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Abstract: We propose a method for combining QCD matrix elements and parton
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jet resolution, defined according to the kT -clustering algorithm. The matrix elements

are modified by Sudakov form factors and the parton showers are subjected to a veto
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1. Introduction

The Monte Carlo simulation of multi-jet hadronic final states is a challenging problem

that has great practical importance in the search for new physics processes at present

and future colliders. For example, the accurate simulation of 4-jet backgrounds was a

central issue in the search for the Higgs boson at LEP2, and multi-jets will be a key

ingredient in signatures of supersymmetry at the LHC.

Two extreme approaches to simulating multi-jets can be formulated as follows. One

can use the corresponding matrix elements, which are available at leading, or in a few

cases next-to-leading, order in αS, with bare partons representing jets. Alternatively one

can use the parton model to generate the simplest possible final state (e.g. e+e− → qq̄)

and produce additional jets by parton showering.

In the matrix-element approach, a full simulation of the final state is impossible

unless one adds a model for the conversion of the produced partons into hadrons. Any

realistic model will include parton showering, and then one has the problem of extra

jet production during showering and potential double counting of jet configurations.

On the other hand the pure parton shower approach gives a poor simulation of config-

urations with several widely separated jets.

The interfacing of matrix-element and parton-shower event generators is a topic of

great current interest [1–4]. For earlier work on combining these approaches see Refs. [5–

12]. Here we suggest a method in which the domains of applicability of matrix elements

and parton showers are clearly separated at a given value yini of the jet resolution

variable ycut, defined according to the kT -algorithm [13,14] for jet clustering (sometimes

called the Durham algorithm). Recall that two objects i and j are resolved according

to the kT -algorithm if

yij ≡ 2 min{E2
i , E

2
j }(1− cos θij)/Q

2 > ycut (1.1)

where Ei,j are the energies of the objects, θij is the angle between their momenta and

Q is the overall energy scale (the c.m. energy in e+e− annihilation). Two objects that

are not resolved are clustered by combining their four-momenta as p(ij) = pi + pj.

The method we propose has the following features: At ycut > yini multi-jet cross

sections and distributions are given by matrix elements modified by Sudakov form

factors. At ycut < yini they are given by parton showers subjected to a ‘veto’ procedure,
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which cancels the yini dependence of the modified matrix elements to next-to-leading

logarithmic (NLL) accuracy.

Note that we do not attempt to give a complete description of any configuration to

next-to-leading order (NLO) in αS, which is why we refer to “combined” rather than

“matched” matrix elements and showers. Procedures to combine parton showers with

the matrix element corrections due to the first (i.e. at the first relative order in αS)

hard multi-jet configuration were considered in Refs. [5–7]. Such procedures might be

improved by including first-order virtual corrections (see Refs. [9–12]). For the present,

our main objective is to describe any hard multi-jet configuration to leading order,

i.e. O(αn−2
S ) for n jets in e+e− annihilation, together with jet fragmentation to NLL

accuracy, while avoiding major problems of double counting and/or missed phase-space

regions.

In the present paper we consider the case of e+e− annihilation only. In Sect. 2

we recall the NLL expressions for e+e− jet rates, and show how they can be used to

develop a systematic procedure for improving the tree-level predictions of multi-parton

configurations above some jet resolution yini. Then in Sect. 3 we show how to combine

these modified matrix-element configurations with parton showers, in such a way that

dependence on yini is cancelled to NLL precision. In Sect. 4 we show results of an

approximate Monte Carlo implementation of the above scheme, and finally in Sect. 5

we present brief comments and conclusions.

2. Modified matrix elements

2.1. NLL jet rates and Sudakov factors

The exclusive e+e− n-jet fractions at c.m. energy Q and kT -resolution

yini = Q2
1/Q

2 (2.1)

are given to NLL accuracy1 for n = 2, 3, 4 by [14]

R2(Q1, Q) = [∆q(Q1, Q)]2 , (2.2)

R3(Q1, Q) = 2 [∆q(Q1, Q)]2
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q) , (2.3)

R4(Q1, Q) = 2 [∆q(Q1, Q)]2
{

∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ Q

Q1

dq′ Γq(q
′, Q)∆g(Q1, q

′)

