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Event Texture Search for Phase Transitions in Pb + Pb Collisions
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I. INTRODUCTION

The main experimental challenge in relativistic heavy
ion collisions is to find evidence for the expected QCD
phase transition at high temperature. Deconfinement
and chiral symmetry restoration are expected to take
place during the hot, strongly interacting stage early in
the collision. As a phase transition in such collisions is
inherently a multiparticle phenomenon, multiparticle ob-
servables, defined on event-by-event basis, are of great
interest. Recently published event-by-event analyses of
the 158 GeV/A Pb+Pb data either analyze a small num-
ber of events [1] in great detail, or analyze properties of a
large ensemble of events using a single observable (pT ) to
compare different ensemble averages[2]. In the first case,
accumulation of feature information from large data sets
remains an open issue. In the second case, an ensemble
average on a set of post-freeze-out events is not represen-
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tative of the pre-freeze-out history of those events, due to
the dramatic non-stationarity of the open system, with
a consequent lack of ergodicity. Violations of ergodicity
generally happen in the course of phase transitions[3].

We concentrate on texture, or local fluctuation observ-
ables, analyzing single events independently to determine
the scale composition of fluctuations. In the following,
we may omit the term “local”, but we will always talk
about fluctuations in the particle density from one point
to another within a single event, i.e. in the local sense,
as opposed to fluctuations of global quantities from one
event to another.

In 1985, L. Van Hove formulated a model of quark-
gluon plasma hadronization[4] with a first order phase
transition. Longitudinal expansion of the colliding sys-
tem, with particle formation via string or color flux tube
breaking, can result in plasma droplets as large as a few
fm across. The droplets hadronize by deflagration[5].
This is expected to result in dN/ dy distributions with
bumps or spikes on top of an otherwise smooth struc-
ture. Other models[6] also predict bubbles of one phase
embedded in the other.

In the absence of a direct, event-by-event observable-
based test of these predictions, the picture had been fur-
ther developed [7, 8] in order to connect it with the tra-
ditional observables such as the mT slope parameter T
and the baryon and strangeness chemical potentials: the
hadron “temperatures” T in the SPS data are higher than
lattice QCD predictions for a phase transition tempera-
ture. Using a first order phase transition hydrodynamical
model with a sharp front between the phases, Bilic et al.

[7, 8] concluded that a QGP supercooling and hadron gas
superheating is a consequence of the continuity equations
and of the requirement that the entropy be increased in
the transition. In the case of bubbles in the QGP phase,
the plasma deflagrates; otherwise, it detonates. A direct
measurement of the hadron texture at freeze-out, if it de-
tects presence of the droplets/bubbles, could provide an
argument in favor of the first order phase transition.

The order of the confinement phase transition is still
under debate. It is a fluctuation driven first order tran-
sition [9, 10] in SU(3) with three massless quarks, but
second order in the case of finite mass [11] or infinitely
massive [9, 10] strange quarks. A tricitical point may
exist, separating the first order transition from a second
order transition with the same critical exponents as the
3D Ising model [9]. For a second order phase transi-
tion, local fluctuations of isospin or enhanced correlation
lengths may be observable [12, 13]. Large scale corre-
lations formed early in the collision are more likely to
survive diffusion in the later stages. Small scale fluctu-
ations, on the contrary, are more easily washed out by
diffusion due to secondary scattering among the hadrons
[14]. Consequently, an analysis method which can iden-
tify fluctuations on any scale is desirable. In this paper,
we utilize a Discrete Wavelet Transformation, which has
this property.

A wavelet is a function, 0 everywhere except for a well

localized spot. For a pad detector, the discrete positions
of the spots correspond naturally to the pad positions,
and the possible scales are multiples of the pad sizes. The
scale is an analog of a Fourier frequency. Location has no
analog in the Fourier transform, and it provides an addi-
tional degree of analytical power, which explains much of
the success that wavelets met in the field of data process-
ing and pattern recognition. (Examples of Fourier-based
analyses of large scale azimuthal texture in the field of
relativistic heavy ion collisions exist as well [15, 16]; this
is how the elliptic flow at relativistic energies was mea-
sured.) The binning of charged particle density inherent
in measurements with a segmented detector such as a Si
pad detector makes the Haar wavelet a natural choice of
analyzing function; a Haar wavelet is a step function with
given width, oscillating around zero with a single period.

Discrete Wavelet Transformation (DWT)[17] quanti-
fies contributions of different φ and η scales to the event
texture. We use DWT to test for possible large scale en-
hancement, as a function of the collision centrality. We
report the DWT power spectrum in pseudorapidity η and
azimuthal angle φ, for different charged particle multi-
plicities. We use mixed events to remove trivial fluctua-
tions and background effects.

