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1. Introduction

TheM onte C arlo sim ulation ofm ulti-pt hadronic nalstates isa challenging problem
that hasgreat practical in portance in the search for new physics processes at present
and future colliders. For exam ple, the accurate sim ulation of 4—gt backgrounds was
a central issue In the search for the H iggs boson at LEP 2, and m ulti-ts w ill be a
key Ingredient In signatures of supersymm etry at the LHC .

Two extram e approaches to sim ulating m ulti=gts can be form ulated as follow s.
O ne can use the corresponding m atrix elem ents, which are available at leading, or in
a few cases next+to-leading, order In , w ith bare partons representing gts. A fter-
natively one can use the parton m odel to generate the sim plest possible nal state
(eg.e"e ! gg) and produce additional fts by parton show ering.

In them atrix-elem ent approach, a full sin ulation of the nal state is in possible
unlessone addsam odel for the conversion of the produced partons into hadrons. A ny
realistic m odelw i1l Include parton showering, and then one has the problem of extra
£t production during show ering and potential double counting of £t con gurations.
On the other hand the pure parton shower approach gives a poor simulation of
con gurations w ith several w dely separated ts.



T he Interfacing of m atrix-elem ent and parton-show er event generators is a topic
of great current interest [1{4]. For earlier work on com bining these approaches see
Refs. [5{12]. Here we suggest a m ethod in which the dom ains of applicability of
m atrix elem ents and parton showers are clearly separated at a given value yy; of
the £t resolution variable y.,+, de ned according to the kt algorithm [13,14] for gt
clustering (som etim es called the D urham algorithm ). R ecall that two ob gcts i and
j are resolved according to the ky algorithm if

vy 2minfEZEIGL 005 5)=07 > Yeu (1.1)

where E ;5 are the energies of the ob Fcts, 45 is the angle between theirm om enta and
Q istheoverallenergy scale (thecm .energy in €' e annihilation). Two ob fcts that
are not resolved are clustered by com bining their fourm om enta asps5) = pi+ Py-

The m ethod we propose has the follow ing features: At ye:e > Vi Mmulti=gt
cross sections and distributions are given by m atrix elem ents m odi ed by Sudakov
form factors. At yae < Vi they are given by parton showers sub fcted to a “eto’
procedure, which cancels the yy,; dependence of the m odi ed m atrix elem ents to
next-to-Jleading logarithm ic (NLL ) accuracy.

N ote that we do not attem pt to give a com plete description of any con guration
to next+to-Jeading order (NLO ) In ¢, which is why we refer to \com bined" rather
than \m atched" m atrix elem ents and showers. P rocedures to com bine parton show —
ersw ith them atrix elem ent corrections due to the rst (ie. at the rst relative order
In ) hard multi=gt con guration were considered in Refs. [5{7]. Such procedures
m ght be Im proved by Including rst-order virtual corrections (see Refs. [9{12]). For
the present, our m ain ob fctive is to describe any hard multi-gt con guration to
leading order, ie.0 ( " ?) forn ftsine' e annhilation, togetherw ith £t fragm en—
tation to NLL accuracy, whilke avoiding m a pr problem s of double counting and/or
m issed phase-space regions.

In the present paper we consider the case of €' e anniilation only. In Sect. 2
we recall the NLL expressions for €" e  ft rates, and show how they can be used
to develop a system atic procedure for I proving the treelevel predictions of m ulti-
parton con gurations above som e gt resolution yi,i. Then In Sect. 3 we show how to
com bine thesem odi ed m atrix-elem ent con gurationsw ith parton showers, in such a
way that dependence on vi,; is cancelled to NLL precision. In Sect. 4 we show results
of an approxin ate M onte C arlo in plem entation of the above schem e, and nally in
Sect. 5 we present brief com m ents and conclisions.