+
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ q

Q1

dq′ Γg(q
′, q)∆g(Q1, q

′)

+
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∫ q

Q1

dq′ Γf(q
′)∆f (Q1, q

′)

}
(2.4)

1By NLL accuracy, we mean that the leading and next-to-leading logarithmic contributions
αn

S ln2n Q/Q1 and αn
S ln2n−1 Q/Q1 are included in the expressions for Rn(Q1, Q).
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where Γq,g,f are q → qg, g → gg and g → qq̄ branching probabilities

Γq(q, Q) =
2CF

π

αS(q)

q

(
ln

Q

q
− 3

4

)
(2.5)

Γg(q, Q) =
2CA

π

αS(q)

q

(
ln

Q

q
− 11

12

)
(2.6)

Γf(q) =
Nf

3π

αS(q)

q
, (2.7)

CF = (N2
c − 1)/2Nc and CA = Nc for Nc colours, Nf is the number of active flavours,

and ∆q,g are the quark and gluon Sudakov form factors

∆q(Q1, Q) = exp

(
−
∫ Q

Q1

dq Γq(q, Q)

)
(2.8)

∆g(Q1, Q) = exp

(
−
∫ Q

Q1

dq [Γg(q, Q) + Γf(q)]

)
(2.9)

with

∆f (Q1, Q) = [∆q(Q1, Q)]2 /∆g(Q1, Q) . (2.10)

The QCD running coupling αS(q) is defined in the MS renormalization scheme. Part

of the contributions beyond NLL order can be included in the calculation by using the

definition of αS(q) in the bremsstrahlung scheme of Ref. [15].

The Sudakov form factors ∆i(Q1, Q) for i = q, g represent the probability2 for a

quark or gluon to evolve from scale Q to scale Q1 without any branching (resolvable at

scale Q1). Thus R2 is simply the probability that the produced quark and antiquark

both evolve without branching. More generally, the probability for a parton of type

i to evolve from scale Q to q ≥ Q1 without branching (resolvable at scale Q1) is

∆i(Q1, Q)/∆i(Q1, q).

In the expression (2.3) for R3, a gluon jet is resolved at scale q where

min{yqg, yq̄g} = q2/Q2 . (2.11)

Recall that in coherent parton branching the evolution variable is the emission angle

[16] and the corresponding scale is the parton energy times the angle [17]. In the

contribution depicted in Fig. 1, the energy and angular regions of the phase space

that dominate at NLL order are Q ∼ Eq ∼ Eq̄ > Eg and 1 ∼ θqq̄ > θq̄g. The quark

evolves from scale Eqθqq̄ ∼ Q to Q1 without branching, while the antiquark evolves

from Eq̄θqq̄ ∼ Q to q̃ ∼ Eq̄θq̄g and then branches. The resulting antiquark evolves from

q̃ to Q1, while the gluon evolves from q ∼ Egθq̄g to Q1, both without branching. Thus

the overall NLL probability is

∆q(Q1, Q)
∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)∆g(Q1, q) = Γq(q, Q) Fqq̄g(Q1, Q; q) (2.12)

2The NLL approximate expressions in Eqs. (2.5,2.6) can lead to ∆i > 1. In that case one should
replace ∆i > 1 by 1.
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Figure 1: Branching structure of three-jet final state.
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Figure 2: An Abelian four-jet contribution.

where the ‘Sudakov factor’ Fqq̄g is

Fqq̄g(Q1, Q; q) = [∆q(Q1, Q)]2 ∆g(Q1, q) . (2.13)

Taken together with the contribution in which the quark branches instead of the anti-

quark, this gives Eq. (2.3) after integration over Q1 < q < Q.

