantization of the samples performed by the analog-

to-digital converters (ADCs) in the very first stages of the acquisition chain.

As shown in appendix A, the mean square error on the position of the CoM

introduced by the quantization of the samples is

σ2
CoM = σ2

ε

∑

B

(

∑

i (ti − tCoM )2

A2

)

/

C(B) (1)

where B is the set of bunches being considered, C(B) its cardinality, ti the

temporal position of sample i in the bunch, tCoM the CoM of the bunch, A its

area, and σ2

ε the mean square error on the sample values (equal to 1/12). For

the simulated data [12] used in this study it may be found that

√

σ2
CoM = 0.0129 · Ts

In table 1 this error is compared with the error introduced by the CoM quan-

tization. It may be seen that for a quantization interval equal to Ts/32, where
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Ts is the width of a time-bin, i.e. the sampling period of the ADC, the error

due to the CoM quantization is lower than the error due to the ADC quanti-

zation. Consequently, a resolution equal to Ts/32 has been chosen; however, it

has to be added that larger quantization intervals, in particular, Ts/4 and Ts,

have also been considered in the performance estimations, due to the moderate

increase in the error with respect to a significant decrease in bit rate.

The two parameters considered, i.e. area and CoM, provide a good description

of the bunches in the case of simple bunches. However, such description is not

sufficiently detailed for bunches which result from the superposition of two

traces; in this case, two temporally close pulses are registered by a pad, with

their tails overlapping, so that they are represented by a single bunch in the

ALTRO data format. In this case it is necessary, before evaluating area and

CoM of these bunches, to separate the contributions due to the different traces.

Rigorously, this operation should be performed exactly in the same way as it

will be done by the above-mentioned off-line clustering algorithms. However,

since these algorithms are not completely defined yet, in the present study a

simple technique has been used since the focus here is on the possibility of

higher compressions rate; it is likely in fact that specific splitting algorithms do

not imply relevant changes in the entropy of the quantity to code. Specifically,

each bunch having a relative minimum is “cut” in correspondence with the

minimum (Fig. 7); two new bunches are then obtained, and the sample in the

intermediate position, i.e. the one of the local minimum, is divided by two,

assigning half of it to each bunch. In terms of compression performances, this

approach, though simple, should yield results very close to those provided by

the future, more sophisticated, algorithms.
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Fig. 7. Example of “cut” of a bunch originated by two temporally close traces. A

5-sample bunch is cut into two 3-sample ones.

3.2.1 Reconstruction of the TPC signal

The compressed signal, represented, as already mentioned, by the area and the

CoM of the bunches, has to be decompressed in form of a standard sampled

signal to be transparent with the standard off-line processing stage, i.e. to be

taken back to the ALTRO data format, in order to be processed by the off-

line algorithms (which are, in fact, designed to process this kind of data). A

procedure has been developed which, starting from the area and the CoM of

the bunch, reconstructs samples; obviously some errors are introduced on their

values if these are compared to the original signal. The precise reconstruction

procedure is described below.

The objective is to capture the average shape of pulses so as to minimize the

sample-by-sample reconstruction error. All the bunches are classified according
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Fig. 8. Example of signal reconstruction for a bunch having area equal to 93 and

decimal part of the CoM equal to 1/32.

to the {Area, CoM} couple 4 and aligned at their CoM, and the mean value of

the samples is computed for each time-bin. Thus, such operation defines a sort

of “average bunch” (AB). Obviously, this AB has the same area and CoM,

because the computation of the mean value does not alter these parameters.

Moreover, it may be noted that this operation minimizes the mean square error

between the actual and the mean samples. What is obtained is a “library” of

ABs, each characterized by a different {Area, CoM} couple.

The procedure then associates to each {Area, CoM} couple the corresponding

AB, and re-builds the temporal sequence of samples using the samples of the

ABs. In this way, the reconstructed signal, though having possibly different

samples with respect to those of the original one, is made of bunches having

same area and CoM of those of the original signal, and with minimum error

between each original and reconstructed sample (Fig. 8).