2.M odi ed m atrix elem ents

2.1 NLL Jt rates and Sudakov factors

The exclusive €" e n—pt fractions at cm . energy Q and k; resolution
Yini= Qi=0° (21)



are given to NLL accuracy’ forn = 2;3;4 by [14]
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and 4 are the quark and glion Sudakov form factors
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w ith
£Q170)=1[ 4@Q1;0)F= 4Q1;0): (2.10)

TheQCD running coupling ; (q) isde ned in theM S renom alization schem e. Part
of the contrlbutions beyond NLL order can be Included in the calculation by using
the de nition of ;(q) in the bram sstrahlung schem e of Ref. [15].

T he Sudakov om factors ;(Q:;Q ) for i= q;g represent the probability® for a
quark orglion to evolve from scaleQ to scaleQ; w ithoutany branching (resolvable at
scale Q7). ThusR, is sim ply the probability that the produced quark and antiquark

By NLL accuracy, we mean that the leading and nextto-leading logarithm ic contributions
o 1n*" 0=0; and o n”" ' Q=0 are ncluded in the expressions HrR, (Q1;0 ).
3TheNLL approxin ate expressions n Egs. (2.5,2.6) can lkad to ;> 1. In that case one should
replace ;> lby 1.



Figure 1: Branching structure of three—t nalstate.

both evolve w ithout branching. M ore generally, the probability for a parton of type
ito evolve from scale Q to g Q; without branching (resolvable at scale Q) is
Q179 )= 1(Q1;9).
In the expression (2.3) forRj3,a gluon ¥t is resolved at scale g where

m Nfye,iVeed = =07 (211)

R ecall that in coherent parton branching the evolution variable is the em ission angle
[16] and the corresponding scale is the parton energy tim es the angle [17]. In the
contribution depicted In Fig. 1, the energy and angular regions of the phase space
that dom lnate at NLL orderareQ E, Eg> Egjandl @ > qg- Thequark
evolves from scale E4 ¢ Q to Q; without branching, while the antiquark evolves
from Eq ¢ Q tog Eg o and then branches. The resulting antiquark evolves
from g to Q,,while theglion evolves from g Eg o4 t0Q,both w ithout branching.
T hus the overallN LL probability is

4(©Q1;9)

a1 ) o

q(q;Q ) q(Q 1 ;q) g (Q 1 ;CI) = q(q;Q )qug (Q 1 ;Q ;CI) (2 ~12)
w here the ‘Sudakov factor’ Fgyg is

Fog Q170 i) = [ 4©Q1;0)T 4Q1;9) : (213)

Taken together with the contribution in which the quark branches instead of the
antiquark, this gives Eq. (2.3) after integration over Q; < g< Q.

For four or m ore fts, there are several branching con gurations w ith di erent
colour factors. The st term in the curly bracket of Eq. (2.4) com es from A belian
(Q ED —lke) contrlbutions such asFi. 2, w ith associated probability

q(Ql;Q) q(Ql;Q) 0 0 0
AL (@0) Q1) Qi) ——" (@%Q) 4Q1:9) Q1)
LQ e ) b il aT el ) b ) e i
= L@Q) ¢@%Q ) Fauy ©1;0 ;a;d) (2.14)

w here the Sudakov factor is now

Faqgs Q10 ;i) = [ qQ1;0)T 4@Q15q) 4Q1;d) : (2.15)



Figure 2: An Abelian four—gt contribution.

Figure 3: A non-Abelian four—gt contribution.

The second term in the curly bracket of Eq. (2.4) com es from contribbutions w ith
aqg! ggbranchingatscakgdllowed by g ! ggatscaled® (Fig.3). T he probability
of this is

(QI;Q) g(Ql;q) 0 0 0

01;0)—"— He) Qua)———— 5da) 4@Q1;9) 4Q159)

q( 1 ) q(Ql;q) q(q ) q( 17 g(Ql;(ﬁJ) g g /9 g 1/9 g 1/9
= @Q) 4@ F s Q150 ;) (216)

w here the factor F gy Is the sam e as that given In Eq. (2.15).
The nalterm in Eqg. (2.4) corresponds to diagram s like Fig. 3 except that the
branching at o’ isg ! og instead of g ! gg. The factor of (d’;q) is replaced by
(@) given by Eq. (2.7),and 4(Q1;q’) becomes ¢(Q1;q’) given by Eqg. (2.10).
T hus the Sudakov factor becom es