II. EXPERIMENTAL SETUP

The experimental setup [18] is shown in Fig.1. The
NA44 Si pad array, installed 10 cm downstream from the
target, in the magnetic field of the first dipole, measured
ionization energy loss of charged particles in its 512 300
µm thick Si pads. The plastic scintillator T0 (two rect-
angles seen in Fig.1) was used for a centrality trigger.
The SPS beam was collimated to a 1 × 2 mm profile.
T0 covered 1.4 ≤ η ≤ 3.7 for an η-dependent fraction
of azimuthal angle, 0.22 ≤ ∆φ/2π ≤ 0.84 respectively.
The silicon detector had inner radius 7.2 mm and outer
radius 43 mm, covering 1.5 ≤ η ≤ 3.3. The detector
was split radially into 16 rings of equal η coverage. Each
ring was further divided azimuthally into 32 sectors of
equal angular coverage to form pads. The pads were
read out by AMPLEX [19] chips, one chip per sector.
δ-electrons, produced by the Pb beam traversing the tar-
get, were swept away to one side by the dipole magnetic
field (≤ 1.6 T). Only the δ-electron-free side was used in
this analysis. Only 4 of the remaining 256 channels were
inoperative.

An amplitude distribution from a typical channel, ob-
served in the physics run and digitized with a 256 channel
ADC is shown on Fig.2. Channel pedestals had, on the
average, FWHM = 0.48 < dE > of 1 MIP. In the tex-
ture analysis, every event was represented by a 2D array
of the calibrated digitized amplitudes of the channels (
an amplitude array). Empty target runs were used to
measure the background, and cross-talk in the detector
was evaluated off-line.
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FIG. 1: a) The experimental setup: the target, the Si pad
array and the T0 scintillation counter. See text for a descrip-
tion of the detectors. b) The setup exposed to an RQMD
event (GEANT simulation). Magnetic field is on.

III. ANALYSIS TECHNIQUE

A. Detector calibration

The NA44 spectrometer information was not used in
this analysis, which focussed on the Si pad array data.

ADC pedestals were fitted channel by channel with a
realistic functional shape, determined from low multiplic-
ity events in a minimum bias triggered run. Amplitude
calibration of the Si detector was carried out channel by
channel, by fitting the amplitude distribution with a sum
of single, double, triple, etc. (up to septuple) minimum
ionizing particle Landau distributions[20] with variable
weights. The Landau distributions were numerically con-
voluted with the pedestal shape to account for noise in
the fit. A typical fit from a single channel is shown in
Fig. 2. Parameters of the fit were used to simulate noise
in a GEANT-based detector response Monte Carlo code.

An offset of the event vertex with respect to the de-
tector’s symmetry axis results in a non-trivial functional
dependence between the actual η and φ, and the η′, φ′

presumed based on the “ideal” geometry: η = η(η′, φ′),
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N
o

rm
al

iz
ed

 c
o

u
n

ts

0

0.005

0.01

0.015

0.02

0.025

50 100 150 200 250

FIG. 2: Digitized amplitude distribution from channel 1 of the
Si pad array. The smooth curve shows a minimum χ2 Landau
fit performed in course of the amplitude calibration. The
pedestal, the single and double hit peaks are distinguishable.

φ = φ(η′, φ′). This makes the observable multiplicity
distribution d2N/ dφ′ dη′ (in the presumed coordinates)
differ from a simple function of η′:

d2N

dφ′ dη′
6= 1

2π

dN

dη′
(1)

In the true coordinates η and φ, the inequality 1 becomes
an equality. However, the detector’s acceptance area in
the true coordinates becomes distorted. In the following
we will refer to this as a “Jacobian effect”. The Jacobian
effect, obviously, contributes to the event textures, espe-
cially on the large scale, and needs to be evaluated and
corrected for.

From Eq.1, the criterion of the true coordinate basis
(η, φ) emerges naturally: it is the basis which makes the
observable d2N/ dφdη independent of φ. The minimiza-
tion problem was solved numerically with MINUIT[21],
and the resulting offsets are within the tolerance of the
detector/beam position. Cross-talk between the electron-
ics channels is a detector-related correlation phenomenon
and introduces a “texture” effect of its own. Both global
cross-talk in the AMPLEX read-out chip [19] and read-
out board cross-talk are expected. In our detector with
512 channels, there are 512 × (512 − 1)/2 = 130816 two
channel pairs (unordered), all of which were subjected to
covariance analysis off-line. To magnify the non-trivial
instrumental contribution to the covariance matrix ele-
ments, we analyzed covariances not between the ampli-
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tudes Ai of channels i themselves, but between