For four or more jets, there are several branching configurations with different colour

factors. The first term in the curly bracket of Eq. (2.4) comes from Abelian (QED-like)

contributions such as Fig. 2, with associated probability

∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)∆g(Q1, q)

∆q(Q1, Q)

∆q(Q1, q̃′)
Γq(q

′, Q)∆q(Q1, q̃
′)∆g(Q1, q

′)

= Γq(q, Q) Γq(q
′, Q) Fqq̄gg(Q1, Q; q, q′) (2.14)

where the Sudakov factor is now

Fqq̄gg(Q1, Q; q, q′) = [∆q(Q1, Q)]2 ∆g(Q1, q)∆g(Q1, q
′) . (2.15)

The second term in the curly bracket of Eq. (2.4) comes from contributions with a

q → qg branching at scale q followed by g → gg at scale q′ (Fig. 3). The probability of

this is

∆q(Q1, Q)
∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)

∆g(Q1, q)

∆g(Q1, q̃′)
Γg(q

′, q)∆g(Q1, q
′)∆g(Q1, q̃

′)

= Γq(q, Q) Γg(q
′, q) Fqq̄gg(Q1, Q; q, q′) (2.16)
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Figure 3: A non-Abelian four-jet contribution.

where the factor Fqq̄gg is the same as that given in Eq. (2.15).

The final term in Eq. (2.4) corresponds to diagrams like Fig. 3 except that the

branching at q′ is g → qq̄ instead of g → gg. The factor of Γg(q
′, q) is replaced by

Γf(q
′) given by Eq. (2.7), and ∆g(Q1, q

′) becomes ∆f (Q1, q
′) given by Eq. (2.10). Thus

the Sudakov factor becomes

Fqq̄qq̄(Q1, Q; q, q′) = [∆q(Q1, Q)]2 ∆g(Q1, q)∆f(Q1, q
′) . (2.17)

We see that in general the overall Sudakov factor depends on the nodal values of

the kT -scale q, q′, . . . at which branching occurs, and on the types of partons involved.

There is an overall factor of [∆q(Q1, Q)]2 coming from qq̄ production at scale Q, a factor

of ∆g(Q1, q) when a gluon is emitted at scale q, and a factor ∆f (Q1, q) when a gluon

branches to quark-antiquark at scale q. Although we have explicitly discussed only the

n = 2, 3, 4 jet rates, this structure of the Sudakov factor is valid for any n, as can be

derived from the generating function given in Ref. [14].

2.2. Matrix element improvement

We can improve the description of the 3-jet distribution throughout the region yqq̄ >

yqg, yq̄g > yini by using the full tree-level matrix element squared |Mqq̄g|2 in place of the

NLL branching probability Γq(q, Q) in Eq. (2.12). More precisely, we generate qq̄g mo-

mentum configurations according to the matrix element squared, with resolution cutoff

yini = Q2
1/Q

2, and then weight each configuration by the Sudakov factor Fqq̄g(Q1, Q; q)

in Eq. (2.13), where q is given by Eq. (2.11). For consistency with Eqs. (2.5)–(2.7),

we should also use q as the argument of the running coupling in the matrix element

squared.

Similarly in the four-jet case of Eq. (2.14) the product Γq(q, Q)Γq(q
′, Q) is an approx-

imation to the full matrix element squared |Mqq̄gg|2 in the kinematic region where yqg

and yq̄g′ are the smallest interparton separations. Thus it is legitimate in NLL approxi-

mation to replace it by |Mqq̄gg|2 in that region. The remaining factor Fqq̄gg(Q1, Q; q, q′)
in Eq. (2.14) is the extra Sudakov weight to be applied.

In general, we obtain an improved description of the jet rates and distributions,

above the resolution value yini, by choosing the parton configurations according to the
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tree-level matrix elements squared and then weighting them by a product of Sudakov

form factors. The arguments of the form factors and the running coupling are given by

the nodal values of the kT -resolution in the branching process, estimated by applying

the kT -clustering algorithm to the parton configuration.

2.3. General procedure

The proposed procedure for generating e+e− → n-jet configurations at c.m. energy Q

and jet resolution yini is thus as follows:

1. Select the jet multiplicity n and parton identities i with probability

P (0)(n, i) =
σ

(0)
n,i∑k=N

k,j σ
(0)
k,j

(2.18)

where σ
(0)
n,i is the tree-level e+e− → n-jet cross section at resolution yini = Q2

1/Q
2,

calculated using a fixed value αS(Q1) for the strong coupling. The label i is to

distinguish different parton identities with the same multiplicity, e.g. i = qq̄gg

or qq̄qq̄ for n = 4. N is the largest jet multiplicity for which the calculation can

realistically be performed (N ∼ 6 currently). Errors will then be of relative order

αN−1
S

. Ideally, one should check that any given result is insensitive to N .