4 Actually, only the decimal part of the CoM is considered. The integral part, in

fact, does not carry any information about the sample values, i.e. the shape of the

bunch, but refers only to the global shift of the bunch itself.
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4 Simulation results

In this section, simulation results related to the described compression algo-

rithms are reported. In the first set of simulations, the bit rate after compres-

sion is estimated by evaluating the entropy of the quantities to be coded. Then,

the actual measure of the data volume is performed on one of the described

lossless compression techniques, using arithmetic coding as entropy coder. Fi-

nally, these performances are compared with those given by a standard loss-

less compression algorithm such as gzip to evaluate the gain in compression

efficiency achieved using appropriate models instead of existing standard tech-

niques.

4.1 Estimation of compression factors using entropy measures

The results for the lossless compression are shown in Fig. 9. The first column

(ALTRO) represents the original volume of data in the ALTRO data format.

The second column (EC) shows how this data volume is reduced if entropy

coding is applied to the three fields of the ALTRO data format. The third one

(SP) refers to the method which uses three different codes to code samples

according to their position in the bunch (Sec. 2.1.1). Finally, the fourth column

(TC) reports results of the approach that exploits temporal correlation, using

20 codes according to the position and the value of the preceding sample

(Sec. 2.1.2). It may be noticed that the latter provides a compression of data

to 49.2% of the original size.

In Fig. 10 the results for the lossy technique, with several quantization levels,

are compared with the ALTRO data format and the 20-code TC lossless tech-
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ALTRO data format. ALTRO: original ALTRO data; EC: entropy coding of sample

values, bunch length, and time information; SP: classification of samples according

to their position (3 codes used); TC: coding technique that exploits temporal cor-

relation (20 codes used).

Numbers in the columns represent the number of bits per bunch dedicated to each

field; numbers on top of the columns represent the overall number of bits per bunch

and, in parenthesis, the size with respect to the original ALTRO data format.

nique considered above. It may be noticed that with the quantization level

equal to Ts/32 the volume of data is reduced to 34.2% of its original size, and

it can be further reduced to 23.7% by increasing the quantization interval to

be equal to Ts.
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Fig. 10. Lossy techniques performance. ALTRO: original ALTRO data;

CutA+Q5CoM: proposed lossy coding, with CoM quantization at Ts/32;

CutA+Q2CoM: the same, with a coarser CoM quantization (Ts/4); CutA+Q0CoM:

the same, with Ts. For a comparison, the results of the 20-code lossless compression

technique TC is also reported. The meaning of the various numbers is the same as

in the previous picture.

4.2 Measured compression factors using arithmetic coding

The compression factors presented in the previous paragraphs are estimated

by measuring the entropy of the quantities that have to be coded. In practice,

using a real coding system, performances might be worse than these estimates

depending on the efficiency of the adopted entropy coder. So as to evaluate

the actual performances of the 3-code SP lossless technique presented in sub-

section 2.1.1, the arithmetic coder presented in [15] has been applied, with a

fixed probability model of the symbol source. The resulting bit rate is 30.6

bits/bunch, which is, as expected, very close to the estimated 30.3, obtained
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using entropy.

Similar results are expected implementing the arithmetic coder for the TC

technique (subsection 2.1.2); also in this case, a slightly higher bit rate would

probably result with respect to the entropy value.

4.3 Comparison with a standard lossless compression algorithm

To provide a comparison with a standard lossless compression tool, the same

data considered above have been compressed with gzip, which is an imple-

mentation of the well-known Lempel-Ziv algorithm [16]. With this tool, using

the highest level of compression (i.e., option “-9”) the data is reduced to only

81.5% of its original size. In fact, the Lempel-Ziv algorithm performs well

when strings or substrings repeat frequently in the data stream to be coded,

as for example happens in text files; this, clearly, is not the case for TPC data.