ai = Ai −
∑

half-ring of i
Ak

∑

half-ring of i
1

= Ai −
1

16

∑

half-ring of i

Ak

(2)
Otherwise, the dominant contributor to the cov(Ai,Aj)
is the trivial variation of the event’s common multiplic-
ity [36]. Using this method, we concluded that the effec-
tive cross-talk coupling was non-negligible only for neigh-
boring channels within the same chip; it was found to
be 8.5%. As a remedy, a chip-wise (i.e. sector-wise)
event mixing technique including cross-talk in the ref-
erence sample was used to construct a reference event
sample.
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FIG. 3: Double differential multiplicity distributions of
charged particles plotted as a function of azimuthal angle φ
(with different symbols representing different rings) and of
pseudorapidity η (with different symbols representing differ-
ent sectors). The φ and η are in the aligned coordinates.

The double differential multiplicity data (Fig. 3) illus-
trate the quality of the detector operation, calibrations,
geometrical alignment and Jacobian correction. The data
set is composed of two pieces, obtained by switching the
magnetic field polarity: a negative polarity run is used
for sectors 9 to 24 (range of π/2 < φ < 3π/2); a posi-
tive polarity run is used for sectors 1 to 8 and 25 to 32
(range of 0 < φ < π/2 and 3π/2 < φ < 2π). The reason
to disregard one side of the detector is additional oc-
cupancy due to δ-electrons, as was explained in section
II. Figure 3 demonstrates the quality of alignment as
well, since the η and φ along the horizontal axes are the
aligned coordinates. Any geometrical offset of the detec-
tor makes acceptances of different pads non-equal and de-
pendent on the pad position. The acceptance of each pad
has been calculated in the aligned coordinates, and the
d2N/ dφdη uses the actual acceptances dφ. The shape
of the φ dependence of d2N/ dφdη (left panel of Fig. 3)
is flat as it should be for an event ensemble with no re-
action plane selection. The η dependence (right panel

of Fig. 3) shows increasing multiplicity towards midra-
pidity, as is expected. As can be seen from Fig.3, the
detector’s acceptance is asymmetric around midrapidity.
A correction for the cross-talk has been applied.

B. Discrete Wavelet Transformation (DWT)

Discrete wavelets are a set of functions, each having
a proper width, or scale, and a proper location so that
the function differs from 0 only within that width and
around that location. The set of possible scales and lo-
cations is discrete. The DWT formalizes the two dimen-
sional particle distribution in each Pb + Pb collision in
pseudorapidity η and azimuthal angle φ by performing
an image analysis – transforming the event into a set of
functions orthogonal with respect to scale and location
in the (η, φ) space. We accumulate texture information
by averaging the power spectra of many events.

The simplest DWT basis is the Haar wavelet, built
upon the scaling function[37] g(x) = 1 for 0 ≤ x < 1 and
0 otherwise. The function

f(x) =







+1 : 0 ≤ x < 1

2

−1 : 1

2
≤ x < 1

0 : otherwise
(3)

is the wavelet function[38].
If the interaction vertex lies on the detector’s sym-

metry axis, every pad’s acceptance is a rectangle in
the (φ, η) space. Then, the Haar basis is the natural
choice, as its scaling function in two dimensions (2D)
G(φ, η) = g(φ)g(η) is just a pad’s acceptance (modulo
units). We set up a two dimensional (2D) wavelet basis:

Fλ
m,i,j(φ, η) = 2mFλ(2mφ − i, 2mη − j). (4)

The scaling function in 2D is G(φ, η) = g(φ)g(η). As
in Eq.4, we construct Gm,i,j(φ, η) where m is the integer
scale fineness index, and i and j index the positions of bin
centers in φ and η (1 ≤ m ≤ 4 and 1 ≤ i, j ≤ 16 because
we use 16 = 24 rings and 16 sectors). Different values
of λ (denoted as φ, η, and φη) distinguish, respectively,
functions with azimuthal, pseudorapidity, and diagonal
texture sensitivity:

Fφ = f(φ)g(η), F η = g(φ)f(η), Fφη = f(φ)f(η) (5)

Then, Fλ
m,i,j with integer m, i, and j are known [17] to

form an orthonormal basis in the space of all measur-

able functions defined on the continuum of real numbers
L2(R). Fig. 4 shows the wavelet basis functions F in two
dimensions. At first glance it might seem surprising that,
unlike the 1D case, both f and g enter the wavelet basis
in 2D. Fig. 4 clarifies this: in order to fully encode an
arbitrary shape of a measurable 2D function, one con-
siders it as an addition of a change along φ (f(φ)g(η),
panel (b)), a change along η (g(φ)f(η), panel (c)), and
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FIG. 4: Haar wavelet basis in two dimensions. The three
modes of directional sensitivity are: a) diagonal b) azimuthal
c) pseudorapidity. For the finest scale used, the acceptance of
a Si pad would correspond to the white rectangle drawn “on
top” of the function in panel a). Every subsequent coarser
scale is obtained by expanding the functions of the previous
scale by a factor of 2 in both dimensions.

