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Parametric resonance has received a considerable amount of interest as a good mathematical model
to describe the initial stages of the reheating phase (matter creation) in inflationary cosmology. It
is also known that exponential particle creation can occur in situations which do not fall in the
parametric resonance regime characterized by oscillations of the inflaton field about its minimum.
Here we present a new analytical approach to exponential particle production which can occur
when the inflaton is far from the minimum of its potential. Crucial for this effect is a term in the
equation of motion which acts like a negative mass square term, as occurs for tachyonic preheating
and negative coupling particle production. Our techniques apply in models with a strong coupling
between matter fields χ and the inflaton φ, or in some models in which the inflaton has a large
amplitude of oscillation. Note that our analysis yields results which are quite model dependent.
Exponential growth occurs in a model with interaction Lagrangian −gMplφχ2. However, for the
interaction Lagrangian −g2φ2χ2, our formalism shows that in the large coupling limit there can only
be exponential particle production when φ crosses 0.

I. INTRODUCTION

Inflationary Cosmology is currently the most widely
accepted model of the very early Universe. Inflation is
expected to end in a period in which the inflaton field φ is
evolving rapidly and, finally, oscillating about the ground
state of its potential. During this phase - commonly
called the reheating phase -, energy is transferred from
the inflaton field to ordinary matter, here modelled by
another scalar field χ, via processes which depend on the
coupling between φ and χ in the interaction Lagrangian.
The details of this energy transfer are important for sev-
eral key issues in cosmology, among them baryogenesis,
the relic gravitino abundance, and the possible produc-
tion of topological defects. For example, in order for the
GUT-scale baryogenesis mechanism to be effective, the
temperature of matter after reheating has to be compa-
rable or higher than the GUT scale T = 1016GeV (for
recent reviews see e.g. [1]). If the reheating process is slow
(i.e. the decay rate of the inflaton is small compared to
the Hubble expansion rate at the end of inflation), as is
predicted using a perturbative analysis of inflaton decay
[2,3], then the temperature after reheating is predicted
to be much lower than the GUT scale.

Recently, however, it was realized [4] that in many
models of inflation the energy transfer takes place much
more rapidly, based on the phenomenon of parametric

resonance. The basic idea is the following: while the in-
flaton field is oscillating about its minimum, it induces a
periodically varying time dependence in the mass of the
matter field, which in turn leads to exponential growth of
the matter fields which corresponds to an explosive cre-
ation of particles. The theory was put on a firm mathe-
matical basis in [5,6] (these analyses included the expan-
sion of the Universe), and a comprehensive and detailed
study was given in [7]. According to the new picture, the
whole reheating process is divided into two phases. The
first one is the phase of parametric resonance, called pre-
heating [5]. This is an out-of-equilibrium process during
which the growth of the number of particles is exponen-
tial but only occurs for momenta in certain resonance
bands. In the second phase, interactions between the
matter particles and back reaction effects become crucial
and lead to thermalization of matter [8]. Although para-
metric resonance is an attractive mechanism for particle
production, there are other possibilities to obtain expo-
nential particle production, for example instant preheat-
ing [9], chaotic preheating [10] and tachyonic preheating
[11,12]. In instant preheating, particles are produced ex-
ponentially when the inflaton field φ crosses the minimum
value and the interaction potential is negative (see also
[13] for a discussion of negative coupling instability), in
chaotic preheating the exponential increase in the per-
turbations is driven by the chaotic dynamics of the back-
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ground, and tachyonic preheating is particle production
driven by a negative effective mass square term which
occurs during spinodal decomposition in models of new
and hybrid inflation [14].

In this paper we present a new mathematical approach
to exponential particle production at the end of inflation
but far from the parametric resonance regime. Our ef-
fect is generated by a mass square term for the matter
fields which is negative for certain periods in the evolu-
tion of the inflaton field (in this respect the mechanism
is exactly what happens in tachyonic [11,12] and neg-
ative coupling [13] preheating). However, our analytical
method applies also for quite general nonlinear correction
terms in the equations of motion. Note that we are not
assuming periodic variation of the external field. Typi-
cally, our mechanism operates for large values of |φ| but
only for particular forms of the interaction Lagrangian (in
particular we need a large effective coupling constant).
We derive our effect making use of some results on the
asymptotics of solutions of second order ordinary differ-
ential equations [15].