2. Distribute the jet momenta according to the corresponding n-parton matrix ele-

ments squared |Mn,i|2, again using fixed αS(Q1).

3. Use the kT -clustering algorithm to determine the resolution values y2 = 1 > y3 >

. . . > yn > yini at which 2, 3, . . . , n jets are resolved. These give the nodal values

of qj = Q
√

yj for a tree diagram that specifies the kT -clustering sequence for that

configuration.

4. Apply a coupling-constant weight of αS(q3)αS(q4) · · ·αS(qn)/[αS(Q1)]
n−2 < 1.

5. For each internal line of type i from a node at scale qj to the next node at qk < qj ,

apply a Sudakov weight factor ∆i(Q1, qj)/∆i(Q1, qk) < 1. For an external line

from a node at scale qj , the weight factor is ∆i(Q1, qj). This procedure gives the

overall Sudakov factors Fi(Q1, Q; q3, . . . , qn) of Sect. 2.1.

6. Accept the configuration if the product of the coupling-constant weight and the

Sudakov factor is greater than a random number R ∈ [0, 1] times3 [∆q(Q1, Q)]2.

Otherwise, return to step 1.

Note that the weight assignment is a fully gauge-invariant procedure relying only on

the types (quark or gluon) and momenta of the final-state partons. The weight factor

3Multiplying by [∆q(Q1, Q)]2 increases the efficiency of the procedure, since this constant factor is
always present.
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is actually independent of the detailed structure of the clustering tree and is the same

as that for the Abelian (QED-like) graph with the same nodal scale values: see, for

example, Eqs. (2.14) and (2.16).

An advantage of the above procedure is that it adjusts the jet multiplicity distri-

bution to include the Sudakov and coupling-constant weights, without the need for

separate numerical integrations. To prove this, note that the probability of accepting

an (n, i)-parton final state, once selected, is pn,i = σn,i/σ
(0)
n,i , where σn,i includes the

weight factors. The overall probability P (n, i) of selecting an (n, i)-parton state is the

probability of rejecting any state any number of times before finally accepting the (n, i)

state. Thus

P (n, i) =
∞∑

m=0


k=N∑

k,j

P
(0)
k,j (1− pk,j)




m

P
(0)
n,i pn,i

=
P

(0)
n,i pn,i∑k=N

k,j P
(0)
k,j pk,j

=
σn,i∑k=N

k,j σk,j

, (2.19)

as required.

In the clustering step 3, attempted clustering of partons will sometimes be ‘wrong’:

for example, a qq̄g final state may be clustered first as (qq̄)g. The nodal value for

the (qq̄) clustering is irrelevant to NLL accuracy since there is no associated soft or

collinear enhancement. Hence the optimal procedure is to forbid such a clustering and

continue until either (qg) or (q̄g) is clustered. In more complicated cases, e.g. qq̄qq̄, the

clustering (qq̄) is allowed but (qq) and (q̄q̄) should always be forbidden. This is simply

achieved by moving to the pair of objects with the next-higher value of yij whenever

the lowest value belongs to a forbidden combination.

3. Vetoed Parton Showers

3.1. Angular ordering and veto procedure

Having generated multi-jet distributions above the resolution value yini according to

matrix elements modified by form factors, it remains to generate distributions at lower

values of ycut by means of parton showers. This should be done in such a way that

the dominant (LL and NLL) dependence on the arbitrary parameter yini cancels. Any

residual dependence on yini could be exploited for tuning less singular terms to obtain

optimal agreement with data.

Note that yini must set an upper limit on interparton separations yij generated in

the showers. Otherwise the exclusive jet rates at resolution yini could be changed by

showering. At first sight, this might suggest that we should evolve the showers from the

scale Q1 = Q
√

yini instead of Q. However, this would correspond to using transverse

momentum rather than angle as the evolution variable, and therefore it would not lead

to cancellation of the dependence on ln yini.
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Figure 4: Vetoed showers on two-jet contribution.