a saddle-point pattern (f(φ)f(η), panel (c)), added with
appropriate weight (positive, negative or zero), for a va-
riety of scales. The finest scale available is determined
by the detector segmentation, while the coarser scales
correspond to successively rebinning the track distribu-
tion. The analysis is best visualized by considering the
scaling function Gm,i,j(φ, η) as binning the track distri-
bution ρ(φ, η) in bins i,j of fineness m, while the set of
wavelet functions Fλ

m,i,j(φ, η) (or, to be exact, the wavelet

expansion coefficients 〈ρ, Fλ
m,i,j〉) gives the difference dis-

tribution between the data binned with given coarseness
and that with binning one step finer.

While the DWT analyzes the object (an image, a se-
quence of data points, a data array) by transforming it,
the full information content inherent in the object is pre-
served in the transformation.

We adopt the existing [22] 1D DWT power spectrum
analysis technique and expand it to 2D. The track density
in an individual event is ρ(φ, η) and its local fluctuation
in a given event is σ2 ≡ 〈ρ − ρ̄, ρ − ρ̄〉, where ρ̄ is the
average ρ (over the acceptance) in the given event[39].

Using completeness of the basis, we expand

ρ − ρ̄ = 〈ρ, Fλ
m,i,j〉Fλ

m,i,j − 〈ρ̄, Fλ
m,i,j〉Fλ

m,i,j (6)

Notice that ρ̄, being constant within the detector’s
rectangular acceptance, is orthogonal to any Fλ

m,i,j

with m ≥ 1. Due to the orthonormality condition
〈Fλ

m,i,j , F
λ′

m′,i′,j′〉 = δλ,λ′δm,m′δi,i′δj,j′ , the ρ − ρ̄ compo-

nents for different scales do not form cross-terms in the σ2

sum, and the sum contains no cross-terms between ρ and
ρ̄ for the four observable scales. Instead of a 〈ρ, Gm=5,i,j〉
set, the Si detector energy amplitude array – its closest
experimentally achievable approximation – is used as the
DWT input. We used the WAILI [23] software library to
obtain the wavelet decompositions.

The Fourier power spectrum of a random white noise
field is known to be independent of frequency [24]. We
are looking for dynamical textures in the data, and there-
fore would like to treat the random white noise case as
a “trivial” one to compare with. Therefore it is interest-

FIG. 5: Understanding the analyzing potency of the DWT
power spectra: a) for a checkerboard pattern b) for a smooth
gradient pattern c) for a sample of a thousand random white
noise images – in this case the average power spectrum is
shown.

ing to reformulate this property for wavelets, where scale
plays the same role as frequency in Fourier analysis.

To do that, we link scales with frequencies, or in other
words, we must understand the frequency spectra of the
wavelets. The Fourier images of 1D wavelet functions oc-
cupy a set of wave numbers whose characteristic broad-
ness grows with scale fineness m as 2m; 22m should be
used in the 2D case. Discrete wavelets of higher or-
ders have better frequency localization than the Haar
wavelets. Despite this advantage, we use Haar because
only Haar allows one to say that the act of data taking
with the (binned !) detector constitutes the first stage of
the wavelet transformation.

In 2D, we find it most informative to present the three
modes of a power spectrum with different directions of
sensitivity Pφη(m), Pφ(m), P η(m) separately. We define
the power spectrum as

Pλ(m) =
1

22m

∑

i,j

〈ρ, Fλ
m,i,j〉2, (7)

where the denominator gives the meaning of spectral den-

sity to the observable. So defined, the Pλ(m) of a random
white noise field is independent of m.

In order to illustrate the sensitivity of the wavelet
transformation to texture features of the different scales,
we have applied the wavelet transform to three test pat-
terns, shown in Fig. 5. All patterns are 16 × 16 pixel
matrices. The left hand side shows the test pattern, and
the right shows the power spectrum resulting from the
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FIG. 6: Power spectra of 7 × 103 events in the multiplicity
bin 326 < dN/ dη < 398 (between ≈ 6% and 10% centrality).
© – true events, △ – mixed events, ✷ – the average event.

wavelet transform. Pattern a), a checkerboard, has struc-
ture only on the finest scale and all power components
of scales coarser than 4 are zero. Pattern b) has exactly
the opposite scale composition; the slow gradation be-
tween black and white corresponds to a structure on the
coarsest scale, as seen in the accompanying power spec-
trum. Smoothness of the gradient means that neighbor-
to-neighbor changes do not add much to the pattern once
the overall trend (the large scale feature) is taken into ac-
count.