Foaqq©1:0 ;090 = [ 4Q1;0)T 4Q1;9) :@Q1;d): (217)

W e see that in general the overall Sudakov factor depends on the ncdalvalues of
the k; -scale q;¢°; 1 : :at which branching occurs, and on the types of partons involved.
There is an overall factor of [ 4(Q1;0 )]2 com ing from gg production at scale Q , a
factorof 4(Q1;9) when a gluon isem itted at scaleg,and a factor ¢(Q1;9)when a
gluon branches to quark-antiquark at scale g. A lthough we have explicitly discussed
only then = 2;3;4 £t rates, this structure of the Sudakov factor is vald for any n,
as can be derived from the generating function given in Ref. [14].



2.2 M atrix elem ent Im provem ent

W e can In prove the description of the 3—gt distrlbution throughout the region
Vog > YagiVey > Yini by usihg the full treeJevel m atrix elem ent squared M o F I
place of theN LL branching probability 4(g;Q ) inEq. (2.12). M ore precisely, we gen—
erate ggg m om entum con gurations according to the m atrix elem ent squared, w ith
resolution cuto yii = Q?=Q0?, and then weight each con guration by the Sudakov
factor Fyyq (Q 150 79) In Eg. (213), where g is given by Eqg. (2.11). For consistency
with Egs. (25){(2.7),we should also use g as the argum ent of the running coupling
In the m atrix elem ent squared.

Sin flarly in the four—gt case of Eq. (2.14) the product 4(q;Q ) q(qO;Q ) is an
approxin ation to the fullm atrix elem ent squared M qqggjz In the kinem atic region
w here yo4 and y,y are the sn allest interparton separations. Thus it is Jegitin ate in
NLL approxin ation to replace it by M qqggjz In that region. The rem aining factor
Fagg Q150 ;a;9°) In Eq. (2.14) is the extra Sudakov weight to be applied.

In general, we obtain an im proved description of the gt rates and distributions,
above the resolution value yii, by choosing the parton con gurations according to
the treelevel m atrix elem ents squared and then weighting them by a product of
Sudakov form factors. T he argum ents of the form factors and the running coupling
are given by the nodalvalues of the kr +esolution in the branching process, estin ated
by applying the kr <lustering algorithm to the parton con guration.

2.3 G eneral procedure

T he proposad procedure for generating €' e | n—ft con gurations at cm . energy
Q and Pt resolution vy, is thus as follow s:

1. Select the Bt multiplicity n and parton identities 1 w ith probability

(0)
ni

0) (g +4) =
P (n ,l) = Pm (2.18)
193 k;J
w here r(loi is the treedevel €' e | n—ft cross section at resolution yy,; =

0?=0?, calculated using a xed value (Q,) for the strong coupling. The
label i is to distinguish di erent parton identities w ith the sam e m ultiplicity,
eg.1= goggg orggag forn = 4. N is the Jargest gt m ultiplicity for which the
calculation can realistically be perform ed (N 6 currently). Errors w i1l then
be of relative order [ 1. eally, one should check that any given result is
Insensitive to N .

2. D istribute the #t m om enta according to the corresponding n-parton m atrix
elem ents squared M ;T ,again using xed (Q1).



3. U= the kr <clustering algorithm to determ ine the resolution valuesy, = 1 >
V3> 1:1:> Yy > yipiatwhich 2;3;:::;n Ets are resolved. T hese give the nodal
valuesofq; = Q P Y5 fora treediagram that speci es the k; -clustering sequence
for that con guration.

4. Apply a coupling-constant weight of (%) 5 () s@)=[ Q)% < 1.

5. For each ntemal line of type i1 from a node at scale g; to the next node at
G < gy, apply a Sudakov weight factor ;(Qq1;95)= :(Q1;%) < 1. For an
external Ine from a node at scale gj, the weight factor is ;(Q1;95). This
procedure gives the overall Sudakov factors F;(Q1;Q0 ;oz;:::;0, ) of Sect. 2.1.