These results show that blind techniques, i.e. techniques that do not require

explicit modeling of the source, are not efficient for our data.

5 Complexity of the compression algorithm

Finally to evaluate the feasibility of the real-time implementation of one of the

lossless techniques proposed, namely the TC one, the number of operations per

symbol and per second that have to be executed by the compression system

has been estimated (see Table 2). Such operations mainly consist in a code

selection step according to the type of symbol (bunch length, time information,

or sample value), to the sample position, and to the previous sample value; the

computations for the arithmetic coder considered above have also been taken

25



into account. The number of operations per second is evaluated by assuming

the worst case, in which one compression system will have to process up to

4 000 channels and 0.28 GSymbols per second. In table 3 the same results are

shown for the lossy algorithm. The frequency distribution tables will need 40

kBytes of memory for the lossless technique and 4 kBytes for the lossy one.

Operations will be performed in 32 bit precision arithmetic.

The numbers obtained show that the described compression system can be

easily implemented in real-time, either on DSPs, field programmable gate ar-

rays, or ASICs. It may be worth noticing that even lower operation counts

can be obtained by using more sophisticated arithmetic coders, such as those

presented in [17,18], which do not need multiplications nor divisions, but only

additions and shifts, or Huffman coders as in [19,20].

6 Conclusions

Lossless and lossy compression approaches for the data generated by the TPC

chamber in the ALICE experiment have been investigated. For the lossless

technique all the samples are entropy coded using models that can also capture

temporal correlation. For the lossy approach the main idea is to preserve the

two quantities that are of interest for the experiment (i.e. area and center of

mass of bunches are coded without loss). The lossless approach allows a data

compression to 49.3% of their original size using low complexity models such

that real time implementations on low cost electronics are possible. The lossy

approach achieves further compression rates in the range from 34.2% down to

23.7% accepting a quantization noise on the CoM position and errors on the

sample by sample values, that in principle do not affect the results on physical
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quantities of interest for the experiment.

In both cases the compression algorithm can be implemented using an arith-

metic coder; the overall computational complexity turns out to be reasonable,

so that a real-time implementation of the system on off-the-shelf electronic

devices or on simple ASICs is feasible.

A Appendix: Error on the evaluation of the center of mass of a

bunch due to sample quantization

In section 3, the temporal resolution of the quantized CoMs according to the

estimate of the intrinsic error in the data is derived. The samples, indeed,

are affected by the error due to the quantization made by the ADCs in the

very first stages of the acquisition chain; this error, obviously, propagates

in the calculation of the CoM. As an example, in Fig. A.1 it is shown how

the quantization error on the samples propagates on the CoM in the case

of a 3-sample bunch. It makes sense to increase the resolution of the CoM

quantization up to the point where the two errors are of comparable energy.

The aim of this appendix is to quantify this error by evaluating its mean value

and standard deviation. Since these quantities depend on the bunch shape, the

average are evaluated on all bunches of the simulated data used in the rest of

this work.

Let si be the non-quantized sample values, ŝi = si + εi the quantized ones

and ti the relative instants of time. Let us suppose that the quantization error

εi of each sample be uniformly distributed in the interval (−0.5, +0.5] and

independent on the errors on the other samples. Then
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E[εi] = 0
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ε =1/12

E[εiεj] =































σ2

ε i = j

E[εi] E[εj] = 0 i 6= j

that is, denoting with δi,j the Kronecker symbol,

E[εiεj] =σ2

ε δi,j

The CoM calculated with the non-quantized values is:

tCoM =

∑

i si ti
A

where A =
∑

i si is the area of the bunch; in turn, using the quantized values,

the CoM is:

t̂CoM =

∑

i ŝi ti

Â

where Â =
∑

i ŝi. For tCoM the partial derivatives with respect to si are

∂ tCoM

∂si

=
∂

∂si

(

∑

j sj tj
∑

j sj

)