These two examples illustrate the property of scale lo-
calization, made possible by virtue of the scale orthog-
onality of the basis. Patterns encountered in multiple
hadron production involve a variety of scales, and yet
they are more likely to be of type b), rather than a). An
important conclusion follows immediately: in this type
of measurement, large acceptance, like the one used in
this analysis, rather than fine segmentation, is the way
to accomplish sensitivity.

Case c) shows patterns that arise from white noise.
They produce signals in the power spectrum indepen-
dent of scale, as expected. In the first approximation, the
white noise example provides a base-line case for compar-
isons in a search for non-trivial effects.

Figure 6 shows the power spectra measured in Pb+Pb
for one multiplicity range. The unit on the vertical scale
(σ2/〈dEMIP 〉2) is chosen so that the power of fluctua-
tions whose variance σ2 equals the squared mean energy
loss by a minimum ionizing particle traversing the de-
tector, is the unit. The first striking feature is that the
power spectra of physical events are indeed enhanced on
the coarse scale. The task of the analysis is to quan-
tify and, as much as possible, eliminate “trivial” and
experiment-specific reasons for this enhancement.

C. Identification and control of systematic errors

The average event, formed by summing amplitude im-
ages of the measured events in a given multiplicity bin,
and dividing by the number of events, has a much re-

duced texture as statistical fluctuations cancel (shown as
✷ in Fig.6). Average events retain the texture associated
with the shape of d2N/ dφdη, with the dead channels and
the finite beam geometrical cross-section (though this is
only partially visible in the average event, due to the fact
that event averaging is done without attempting to se-
lect events according to the vertex position). Pλ(m) is
proportional to the variance, or squared fluctuation σ2.
Therefore, for Poissonian statistics of hits in a pad, the
event averaging over M events should decrease Pλ(m) by
a factor of M . The average event whose power spectrum
is shown on Fig. 6 is formed by adding 7 × 103 events,
however its Pλ(m) is down less than 7 × 103 compared
to that of the single events. This demonstrates that the
average event’s texture is not due to statistical fluctua-
tions, but rather, predominantly due to the systematic
uncertainties listed. Consequently, we can use the aver-
age event’s Pλ(m) to estimate the magnitude of the static
texture-related systematics. As seen from Fig. 6, the sys-
tematics are far below the Pλ(m) of single events (true
or mixed), with the exception of pseudorapidity, where
non-constancy of dN/ dη over the detector’s acceptance
is visible.

The way to get rid of the “trivial” or static texture
is to use mixed events, taking different channels from
different events. The mixed events preserve the texture
associated with the detector position offset, the inherent
dN/ dη shape and the dead channels. This is static tex-
ture as it produces the same pattern event after event
while we are searching for evidence of dynamic texture.
We reduce sources of the static texture in the power spec-
tra by empty target subtraction and by subtraction of
mixed events power spectra, thus obtaining the dynamic

texture Pλ(m)true−Pλ(m)mix. In order to reproduce the
electronics cross-talk effects in the mixed event sample,
the mixing is done sector-wise, i.e. the sectors constitute
the subevents subjected to the event number scrambling.

We continue with a brief summary of the systematic
errors in the measurements of the DWT dynamic tex-
ture observable Ptrue − Pmix. Static texture and dy-
namic background texture present the largest problem in
the search for the phase transition-related dynamic tex-
ture via power spectra of local fluctuations. The method
of solving the problem is comparison with the reference
sample created by event mixing. Thus the Ptrue − Pmix

observable was created. For comparison with models, a
Monte Carlo simulation of the Si detector is used. It in-
cludes the known static texture effects and undergoes the
same procedure to remove the effects. The “irreducible
remainder” is the residual effect which may

1. survive the elimination procedure

2. emerge as a difference between the data, subjected
to the elimination procedure, and the MC analyzed
in the same manner.

Table I lists the sources of static texture and summarizes
the methods of their treatment. We group the background



7

texture sources according to similarity of manifestation
and treatment, into

• statistical fluctuations

• static texture

• background dynamic texture

The statistical fluctuation is the most trivial item in this
list. Both event mixing (provided that mixing is done
within the proper multiplicity class) and MC comparison
solve this problem. The statistical fluctuations do not
result in irreducible systematic errors.