Consider, for example, the 2-jet rate at resolution y0 = Q2
0/Q

2 < yini. If we start

from R2 at scale Q1 and then evolve from Q1 to Q0, we obtain a 2-jet rate of

[∆q(Q1, Q)∆q(Q0, Q1)]
2 (3.1)

instead of the correct result

R2(Q0, Q) = [∆q(Q0, Q)]2 . (3.2)

This is because, although the yij values in the showers are limited by yini, the angular

regions in which they evolve should still correspond to scale (energy times angle) Q

rather than Q1. Consequently we should allow the showers to evolve from scale Q

but veto any branching with transverse momentum q > Q1, i.e. the selected parton

branching is forbidden but that parton has its scale reset to the current value as an

upper limit for subsequent branching.

The 2-jet rate at any scale Q0 < Q1 is now given by the sum of probabilities of

0, 1, 2, . . . vetoed branchings (represented by crosses in Fig. 4) and no actual resolved

branchings. The sum of these probabilities for the quark line is

∆q(Q1, Q)∆q(Q0, Q)

{
1 +

∫ Q

Q1

dq Γq(q, Q) +
∫ Q

Q1

dq Γq(q, Q)
∫ q

Q1

dq′ Γq(q
′, Q) + · · ·

}

= ∆q(Q1, Q)∆q(Q0, Q) exp

(∫ Q

Q1

dq Γq(q, Q)

)
. (3.3)

Comparing with Eq. (2.8), we see that the series sums to 1/∆q(Q1, Q), cancelling the

yini dependence and giving ∆q(Q0, Q). Similarly for the antiquark line, so that the

product does indeed give Eq. (3.2).

For the 3-jet rate at scale Q0 < Q1 there are two possibilities: either the event is

a 2-jet at scale Q1 and then has one branching resolved at scale Q0, or it is a 3-jet at

scale Q1 and remains so at scale Q0. The first case is depicted in Fig. 5. Its probability

is

2[∆q(Q1, Q)]2
[
∆q(Q0, Q)

∆q(Q1, Q)

]2 ∫ Q1

Q0

dq Γq(q, Q)∆g(Q0, q) (3.4)

while that of the second case (Fig. 6) is
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Figure 5: Vetoed showers on contribution with two jets at scale Q1 and three at scale Q0.
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Figure 6: Vetoed showers on contribution with three jets at scales Q1 and Q0.

2[∆q(Q1, Q)]2
[
∆q(Q0, Q)

∆q(Q1, Q)

]2 ∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∆g(Q0, q)

∆g(Q1, q)
. (3.5)

The sum is indeed yini-independent and equal to R3(Q0, Q) as given in Eq. (2.3). Simi-

larly for higher jet multiplicities. A general proof of the cancellation of yini-dependence

to NLL accuracy is given in Sect. 3.3.

3.2. Initial conditions for showers

Notice in Eq. (3.5) that the vetoed parton shower from a gluon created in a branching

at scale q > Q1 starts at scale q rather than Q or Q1. On the other hand, the shower

from the quark line starts at scale Q. In general, each vetoed shower on an external

parton line must start at the scale value of the node at which that parton was ‘created’,

in order to cancel the Q1 dependence of the associated Sudakov factor. In the case of

the branching g → gg, the softer of the two gluons should be regarded as the one

‘created’, the harder one being traced back to a node at a higher scale.

The correct treatment of the branching g → qq̄ is more subtle, although less crucial

because this branching contributes only at NLL level. The associated factor ∆f(Q1, q
′)

in Eq. (2.4) is a correction rather than a form factor, representing the conversion of a

gluon jet into two quark jets at scale q′. Consequently the optimal treatment would

be as follows: for a qq̄ pair clustered at scale q′, coming from an internal gluon line

‘created’ at scale q > q′, one should generate a vetoed shower from the gluon starting
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from scale q and evolving the harder gluon at each branching4 down to scale q′, then

switch to separate showers from the quark and antiquark starting at scale q′. If this

seems unnecessarily complicated for a next-to-leading contribution, one may instead

consider treating the quark and antiquark as being ‘created’ at the higher scale q of

their parent gluon. Then the colour factor which should be CA between scales q and

q′ is approximated by 2CF , an error of relative order 1/N2
c in a contribution that is

already non-leading with respect to ln yini.

3.3. Proof of cancellation of yini dependence

Here we make use of the generating function formalism and results of Ref. [14] to prove

the cancellation of yini-dependence at NLL order. Recall that the NLL jet fractions at

kT -resolution yini = Q2
1/Q

2 in a quark jet initiated at scale Q are given by

R(q)
n (yini = Q2

1/Q
2) =

1

n!