=
ti

∑

j sj

−

∑

j sj tj
(

∑

j sj

)2
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and the total differential is

dtCoM =
∑

i

∂ tCoM

∂si

dsi

It follows that the error on the CoM due to the sample quantization is

εCoM =
∑

i

∂ tCoM

∂si

εi

=
∑

i

(

ti
∑

j sj

−

∑

j sj tj
(

∑

j sj

)2

)

εi

=

∑

i (ti − tCoM ) εi

A

Its statistics is described by:

E[εCoM ] =E

[

∑

i εi (ti − tCoM)

A

]

=

∑

i E[εi] (ti − tCoM)

A
= 0

σ2

CoM =E[ε2

CoM ]

=E







(

∑

i εi (ti − tCoM )
)2

A2







=

∑

i,j E[εi εj] (ti − tCoM ) (tj − tCoM)

A2

=σ2

ε

∑

i (ti − tCoM)2

A2

max(εCoM) =

∑

i 0.5 |ti − tCoM |

A
= 0.5

∑

i |ti − tCoM |

A

By averaging these quantities on a set of bunches B with cardinality C(B), we

get

E[εCoM ] = 0

σ2
CoM =σ2

ε

∑

B

(

∑

i (ti − tCoM)2

A2

)

/

C(B)

max(εCoM) = 0.5
∑

B

(

∑

i |ti − tCoM |

A

)

/

C(B)

By evaluating the sums on the set of simulated bunches B provided by CERN
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in [12], it results

E[εCoM ] = 0
√

σ2
CoM =0.0129 · Ts

max(εCoM) = 0.0293 · Ts
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Quant. step/Ts bits/bunch mean/Ts σ/Ts max/Ts

Rel. no of

zeros (%)

1 5.1 −1.17 · 10−2 0.2758 0.4998 17.94

1/2 6.1 −2.4 · 10−3 0.1291 0.2499 20.28

1/4 7.1 −1.9 · 10−3 0.0658 0.1249 21.24

1/8 8.1 −5.78 · 10−4 0.0330 0.0625 22.76

1/16 9.1 −1.86 · 10−4 0.0161 0.0312 23.74

1/32 10.1 −5.28 · 10−5 0.0081 0.0156 24.29

ADC quantization only 0 0.0129 0.0293 —

Table 1

Mean value, standard deviation and maximum value of the quantization error of

the CoM position for different resolutions and corresponding bit rates, compared

to the intrinsic error due to the ADC quantization (bottom row). The last column

represents the percentage of bunches for which the quantization error is zero.
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sums
multipli-

cations
divisions jumps

memory

accesses

Time correlation (op/symb.) 10 – – 8 1

Arithmetic coding (op/symb.) 93 12 2 15 4

Total (op/symb.) 103 12 2 23 5

Time correlation (op/s) 2.8 G – – 2.2 G 0.28 G

Arithmetic coding (op/s) 26 G 3.2 G 0.55 G 4.0 G 1.1 G

Total (op/s) 28 G 3.2 G 0.55 G 6.2 G 1.4 G

Table 2

Evaluation of the complexity of the algorithm for lossless compression. The number

of operations per second refers to the worst case processing of up to 4 000 channels

and 0.28 GBytes/s.
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sums
multipli-

cations
divisions jumps

memory

accesses

Area and CoM (op/symb.) 1.9 0.27 0.21 0.48 0

Arith. coding (op/symb.) 69 8.2 0.85 11 1.7

Total (op/symb.) 71 8.5 1.1 12 1.7

Area and CoM (op/s) 516 M 75 M 58 M 133 M 0

Arith. coding (op/s) 19 G 2.2 G 0.23 G 3.1 G 0.47 G

Total (op/s) 20 G 2.3 G 0.29 G 3.2 G 0.47 G

Table 3

Evaluation of the complexity of the algorithm for lossy compression. The number

of operations per second refers to the worst case processing of up to 4 000 channels

and 0.28 GBytes/s.
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