The static texture group includes:

• geometrical offset of the detector with respect to
the beam’s “center of gravity” in the vertical plane

• dead pads

• dN/ dη shape – a genuine large scale multiparticle
correlation sensitive to the physics of the early stage
of the collision

Cleanliness of the static texture elimination via event
mixing has been checked by simulating the contribut-
ing effects separately. First, by running the detector re-
sponse simulation on MC-generated events without the
beam/detector offset and with a beam of 0 thickness it
was ascertained that the remaining dynamic texture is
very small compared with the systematic errors due to
the background Si hits and the beam geometrical cross-
section, for all scales and all directional modes λ. Due
to the finite size of the multiplicity bin, the mixed events
consist of subevents coming from events of different total
multiplicity. With the sector-wise mixing, this causes an
additional sector-to-sector variation of amplitude in the

mixed events, thus resulting in an enhancement of Pφ
mix

primarily on the finest scale, with respect to Pφ
true. On

Fig. 7, this effect can be seen as the Pφ
true − Pφ

mix values
progressively grow negative with multiplicity in the finest
scale plot. However, as can be seen on the same figure,
the effect is small compared with the total systematic
error bars shown as boxes.

The background dynamic texture group includes:

• elliptic and directed flow

• finiteness of the beam cross-section

• background hits in the Si

• channel-to-channel cross-talk

Elliptic and directed flow, observed at SPS [16], are
large scale dynamic texture phenomena of primarily az-
imuthal (elliptic) and diagonal (directed flow) modes.
Because both reaction plane and direction angle vary
event by event, the respective dynamic textures can not
be subtracted by event mixing, unless the events are clas-
sified according to their reaction plane orientation and

the direction angle, with mixing and Ptrue − Pmix sub-
traction done within those classes. Neither reaction plane
nor direction angle was reconstructed in the present anal-
ysis, and the Ptrue − Pmix (especially that of the az-
imuthal and diagonal modes on the coarse scale) retain
the elliptic/directed flow contribution. The effects of flow
on dynamic texture observables are smaller than other
texture effects, so they can not be singled out and quan-
tified in this analysis.

The finite beam cross-section effect belongs to this
group, despite the fact that a very similar effect of geo-
metrical detector/beam offset has been classified as static
texture. An effect must survive mixing with its strength
unaltered in order to be fully subtracted via event mix-
ing. Preserving the effect of the random variations in the
Pb+Pb vertex on the power spectra in the mixed events
requires classification of events according to the vertex
position and mixing only within such classes. This re-
quires knowledge of the vertex for each event, which is
not available in this experiment. Therefore, MC simula-
tion of the beam profile remains the only way to quantify
false texture arising from vertex variations. MC studies
with event generators show that the beam spatial ex-
tent and the resulting vertex variation is the source of
the growth of the coarse scale azimuthal texture corre-
lation with multiplicity (see Fig. 7). Uncertainty in our
knowledge of the beam’s geometrical cross-section must
be propagated into a systematic error on Ptrue − Pmix.

The other two effects in this group are difficult to sep-
arate and simulate and the error estimate reflects the
combined effect. The systematic errors were evaluated
by removing the Pb target and switching magnetic field
polarity to expose the given side of the detector to δ-
electrons (from the air and T0), while minimizing nu-
clear interactions. This gives an “analog” generator of
uncorrelated noise. All correlations (i.e. deviations of
Pλ(m)true from Pλ(m)mix) in this noise generator are
treated as systematic uncertainties. Thus this compo-
nent of the systematic error gets a sign, and the sys-
tematic errors are asymmetric. The effect of increasing
texture correlation (for diagonal and azimuthal modes)
with multiplicity on the coarse scale, attributed to the ge-
ometrical offset of the detector with respect to the beam
(the leading one in the static group), is present in the
switched polarity empty target runs as well. For this
reason, it was impossible to disentangle the background
dynamic contribution on the coarsest scale. In Table I,
the “irreducible remainder estimate” for the diagonal,
coarse scale is bracketed with two numbers, which form
the lower and upper estimates. The lower estimate is ob-
tained by taking the scale one unit finer and quoting its
number. This, indeed, sets the lower limit because the
deviations of Pλ(m)true from Pλ(m)mix generally grow
with scale coarseness. The upper limit is set by ascribing
the entire texture correlation, observed in the δ-electron
data, to the background hits and channel cross-talk, and
ignoring the fact that significant portion of it must be
due to the vertex fluctuation (finite beam profile). This
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FIG. 7: Multiplicity dependence of the texture correlation.
© – the NA44 data, • – RQMD. The boxes show the system-
atic errors vertically and the boundaries of the multiplicity
bins horizontally; the statistical errors are indicated by the
vertical bars on the points. The rows correspond to the scale
fineness m, the columns – to the directional mode λ (which
can be diagonal φη, azimuthal φ, and pseudorapidity η).

upper limit is likely to be a gross overestimation, and in
Fig. 7 we show systematic errors, obtained by adding in
quadrature the finite beam error with the background hit
error.