6. A coept the con guration if the product of the coupling-constant weight and the
Sudakov factor isgreater than a random numberR 2 [0;1]times' [ 4(Q1;0)F.
O therw ise, retum to step 1.

Note that the weight assignm ent is a fully gauge=nvariant procedure relying only
on the types (quark or gluon) and m om enta of the nalstate partons. T he weight
factor is actually independent of the detailed structure of the clustering tree and is
the sam e as that for the Abelian (Q ED —like) graph w ith the sam e nodal scale values:
See, for exam ple, Egs. (2.14) and (2.16).

A n advantage of the above procedure is that it ad jasts the gt m ultiplicity distri-
bution to include the Sudakov and coupling-constant weights, w ithout the need for
Separate num erical integrations. T o prove this, note that the probability of accepting
an (n;i)parton nalstate, once selected, Ispp; = 4= Iioi, where . cldes the
weight factors. T he overall probability P (n;i) of selecting an (n;i)Jparton state is
the probability of refcting any state any num ber of tin es before nally accepting
the (n;i) state. Thus

2 3n
® TN (0) (0)
Pn;i= 4 ki 1 B )5 Pn;ipn;i
m=0 k;j
(0)
P ;ipn;i n;i
T Pinp0. . FTr=n i (219)
o~ ki kij

as required.

In the clustering step 3, attem pted clustering of partons w ill som etim es be
wrong’: for exam ple, a gqg nal state m ay be clustered rst as (gg)g. The nodal
value for the (qg) clustering is irrelevant to NLL accuracy since there is no associated
soft or collinear enhancem ent. H ence the optim al procedure is to forbid such a clus-
tering and continue until either (qg) or (gg) is clustered. In m ore com plicated cases,

‘M ultiplying by [ q@Q1:0 )} fncreasesthe e ciency of the procedure, since this constant factor
is alw ays present.



eg.qgaq, the clustering (qq) isallowed but (gg) and (og) shoud always be forbidden.
T his is sin ply achieved by m oving to the pair of ob Ects w ith the next-higher value
of yi; whenever the lowest value belongs to a forbidden com bination.

3. Vetoed Parton Show ers

3.1 A ngular ordering and veto procedure

H aving generated m ulti=gt distrdbutions above the resolution value yi,; according to
m atrix elem ents m odi ed by form factors, it rem ains to generate distributions at
Jow er values of y.,+ by m eans of parton showers. T his should be done in such a way
that thedom inant (LL and NLL ) dependence on the arbitrary param eter y;,; cancels.
Any residual dependence on yi,; could be exploited for tuning less singular term s to
obtain optin al agreem ent w ith data.

Note that yi; must set an upper lim it on interparton separations y;; generated
n the showers. O therw ise the exclusive gt rates at resolution yi,; could be changed
by showering. At st sight, this m ight suggest that we should evolre the showers
from the scale Q, = pr—-mi nstead of Q . However, this would corregpoond to using
transverse m om entum rather than angle as the evolution variable, and therefore it
would not lead to cancellation of the dependence on In yi;.

C onsider, for exam ple, the 2—pt rate at resolution yp = Q3=0% < yy,;. Iffwe start
from R, at scale Q, and then evolve from Q; to Q o, we obtain a 2—gt rate of

[ 4Q1;0) 4©Q0;01)T (31)

instead of the correct result
R,(Q0;0)= [ 4Q0;0)7T : (32)

T his isbecause, although the y;; values In the show ers are lim ited by yi,:, the angular
regions In which they evolve should still correspond to scale (energy tim es angle) Q
rather than Q. Consequently we should allow the showers to evolve from scale Q
but veto any branching w ith transverse m om entum g > Q 1, ie. the sslected parton
branching is forlbidden but that parton has its scale reset to the current value as an
upper Iim it for subsequent branching.