In next section we summarize the relevant mathemat-
ical results quoted from [15]. In Section III we apply
them to differential equations which describe the evolu-
tion of the matter fields during reheating in the presence
of a dynamical inflaton field. Finally, we briefly discuss
the results and point out analogies and differences with
previous work.

II. MATHEMATICAL APPROACH

The results below are based on the asymptotic analysis
of second order differential equations as described e.g. in
reference [15].

We consider the ordinary differential equation

ÿ − p(t, σ)y = 0 , (1)

where p(t, σ) is a real function for values of t in some
interval I, and for values of σ in an interval E. The
derivatives are with respect to t. Both t and σ are real
variables, and in our applications to cosmology t will be
time, whereas σ is some external parameter. In this sec-
tion we recall some results concerning the behavior of the
solutions y1(t) and y2(t) of (1) for values of t in I when
σ → +∞.

We assume that in the limit σ → +∞, the function
p(t, σ) can be expanded in the following way:

p(t, σ) ≈ σr
∞∑

n=0

pn(t)σ−
rn
2 , (2)

where r is a positive rational number. We work in subin-
tervals I ′ ⊂ I where p0(t) does not vanish, but could have
at most double poles in I ′.

With these hypotheses, by a theorem in reference [15],
it can be shown that:

a) In subintervals I ′ ⊂ I where p0(t) > 0, and when
σ →∞ :

y1(t) = {p0(t)}−1/4 exp
{∫ t

[σr/2(p0(t′))1/2 +

1
2
p1(t′)(p0(t′))−1/2]dt′

}{
1 + O

(
1
σ

)}
(3)

and

y2(t) = {p0(t)}−1/4 exp
{
−

∫ t

[σr/2(p0(t′))1/2 +

1
2
p1(t′)(p0(t′))−1/2]dt′

}{
1 + O

(
1
σ

)}
(4)

b) In subintervals I ′ ⊂ I where p0(t) < 0, and when
σ →∞ :

y1(t) = c{−p0(t)}−1/4 sin
{∫ t

[σr/2(−p0(t′))1/2 +

1
2
p1(t′)(−p0(t′))−1/2 + a]dt′

}{
1 + O

(
1
σ

)}
(5)

and;

y2(t) = c{−p0(t)}−1/4 cos
{∫ t

[σr/2(−p0(t′))1/2 +

1
2
p1(t′)(−p0(t′))−1/2 + a]dt′

}{
1 + O

(
1
σ

)}
. (6)

Here, the phase angle a is a real constant, and c is a
possibly complex constant.

Thus, if p0(t) > 0 on I ′, in the asymptotic approxima-
tion y(t) increases (or decreases) exponentially. However,
if p0(t) < 0, we obtain oscillating solutions. This theorem
generalizes the trivial dynamics of a harmonic oscillator
with positive or negative square mass to the case where
the coefficient representing the square mass is not con-
stant in time (but does not cross zero, either). Thus, in
the adiabatic limit in which the mass varies only slowly,
the results are easy to understand from the point of view
of physics. These results will be used in the next section
in order to study exponential growth of particle number
at the end of inflationary phase of the evolution of the
Universe.

III. APPLICATIONS

In this section we use the above theorem to get some
information on particle creation induced by the inflaton
field. In order to be as general as possible, we do not
prescribe any specific equation of motion for the inflaton
field, but only consider some general properties needed,
which are shared by several models of chaotic inflation.
As indicated, in the following φ denotes the inflaton, and
χ a scalar matter field. As in most studies of preheat-
ing, we will neglect the bare mass and self-interactions
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of the χ field. We will also neglect the expansion of the
Universe. As long as the time scale for exponential in-
crease obtained under this approximation is smaller than
the Hubble expansion time, we expect the approxima-
tion to be a good one. As interaction Lagrangian we
take Lint = − 1

2f(φ)χ2, where the function f contains a
large parameter which plays the role of σ in the previous
section. This parameter can be a coupling constant - it
can also be the amplitude of the inflaton during a period
of oscillation.