IV. RESULTS

Fig. 7 presents a comparison of the DWT dynamic tex-
ture in the measured and RQMD-simulated[25] Pb + Pb
collision events. The three directional sensitivity modes
(diagonal φη, azimuthal φ, and pseudorapidity η) have
four scales each, so that there are 12 sets of points in
the DWT dynamic texture as a function of the charged
multiplicity dNch/ dη bin. The systematic errors on the
points (shown by vertical bars) have been evaluated fol-
lowing the procedure described in detail in Section III.

Fig.6 demonstrated that the major fraction of the ob-
served texture exists also in mixed events. A detailed
account of the causes was discussed in the preceding sec-
tion, including known physics as well as instrumental ef-
fects. It is therefore clear that the observable most di-
rectly related to the dynamical correlations/fluctuations
is not Pλ(m), but Pλ(m)true − Pλ(m)mix. This quan-
tity, normalized to the RMS fluctuation of Pλ(m)mix,
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FIG. 8: Confidence coefficient as a function of the fluctuation
strength. RMSmix denotes

√

〈P λ(1)2mix − 〈P λ(1)mix〉2〉.
The multiplicity bin is 326 < dN/ dη < 398 (6-10% central-
ity), as in Fig.6.

can be used to characterize the relative strength of local
fluctuations in an event. The distribution for different λ
(or directions) is plotted on Figure 8 in an integral way,
i.e. as an α(x) graph where for every x, α is the fraction
of the distribution above x.

α(x) =

∫ ∞

x

dN

dξ
dξ

/

∫ +∞

−∞

dN

dξ
dξ, (8)

where ξ denotes the fluctuation strength

ξ =
Pλ(1)true − Pλ(1)mix

RMS(Pλ(1)mix)
, (9)

and dN/ dξ is the statistical distribution of ξ, obtained
from the experimentally known distributions of Pλ(1)true

and Pλ(1)mix. Expression 9 is constructed to be sensi-
tive to the difference between Pλ(1)true and Pλ(1)mix,
while minimizing detector specifics to enable comparison
between different experiments in future. The latter is
accomplished by normalizing to RMSmix. This normal-
ization also eliminates the trivial multiplicity dependence
of the observable.

The fluctuation strength observable provides a limit
on the frequency and strength of the fluctuations and
expresses the result in a model-independent way. The
confidence level with which local fluctuations of a given
strength (expressed through the event by event observ-
ables via Eq. 9) can be excluded is then 1 − α. Fluc-
tuations greater than 3 × RMSmix are excluded in the
azimuthal and pseudorapidity modes with 90% and 95%
confidence, respectively. The monotonic fall of the curve
is consistent with the absence of abnormal subsamples in
the data.

RQMD events were fed into the GEANT detector re-
sponse simulation and analyzed using the same off-line
procedure as used for the experimental data. The de-
tector offset with respect to the beam center of gravity
and the beam profile were included in the simulation. In
a separate simulation run, the beam profile was identi-
fied as the cause of the rise of the azimuthal dynamic
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texture with the multiplicity on the coarse scale. In our
experiment, this purely instrumental effect dominates the
azimuthal component of the DWT dynamic texture.

The most apparent conclusion from Fig. 7 is that a
large fraction of the texture (seen on Fig. 6) is not dy-
namic i.e. not different between true and mixed events.
Being monotonic (or absent), the change of the data
points with multiplicity does not reveal any evidence of
a region of impact parameters/baryochemical potentials
with qualitatively different properties, such as those of
a critical point neighborhood. The RQMD comparison
confirms that particle production via hadronic multiple
scattering, following string decays (without critical phe-
nomena or phase transition) can explain the observed re-
sults when detector imperfections are taken into account.
More detailed discussion of the implications of these data
on various phase transition models will be given in Sec-
tion VI.

V. SENSITIVITY

Interesting physics can manifest itself in the ensemble
probability density distributions as well as in the event-
by-event (EbyE for short) observables. To illustrate the
power of the EbyE observable we used, we should con-
struct final states of charged particles indistinguishable
from the point of view of “traditional”, or ensemble-wise
observables, such as

1. dN/ dy distribution

2. dN/ dpT , 1/mT dN/ dmT distribution etc.

3. multiplicity distribution

and compare the sensitivity of the above-mentioned ob-
servables with that of the EbyE one.

A sensitivity study was performed using a multifireball
event generator created specially for this purpose. The
generator produces textures of known magnitude by sim-
ulating the observed multiplicity as arising from an ar-
bitrary number of fireballs. Correlations among groups
of particles arise when the particles come from the same
fireball. We do not suggest that the physics of Pb + Pb
collisions is properly described by a superposition of fire-
balls of a fixed size. Rather, we use the fireballs as a way
to generate controlled multiparticle correlations.