The 2—-ptrate at any scale Qg < Q; isnow given by the sum of probabilities of
0;1;2;:::vetoed branchings (represented by crosses In F ig.4) and no actual resolved
branchings. The sum of these probabilities for the quark line is

( Z Z z )

q
Q170) 4Q0;0) 1+ ) dg (@0 )+ ) da 4(@;Q) ) de’ 0+
1 '1 1
Z 4 :

= 4@Q1;9) 4Q0;Q)exp . dg 4(@;Q) : (33)



Figure 4: Vetoed showers on two—gt contribution.

Figure 5: Vetoed showers on contribution w ith two ftsat scale Q1 and threeat scale Q.

Figure 6: Vetoed showers on contribution w ith three gtsat scalesQ; and Q.

Com paring w ith Eqg. (2.8), we see that the serdes sum s to 1= 4(Q1;Q ), cancelling
the yi; dependence and giving  4(Q(;Q ). Sim ilarly for the antiquark line, so that
the product does indeed give Eqg. (32).

For the 3—pt rate at scale Qg < Q; there are two possibilities: either the event
is a 2—pt at scale Q1 and then has one branching resolved at scale Q o, or it is a
3—ptatscale Q; and ramains so at scale Qg. The rst case isdepicted In Fig. 5. Tts
probability is

00:0) %0
20 404;0)F =2

4q o (@0) 4©Q059) (3.4)
LQ170) g, b oadie) afeoid

while that of the second case (Fig.6) is



#57
Q00 0 Qos
_100/0) dg 4(@;Q) g(Ql;q)iq( s q): (35)

2[ 4©Q1;0)T
At 401;0) o 5(Q1;9)

The sum is Indeed yj—independent and equal to R3(Q¢;Q ) as given in Eq. (2.3).
Sim ilarly for higher £t multiplicities. A general proof of the cancellation of yii—
dependence to NLIL accuracy is given in Sect. 3.3.

3.2 Initial conditions for show ers

Notice in Eq. (3.5) that the vetoed parton shower from a glion created In a branching
atscaleg> Q; startsat scale g ratherthan Q orQ ;. On the otherhand, the shower
from the quark line starts at scale Q . In general, each vetoed shower on an extemal
parton line must start at the scale value of the node at which that parton was
‘created’, in order to cancel the Q 1 dependence of the associated Sudakov factor. In
the case of the branching g ! gg, the softer of the two gluons should be regarded as
the one “created’, the harder one being traced back to a node at a higher scale.
T he correct treatm ent of the branching g ! gg is m ore subtle, although less

crucial because this branching contributes only at NLL level. T he associated factor

£ (Ql;qo) In Eq. (24) is a correction rather than a form factor, representing the
conversion of a gluon ft into two quark Fts at scale ¢°. Consequently the optin al
treatm ent would be as Hllows: for a qg pair clustered at scale o, com ing from an
intemalglion line “reated’ at scale g > ¢°, one should generate a vetoed show er from
the gluon starting from scale g and evolving the harder gluon at each branching® down
to scale ¢, then sw itch to separate showers from the quark and antiquark starting at
scale . If this seem s unnecessarily com plicated for a next—to-Jeading contribution,
onem ay instead consider treating the quark and antiquark as being ‘created’ at the
higher scale g of their parent gluon. Then the colour factor which should be Cj,
between scales g and ¢ is approxin ated by 2Cy , an error of relative order 1=N CZ na
contrlbution that is already non—leading w ith regpect to In yiy;:.-

3.3 Proof of cancellation of yi,; dependence

Here we m ake use of the generating function form alisn and results of Ref. [14] to
prove the cancellation of yy;-dependence at NLL order. Recall that the NLL Et
fractions at k; resolution yy,; = Q?=0? in a quark t mitiated at scale Q are given
by !

1 e "
R (ymi= Q7=0%) = o an 9QiQive= ug= Wi, (3.6)

w here the quark—pgt generating function  is [14]

(g )
Q
q(@Q1;0 jugiug) = ugexp . dg 4@;Q) [ g@iiaiuqiug) 11 ; (3.7)

1

ST he softer gluion, on the other hand, is allowed to evolve down to the shower cuto  Qq.