(
∂

∂u

)n

φq(Q1, Q; uq = ug = u)|u=0 (3.6)

where the quark-jet generating function φq is [14]

φq(Q1, Q; uq, ug) = uq exp

{∫ Q

Q1

dq Γq(q, Q) [φg(Q1, q; uq, ug)− 1]

}
, (3.7)

φg being the corresponding gluon-jet generating function. Now we wish to gener-

ate the jet fractions at some lower resolution value ycut = Q2
0/Q

2 < yini. This is to

be done by replacing ui everywhere in Eq. (3.7) by a modified generating function

φ̃i(Q0, Q1, Q; uq, ug), representing the vetoed parton shower. To have the correct jet

fractions at scale Q0 we require that

φi(Q1, Q; φ̃q, φ̃g) = φi(Q0, Q; uq, ug) . (3.8)

Consequently we must have

φq(Q0, Q; uq, ug) = φ̃q(Q0, Q1, Q; uq, ug) exp

{∫ Q

Q1

dq Γq(q, Q) [φg(Q0, q; uq, ug)− 1]

}
.

(3.9)

Hence

φ̃q(Q0, Q1, Q; uq, ug) = φq(Q0, Q; uq, ug) exp

{
−
∫ Q

Q1

dq Γq(q, Q) [φg(Q0, q; uq, ug)− 1]

}

= uq exp

{∫ Q1

Q0

dq Γq(q, Q) [φg(Q0, q; uq, ug)− 1]

}
, (3.10)

using Eq. (3.7) with Q1 replaced by Q0 for φq(Q0, Q; uq, ug). Thus the modified generat-

ing function φ̃q(Q0, Q1, Q; uq, ug) differs from the full generating function φq(Q0, Q; uq, ug)

4The softer gluon, on the other hand, is allowed to evolve down to the shower cut-off Q0.
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Figure 7: Parton shower cones.

only by having Q1 as the upper limit on the q-integration in place of Q, i.e. by having

a veto, q < Q1. Note that Q remains Q in the integrand Γq, so this is not equivalent

to an unvetoed secondary shower starting at scale Q1. Note also that Q is the initial

scale of the quark-jet generating function in Eq. (3.7): as pointed out in Sect. 3.2, this

is the scale value of the node at which the external quark is ‘created’.

A similar result holds for gluon jets. The only difference between quark and gluon

jets concerns the treatment of the branching g → qq̄, as discussed in Sect. 3.2.

3.4. Colour structure

The vetoed shower from each parton evolves in the phase space for angular-ordered

branching [18]. This depends on the colour structure of the matrix element. As illus-

trated in Fig. 7, the angular region for parton i is a cone bounded by the direction of

parton j (and vice-versa), where i and j are colour-connected. The upper limit on the

scale in the vetoed shower for each parton is given by the energy of that parton times

the relevant cone angle. This prescription identifies the cone angles for the ‘intrinsic’

radiation from each parton and is correct when the matrix element describes parton

configurations at a hard scale Q1 ∼ Q.

However, in our case some of the hard partons are produced at the scale Q, which

is much larger than the resolution scale Q1, and the relevant cone angles are not set

directly by the final state at scale Q1. To cancel the dependence on the logarithms of

Q/Q1 to NLL precision, the vetoed shower has to include ‘interparton’ radiation [19],

i.e. soft gluons emitted at angles that are larger than the cone angles for ‘intrinsic’

radiation. In the qq̄g case depicted in Fig. 1, for example, the nodal scale is q ∼ Egθq̄g.

The vetoed shower from the antiquark has to include not only gluons emitted at smaller

angles θg < θq̄g but also those emitted at larger angles, θq̄g < θg < θqq̄, with energies less

than Q1/θg. These soft gluons emitted at large angles are radiated coherently by the

final-state gluon and antiquark. Thus the cone angle for the vetoed antiquark shower

is θqq̄ and the initial scale is Eq̄θqq̄ ∼ Q.
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Notice that the starting conditions for the vetoed showers are deduced from the

application of the kT -clustering algorithm to the parton configurations generated from

the modified matrix elements. It is not necessary to assign a colour structure explicitly

to the final state at scale Q1 for this purpose. The relevant colour structures are sampled

with the correct probabilities to cancel yini-dependence to NLL order. On the other

hand, if a hadronization model (cluster or string) is to be applied after the showers, a

specific colour connection structure must be provided to the model.