The equation of motion of the k-th Fourier mode of
the scalar matter field χ is given by :

χ̈k − (−k2 − f(φ))χk = 0 . (7)

Comparing this with equation (1) we see that:

p(φ) = −k2 − f(φ) . (8)

As mentioned above, we can write f(φ) = σh(φ),
where σ is a large parameter. Then we can write the
above equation as

p(φ) = −k2 − σh(φ) . (9)

Comparing with the expansion (2) we get

p0(t) = −σh(φ(t)) ;
p2(t) = −k2 ; (10)
pn(t) = 0 ; n 6= 0, 2

Now, from the key theorem in section II it follows
that if the parameter σ is large, then in time intervals
where h(φ(t)) is positive the solutions exhibit exponential
growth, whereas in those during which h(φ(t)) is negative
we get bounded oscillating solutions.

In order to connect the above results with the physics
of known models we now specialize to two cases:

A. Case f(φ) = g2φ2

In this case we can write p(φ) as

p(φ) = −k2 − g2φ2
0Φ

2(t) (11)

where Φ = φ(t)
φ0

and φ0 is the amplitude of the infla-
ton field at the beginning of the oscillatory phase during
which parametric resonance occurs. Taking σ = g2φ2

0

and r = 1 in the expansion (2) we have:

p0 = −Φ2(t) ;
p2 = −k2 ; (12)
pn = 0 ; n 6= 0, 2

Since in this case p0(t) < 0 for all t, the solutions χk

are always asymptotic oscillating when σ is big enough.
Thus, in this model no particle production occurs dur-
ing time intervals when φ 6= 0. This result sheds new
light on the observations [7,9] that particle production is
concentrated at times when φ = 0.

B. Case f(φ) = gMplφ

In this case:

p(φ) = −k2 − gMplφ(t) . (13)

We assume that the potential can be well approximated
as quadratic near the origin, and as linear for large val-
ues of |φ| (|φ| > Mpl). The second assumption is made
in order to obtain slow-rolling of φ for large values of |φ|.
In an improved analysis the slow-rolling phase would be
generated by the expansion of the Universe and the re-
sulting Hubble damping term in the scalar field equation
of motion. Since φ0 is of the order Mpl, the condition to
apply the theorem of Section (II) (to obtain large σ) is
k2, m2 � gMplφ0, where m is the inflaton mass. Thus,
in particular,

g �
(

m

Mpl

)2

(14)

For a potential of the form V (φ) = m2φ2 + λφ4 the
COBE constraints on the fluctuations generated during
inflation give m/Mpl < 10−6 and λ < 10−12. Thus, (14)
becomes g � 10−12. On the other hand, by naturalness,
g ≤ √λ. Therefore, the large coupling asymptotic analy-
sis is valid in a large interesting region of values of g from
10−12 to 10−6.

FIG. 1. Sketch of a chaotic inflation potential V (φ).
|Φ| > 1 is the slow rolling phase in which a linear approx-
imation to V (φ) is used. The region |Φ| < 1 is the region of
oscillation with a quadratic approximation.

Taking σ = gMplφ0 and r = 1 in the expansion (2),
and using the same variable Φ introduced in the previous
subsection, we have from (13):

p0(t) = −Φ(t)
p2 = −k2 (15)
pn = 0 ; n 6= 0, 2 .

It follows immediately that for Φ < 0 we have p0(t) > 0,
and by the theorem presented in Section II we expect
exponential particle production.
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In the following we assume that φ starts out at large
negative values in the slow-rolling phase. Once it reaches
|Φ| ∼ 1, φ will proceed to oscillate about the minimum
of the potential. Note that exponential increase in χ is
possible in both regions, as long as φ < 0. In the following
we analyse the two phases separately. In both phases, the
equation of motion is

d2φ

dt2
+

∂V (φ)
∂φ

= 0 . (16)

1. Slow rolling region

In the slow rolling phase we take a linear approxima-
tion to the potential, i.e., V (φ) = Aφ + B, where A and
B are constants. In the region φ < −φ0, the constant
A is negative, and B is chosen such that the potential is
continuous at the transition points |Φ| = 1.