10



g being the corresponding gluon—gt generating function. Now we wish to generate
the Pt fractions at som e Iower resolution value yo,e = Q32=07% < yy;. This is to
be done by replacing u; everywhere in Eq. (3.7) by a m odi ed generating function
"1(Q07Q 170 juqsug), representing the vetoed parton shower. To have the correct gt
fractions at scale Q ¢ we require that

1Q17Q774ig)= 1(Q0;Q ;uqiug) : (3.8)

Consequently we m ust have

(7 )

Q070 jugiug) = "4(Q0;Q1;0 juyiug)exp Qldq q@iQ)[ ¢Qoigaiugiug) 1]
(3.9)
Hence
C oz )
"4Q0:Q15Q jugiug) = 4(Q0iQ jugiug)exp Qldq ¢(@iQ) [ gQosaiugiug) 1]
(z . )
= UgeXp dg ¢@iQ)[ gQosaiugsug) 1] 5 (3.10)

Qo

using Eq. (3.7) with Q; replaced by Qg or 4(Q0;Q ;uq;ug). Thus the modi ed
generating function 4(Q ;01,0 jug;uy) di ers from the full generating function
¢(©Q0;Q juq;uy) only by having Q ; as the upper lin it on the g-ntegration in place
ofQ ,ie.by having a veto,g< Q. Note that Q remainsQ in the integrand 4, so
this is not equivalent to an unvetoed secondary shower starting at scale Q. Note
also that Q is the Initial scale of the quark—gt generating function in Eq. (3.7): as
pointed out in Sect. 3.2, this is the scale value of the node at which the extemal
quark is ‘created’.
A sin ilar result hods for gluion ®ts. The only di erence between quark and
gluon Fts concems the treatm ent of the branching g ! qg, asdiscussed in Sect.32.

3.4 Colour structure

T he vetoed shower from each parton evolves in the phase space for angulhar-orderad
branching [18]. This depends on the colour structure of the matrix element. As
flustrated In Fig. 7, the angular region forparton iisa cone bounded by the direction
of parton j (and vicewersa), where i and j are colourconnected. The upper Im it
on the scale in the vetoed shower for each parton is given by the energy of that
parton tin es the relevant cone angle. T his prescription identi es the cone angles for
the “Intrinsic’ radiation from each parton and is correct when the m atrix elem ent
describes parton con gurations ata hard scaleQ,; Q.

However, In our case som e of the hard partons are produced at the scale Q,
which ismuch larger than the resolution scale Q ;, and the relevant cone angles are
not set directly by the nal state at scale Q1. To cancel the dependence on the

11



Figure 7: Parton shower cones.

Jogarithm s of Q =Q ; to NLL precision, the vetoed shower has to include “interparton’
radiation [19], ie. soft gluons em itted at angles that are Jarger than the cone angles
for “intrinsic’” radiation. In the ggg case depicted in Fig. 1, for exam ple, the nodal
scale isq Egy . The vetoed shower from the antiquark has to include not only
gluons em itted at snaller angles 4 < 4 but also those em itted at Jarger angles,
o < g < g wWih energies less than Q= 4. These soft gluons an itted at large
angles are radiated coherently by the nalstate gluon and antiquark. T hus the cone
angle for the vetoed antiquark shower is oy and the nitialscale isEq o4 Q.

N otice that the starting conditions for the vetoed show ers are deduced from the
application of the kr <clustering algorithm to the parton con gurations generated
from them odi ed m atrix elam ents. Tt is not necessary to assign a colour structure
explicitly to the nalstateatscaleQ ; forthispurpose. T he relevant colour structures
are sam pled w ith the correct probabilities to cancel yi,-dependence to NLL order.
O n the other hand, ifa hadronization m odel (cluster or string) is to be applied after
the showers, a speci ¢ colour connection structure m ust be provided to the m odel.

TIf the colour structure isnot unique, colour connections can be selected according
to their relative contributions to the m atrix elem ent squared, which are wellde ned
in the Iim it that the num ber of colours N .. is large. C orrections to the largeN . lim it
are nom ally of relative order 1=N ?. For high parton m ultiplicity, when the colour
structure isnot easily com putable even at largeN ., onem ay use the clustering schem e
as a rst approxim ation in assigning colour connections. This is the procedure we
shall adopt in Sect. 4.