If the colour structure is not unique, colour connections can be selected according

to their relative contributions to the matrix element squared, which are well-defined

in the limit that the number of colours Nc is large. Corrections to the large-Nc limit

are normally of relative order 1/N2
c . For high parton multiplicity, when the colour

structure is not easily computable even at large Nc, one may use the clustering scheme

as a first approximation in assigning colour connections. This is the procedure we shall

adopt in Sect. 4.

4. Results

An approximate version of the procedure described above has been implemented in

version 1.1 of the event generator APACIC++ [20] as follows:

1. Cross sections σ(0)
n for the production of 2, 3, 4, and 5 jets according to some yini

are calculated at the tree–level. The tree–level cross sections are translated into

rates via

R3,4,5(yini) =
σ

(0)
3,4,5(yini)

σ
(0)
2

, R2(yini) = 1−
5∑

i=3

Ri(yini) . (4.1)

For each number 3, 4, and 5 of jets, the argument of αs is chosen to be κiQ
2, where

the factors κ3,4,5 are adjustable parameters chosen to reproduce the measured jet

rates. Note that this determination of the jet rates is slightly different from the

one outlined in Sect. 2.3, for simplicity and to allow extra freedom in fitting the

measured rates.

2. The number of partons and their flavours are now chosen according to the corre-

sponding rates in Eq. (4.1).

3. The four–momenta of the jets are generated according to the appropriate tree–

level matrix element.

4. The kT –clustering algorithm is applied sequentially until only two jets remain.

The event is accepted with probability equal to the weight assigned to the se-

quence of clustering, computed as described in points 4 and 5 of Sect. 2.3. As

recommended there, the remaining two jets are ‘forced’ to be a quark–antiquark

pair. When an event is rejected, a new configuration of momenta is chosen, i.e.

the program returns to step 3.
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5. Next the colour configuration is chosen to be identical to the topology obtained

in the clustering step above.

6. Finally, parton showers are generated on external lines according to the APACIC++

algorithm described in Ref. [20], except that a veto on emission with transverse

momentum greater than Q1 is applied. In APACIC++, the evolution variable is

virtuality and angular ordering is imposed. The initial conditions on the showers

appear somewhat more restrictive than those proposed in Sect. 3.2, and so a slight

reduction in QCD radiation is expected in this approximate implementation of

the veto procedure.

Note that within APACIC++, more options for the steps outlined above exist, which

are described in some detail in the manual [20]. For instance, jet rates can be chosen

according to the NLL–rates of Eqs. (2.2–2.4), in clustering to two jets the configura-

tion can be rejected if the two remaining jet flavours do not correspond to an quark–

antiquark pair, and the colour configuration of the jets can be chosen in a probabilistic

fashion following the prescription of Ref. [6].

However, we find at present that the procedure above yields the best agreement

with experimental data. It leaves a number of parameters to be tuned, namely

1. The value of αs at some reference scale. We have chosen the scale of LEP 1, the

Z–pole. For the results displayed in the Figures, αS = 0.1127 was found in the

tune of Ref. [21].

2. The value of the jet resolution parameter yini at which one divides the phase space

into a region populated by the matrix elements and the region populated by the

parton showers. The weak (beyond NLL) dependence on this parameter has been

employed for optimizing agreement with data. In the tune, the value of yini was

fixed to yini = 10−2.4.

3. The values of the three scale factors κ3,4,5. These are supposed to compensate to

some extent for the absence of subleading corrections to jet rates at the parton

level. The tune gave κ3,4,5 = 10−1.35,−1.48,−3.08.

The parameters above together with the infrared cut–off of the parton shower and

some fragmentation parameters have been tuned recently; for more details we refer

to [21]. In the following we display some illustrative results, comparing the performance

of APACIC++ with the standard event generators HERWIG [22], PYTHIA [23], ARIADNE [24]

and with data taken by the DELPHI collaboration. The parameters of HERWIG, PYTHIA

and ARIADNE were tuned in Refs. [25], [26] and [27], respectively.