Solving Equation (16) in this approximation gives:

φ(t) =
|A|
2

t2 + Ct + D (17)

where C and D < 0 are constants. Thus,

p(φ) = −k2 − g2 |A|
2

t2 − g2Ct− g2D . (18)

Taking σ = g2|A|/2 and r = 1 in the expansion (2),
we obtain from (18):

p0(t) = −(t2 + Ct + D) ;
p2 = −k2 ; (19)
pn = 0 ; n 6= 0, 2

where C = 2C/|A| and D = 2D/|A|.
There are two roots t− and t+ of the equation p0 = 0:

t± =
−C ±

√
C

2 − 4D

2
. (20)

Since D < 0, the roots are real. Thus, there is a time in-
terval [t−, t+] during which the solution for χk is asymp-
totically exponential. In fact it is easy to see that C ≤ 0
and ∆t = t+ − t− ≥ |C| = −C. From this inequality we
conclude that the smaller A or the bigger C, the bigger is
the time interval during which the solution has exponen-
tial growth. The case of A small suggests that chaotic
inflation, with its long slow roll-over section of the poten-
tial, is the most effective for particle production, when
the system is far from the parametric resonance regime..

Note that in the slow rolling region with φ > φ0, p0(t)
is negative and, as expected, we obtain asymptotically
oscillating solutions.

2. Oscillatory region

For |Φ| < 1 we take a quadratic approximation, that
is, V (φ) = A′φ2, where A′ > 0. Solving the differential
equation (16) for φ we get φ(t) = φ0 cos(wt), where φ0

is the amplitude of oscillation and w =
√

2A. Thus we
have:

p = −k2 − gMplφ0 cos(wt) (21)

Taking again σ = gMplφ0 and r = 1 in the expansion
(2) we obtain from (21)

p0 = − cos(wt) ;
p2 = −k2 ; (22)
pn = 0 ; n 6= 0, 2

(23)

For
(
j − 1

2

)
π < wt <

(
j + 1

2

)
π with j even, we have

p0 < 0. So if σ is large, which can occur either if the
coupling constant or the field amplitude are large, the
theorem of Section II give us an oscillating asymptotic
solution:

χk(t) =
c

4
√

cos(wt)
cos

{∫ t

[σ1/2
√

cos(wt′) + a]dt′
}

(24)

where a and c are constants.
However, for time intervals with

(
j − 1

2

)
π < wt <(

j + 1
2

)
π with j odd, we get p0 > 0. Then, for large σ,

the asymptotic solution reads

χk =
1

4
√− cos(wt)

eσ1/2
∫

t√− cos(wt′)dt′ , (25)

and in this case we get exponential production of matter.
Combining both cases, we get the time evolution of the

particle number density nk drawn in Figure (2). Here, nk

is the number density of particles produced in the k-th
mode obtained using the standard formula (see e.g. [7])

nk = wk

( |χ̇k|2
w2

k

+ |χk|2
)
−1

2
, (26)

where wk is the effective frequency of χk. Substituting
(24) and (25) in (26) within their respective intervals of
validity, we obtain (as a function of time) a kind of pulsed
particle creation (see Fig. 2). Note that our results in
this region are similar to what was previously obtained
in the context of tachyonic preheating [12].

IV. DISCUSSION AND CONCLUSION

We have presented a new analytical approach to expo-
nential particle production far from the parametric res-
onance regime. Our analysis applies to situations when
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FIG. 2. Pulsed Particle Creation

the either the absolute value of the inflaton field is large,
or the coupling constants are very large. The results,
however, are is quite model-specific. One obtains expo-
nential particle production for the interaction Lagrangian
Lint = −gMplφχ2, but not for Lint = −g2φ2χ2. Crucial
to have exponential particle production is the presence of
a negative mass square term in the effective potential for
the inflaton. Note that our method is robust in the sense
that the results do not change qualitatively when adding
extra terms in the equation of motion such as explicit
mass terms and self interaction terms for the χ field, as
long as the additional terms are small in amplitude in
the appropriate units.

In the rolling phase we can have exponential particle
production when the coupling constant or the slope of
the potential are large. However, the length of the time
interval where this exponential growth happens decreases
when the slope A of the linear potential V (φ) = Aφ +
B increases. Then, when A is large enough to use the
asymptotic approximation, we do not have exponential
matter creation for a long time. On the other hand, if A
is small (yielding a large interval of exponential growth),
we only can use the asymptotic approximation provided
the coupling constant g is big enough. In this case we
can have particle creation for a long time interval even
during the rolling period. Applied to the regime of fast
rolling, we are in the situation of tachyonic preheating,
and our results agree with those of [11,12].
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