4. R esults

An approxin ate version of the procedure described above has been in plam ented In
version 1.1 of the event generator APACIC++ [20]as follow s:
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. Cross sections  |?) for the production of 2, 3, 4, and 5 “ts according to som e
vini are calculated at the tree{level. T he tree{level cross sections are translated
Into rates via

0) 5

a5 (Yini) X
Raus (Vi) = —205—— i Rolym)=1  Rilym): (41)
2 i=3

For each number 3, 4, and 5 of gts, the argum ent of ¢ is chosen to be 07,
w here the factors 3,45 are ad justable param eters chosen to reproduce them ea—
sured et rates. Note that thisdeterm ination of the gt rates is slightly di erent
from the one outlined in Sect. 2.3, for sin plicity and to allow extra freedom in

tting the m easured rates.

. The number of partons and thelr avours are now chosen according to the
corresponding rates in Eqg. (4.1).

. The four{m om enta of the Pts are generated according to the appropriate tree{
level m atrix elem ent.

. The k; {clustering algorithm is applied sequentially untilonly two fts rem ain.
T he event is accepted w ith probability equal to the weight assigned to the
sequence of clustering, com puted as described in points 4 and 5 of Sect. 2.3.
A s recomm ended there, the rem aining two Fts are “orced’ to be a quark{
antiquark pair. W hen an event is rejected, a new con guration ofm om enta is
chosen, ie. the program retums to step 3.

. Next the colour con guration is chosen to be identical to the topology obtained
in the clustering step above.

. Finally, parton show ers are generated on extemal lines according to the APACIC++
algorithm described in R ef. [20 ], except that a veto on am ission w ith transverse
m om entum greater than Q1 is applied. Tn APACIC++, the evolution variable is
virtuality and angular ordering is in posed. T he nitial conditions on the show -
ers appear som ew hat m ore restrictive than those proposed in Sect. 3.2, and so
a slight reduction iIn Q CD radiation is expected In this approxim ate in plem en—
tation of the veto procedure.

Note that within APACIC++, m ore options for the steps outlined above exist,

which are descrlbbed In som e detail in the manual [20]. For instance, gt rates can
be chosen according to the NLL {rates of Egs. (22{24), in clustering to two Pts the
con guration can be refcted if the two ram aining gt avours do not correspond to

an quark {antiquark pair, and the colour con guration of the Pgts can be chosen in a
probabilistic fashion follow ing the prescription of Ref. [61].

However, we nd at present that the procedure above yields the best agreem ent

w ith experin entaldata. It Jeaves a num ber of param eters to be tuned, nam ely
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1. The value of  at som e reference scale. W e have chosen the scale of LEP 1,
the Z {pole. For the results displayed in the Figures, ;= 0:1127 was found in
the tune of Ref. 211].

2. The value of the £t resolution param eter y;,; at which one divides the phase
Space Into a region populated by them atrix elem ents and the region populated
by the parton showers. Theweak (beyond NLL ) dependence on this param eter
has been em ployed for optim izing agreem ent w ith data. In the tune, the value
of yin; was xed to yyni= 10 2%,

3. The values of the three scale factors 345. These are supposed to com pensate
to som e extent for the absence of sublading corrections to gt rates at the
parton level. The tune gave 3,5 = 10 3% 1487 3:08

T he param eters above togetherw ith the nfrared cut{o oftheparton showerand
som e fragm entation param eters have been tuned recently; form oredetailswe refer to
[21]. In the ollow ing we display som e illustrative results, com paring the perform ance
of APACIC++ w ith the standard event generators HERWIG [22], PYTHIA [23], ARIADNE
[24]and w ith data taken by the DELPH I collaboration. T he param eters of HERWIG,
PYTHIA and ARIADNE were tuned in Refs. [25], [26]and [27], respectively.