In Fig. 8 we depict the differential jet rates at the Z–pole as functions of the

variable yn, which is the value of ycut at which an n-jet event becomes an (n − 1)-jet

event. Clearly, all three event generators depicted here reproduce the shape of the

distributions: deviations are on the level of at most 20% in the statistically significant

13



DELPHI Ariadne Herwig Pythia APACIC++

350000 2000000 250000 2000000 500000

Table 1: Number of events used to generate the plots.

bins. In general, APACIC++ tends to underestimate the first bins of the 3 → 2 and

4 → 3 distributions with an overshoot in the higher bins. This behaviour is somewhat

reversed for the 5 → 4 distribution.

Integrated jet rates taken at a c.m. energy of 189 GeV, defined here by the Cam-

bridge algorithm [28], are displayed in Fig. 9. They demonstrate that APACIC++ ex-

trapolates correctly to higher energies with all parameters fixed at the Z–pole.

To show that the approach outlined above does indeed reproduce not only the

correct number of jets but also the overall shape of the events, we display some event

shapes taken at the Z–pole (Fig. 10).

In Fig. 11 we depict some momentum spectra. Here, all the event generators tend

to underestimate the high-momentum regions. Given the fact that the overall shapes

of the events tend to be reproduced fairly well by the generators, one is tempted to

conclude that this reflects a lack of particle multiplicity in the high-momentum regions.

However, it should be stressed that the error bands in the right-hand plots consists

of experimental errors – statistical and systematical – only. Monte–Carlo errors of the

event generators are not included. To give some idea of the relative size of these errors,

the numbers of events for the plots at 91 GeV are listed in Table 1.

5. Comments/Conclusions

• Modified matrix elements plus vetoed parton showers, interfaced at some value

yini of the kT -resolution parameter, provide a convenient way to describe simul-

taneously the hard multi-jet and jet fragmentation regions.

• The matrix element modifications are coupling-constant and Sudakov weights

computed directly from the kT -clustering sequence, which also serves to define

the initial conditions for the parton showers.

• Dependence on yini is cancelled to NLL accuracy by vetoing yij > yini in the

parton showers.

• This prescription avoids double-counting problems and missed phase-space re-

gions.

• In principle one needs the tree–level matrix elements |Mn,i|2 for ycut > yini at all

values of the parton multiplicity n. In practice, if we have n ≤ N , then yini must

be chosen large enough for Rn>N(yini) to be negligible.
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• An approximate version of this approach (with N = 5) has been implemented

in the event generator APACIC++ [20]. The results look promising: a rather good

description of multi-jet observables can be achieved, and residual dependence on

yini is weak.

• It should be possible to extend this approach to lepton-hadron and hadron-hadron

collisions. In particular, the procedure discussed in Sects. 2 and 3 can be extended

to deep-inelastic lepton-hadron scattering by using the corresponding calculation

of multi-jet rates performed in Ref. [29].

• Extension to NLO along the lines of Refs. [9–12] may also be possible.

Taken together, the results show sufficient agreement with data to conclude that this

approach to combining matrix elements and parton showers is successful and merges

the benefits of both in a rather simple way. This approach can also be used to introduce

corrections due to the finite mass of light (with respect to the c.m. energy) quarks, by

combining the massive-quark matrix elements with the corresponding angular-ordered

parton shower [30]. It has to be mentioned, however, that some significant deviations

from the data remain. Therefore, additional improvements such as the inclusion of

NLO matrix elements seem to be necessary to achieve better agreement.
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Figure 8: Differential 3 → 2, 4 → 3, and 5 → 4 jet rates in the Durham algorithm at the
Z–pole. DELPHI data (points) are compared to results (curves) of parton shower Monte
Carlo generators. The shaded regions denote the size of the experimental errors.
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Figure 9: Integrated 2– and 3–jet rates defined by the Cambridge algorithm at
√

s =
189 GeV. Note that the jet rates predicted by APACIC++ are in good agreement with the
experimental ones in the regime of the matrix elements, i.e. to the right of log10 yini = −2.4
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Figure 10: Some event shape (thrust, major and minor) distributions at the Z–pole.
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Figure 11: Scaled-momentum (x = 2p/
√

s), pin
t and pout

t spectra at the Z–pole.
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