In Fig. 8 we depict the di erential et rates at the Z {pol as functions of the
variable v, , which is the value of y,+ at which an n—gt event becomesan (n  1)-
£t event. C learly, all three event generators depicted here reproduce the shape of
the distributions: deviations are on the level of at most 205 in the statistically
signi cant bins. In general, APACIC++ tends to underestin ate the st bins of the
3! 2and 4! 3distrbutions with an overshoot in the higher bins. T his behaviour
is som ew hat reversed forthe 5 ! 4 distribution.

Integrated gt rates taken at a cm . energy of 189 G&V , de naed here by the
C am bridge algorithm [28], aredisplayed in Fig. 9. T hey dem onstrate that APACIC++
extrapolates correctly to higher energies w ith all param eters xed at the Z {pole.

To show that the approach outlined above does indeed reproduce not only the
correct num ber of etsbut also the overall shape of the events, we digplay som e event
shapes taken at the Z {pok (Fi.10).

InFig.1ll wedepict som em om entum spectra. H ere, all the event generators tend
to underestin ate the high-m om entum regions. G iven the fact that the overall shapes
of the events tend to be reproduced fairly well by the generators, one is tem pted
to conclude that this re ects a Jack of particle m ultiplicity in the high-m om entum
regions.

However, it should be stressed that the error bands in the right-hand plots con—
sists of experin ental ervors { statistical and system atical { only. M onte{C arlo errors
of the event generators are not included. To give som e idea of the relative size of
these errors, the num bers of events for the plotsat 91 G &V are listed in Tablke 1.
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DELPHTI

A riadne

Hemw g

Pythia

APACIC+ +

350000

2000000

250000

2000000

500000

Table 1: Number of events used to generate the plots.

5.Comm ents/C onclusions

M odi ed m atrix elem ents plus vetoed parton show ers, interfaced at som e value
Vini Of the k; resolution param eter, provide a convenient way to describe simul-
taneously the hard m ulti=gt and gt fragm entation regions.

The m atrix elem ent m odi cations are coupling-constant and Sudakov weights
com puted directly from the k; <lustering sequence, which also serves to de ne
the initial conditions for the parton showers.

D ependence on y; is cancelled to NLL accuracy by vetoing yij > yni In the

parton show ers.

T his prescription avoids double-counting problem s and m issed phase-space re-

gions.

In principle one neads the tree{level m atrix eleam ents M n,.ijz for yaur > Ving at

all values of the parton m ultiplicity n. Tnh practice, if we have n

m ust be chosen large enough OrR .y (Vini) T be negligble.

N , then yin

An approxin ate version of this approach (with N = 5) hasbeen im plem ented

In the event generator APACIC++ [20]. T he results look prom ising: a rather good

description of m ulti=pt obsarvables can be achieved, and residual dependence

on yi; isweak.

Tt should be possible to extend this approach to lepton-hadron and hadron—
hadron collisions. Tn particular, the procedure discussed in Sects. 2 and 3 can be
extended to desp—inelastic lepton-hadron scattering by using the corresponding
calculation of m ulti-gt rates perform ed in Ref. [29].

Extension to NLO along the lines of Refs. [9{12]m ay also be possible.

Taken together, the results show su cient agreem ent w ith data to conclude that
this approach to combining m atrix elem ents and parton showers is successfiil and
m erges the bene tsofboth in a rather sin ple way. T his approach can also be usad to
Introduce corrections due to the nitem ass of Iight (w ith regpect to the cm . energy)
quarks, by com bining the m assivequark m atrix elem ents w ith the corresponding
angularordered parton shower [30]. It has to be m entioned, however, that som e
signi cant deviations from the data rem ain. T herefore, additional in provem ents

15



such as the inclusion of NLO m atrix elem ents seem to be necessary to achieve better
agream ent.
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Figure 8: Dierential3! 2,4 ! 3,and 5! 4 gtrates In the Durham algorithm at the
Z {pole. DELPH I data (points) are com pared to results (curves) of parton shower M onte
C arlo generators. T he shaded regions denote the size of the experin ental errors.
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