This picture is inspired by Van Hove’s scenario [4]
of a first order phase transition via droplet fragmenta-
tion of a QGP fluid. We measure texture in two direc-
tions, spanned by polar and azimuthal angles, and are
also sensitive to the spatial texture of longitudinal flow.
For boost-invariant expansion[26] two droplets, separated
along the longitudinal coordinate, will be separated in y
and η. As long as there is longitudinal expansion, a spa-
tial texture will be manifested as (pseudo)rapidity tex-
ture. In the multifireball event generator, we generate
the pseudorapidity texture explicitly, omitting the spa-
tial formulation of the problem. The total pT of each

y

d
N

/d
y 

ch
ar

g
ed

0

200

400

0

200

400

0
100
200
300

0
100
200
300

0 1 2 3 4 5 6

FIG. 9: dN/ dy distribution of charged particles in the multi-
fireball event generator in four individual events with different
number of fireballs: △ – 2 fireballs, ✷ – 4 fireballs, ✸ – 8 fire-
balls, © – 16 fireballs. One can see how the texture becomes
smoother as the number of fireballs increases. We remind the
reader that the detector’s active area covers π azimuthally and
pseudorapidity 1.5 to 3.3. In general, acceptance limitations
make it more difficult to detect dynamic textures.

fireball is 0; its total pZ is chosen to reproduce the ob-
served dN/ dy of charged particles by Lorentz-boosting
the fireballs along the Z direction, keeping the total ~p
of an event at 0 in the rest frame of the colliding nuclei.
The fireballs hadronize independently into charged and
neutral pions and kaons mixed in a realistic proportion.
By varying number of particles Np per fireball, one varies
“grain coarseness” of the event texture in η.

To illustrate the discussion, Fig.9 presents examples of
dN/ dy distributions in four events with different number
of fireballs. The dynamic textures seen on the figures
are peculiar to these particular events and are gone after
dN/ dy of many events are added.

We simulated average fireball multiplicities of 10, 50,
90 (with RMS fluctuation of 3) and larger. Fig. 10 shows
comparison of our data with the simulated pseudorapid-
ity texture. With ∼ 104 events, the detector+software
can differentiate between the cases of 50 and 90 parti-
cle fireballs. The signal grows with the charged particle
multiplicity and with Np. Fig. 10 provides quantitative

information on the sensitivity of the texture measure-
ments by relating the expected strength of response to
the strength of texture via Monte Carlo simulation. The
sensitivity is limited by systematic errors of the mea-
surement, discussed in Section III. Nevertheless, it is
instructive to compare sensitivity of this method with
other methods; in particular with two point correlators.
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data, shown by © (from the top right plot of Figure 7), is
compared with that from the multifireball event generator
for three different fireball sizes. Detector response is simu-
lated. The boxes represent systematic errorbars (see caption
to Fig. 7).

The sensitivity of the method is remarkable indeed if
one takes into account that statistics in the fifth multi-
plicity bin for each of the three event generator points is
below 3 × 104 events – too scarce, e.g., to extract three
source radius parameters via HBT analysis even with a
well optimized spectrometer!

The use of two particle correlation in rapidity R2(y)
to search for droplets was discussed for pp̄ collisions at√

s = 1.8 TeV (at FNAL)[27]. R2 was reported to de-

crease with multiplicity, so that it would not be expected
to be visible for dN/ dy above ≈20; the signal would be
weaker in a scenario with correlated droplets. In con-
trast, the wavelet transformation retains sensitivity at
high multiplicity, as we see in Fig.10. In the fifth mul-
tiplicity bin, with total number of hadrons at freeze-out
around 1.5 × 102, a typical fraction of particles coming
from the same fireball for the clustering parameters of
50 (90) would be 3% (6%) [40]. In either case there is
little hope of seeing any trace of such dynamics either in
ensemble-averaged dN/dy or in dN/dy of a single event,
but the systematic difference between the power spectra
of the real and mixed events, integrated over multiple
events, nevertheless reveals the difference. The data are
consistent with clustering among ≤ 3% of the particles.

VI. DISCUSSION

The order of the expected QCD phase transitions is
known to be a complex issue for realistic current masses
of quarks in the system of a finite size. It is generally ex-

pected that a first order phase transition would be easier
to observe. Our dynamic texture measurement tests the
hypothesis of the first order phase transition via QGP

droplet hadronization[4] in a way more direct than in-
terpretation of pT spectra involving latent heat. Our re-
sult can be used to constrain phenomenological quantities
which represent basic QCD properties and affect texture
formation in this class of hadronization models [4, 6, 8].
Such quantities are the energy flux, or rate at which the
QGP transmits its energy to hadrons[29, 30], critical size
of the QGP droplet[6], and initial upper energy density
of the transition ǫ′0.

The specific experimental signature of second order
phase transition (known since the discovery of critical
opalescence [31]) is the emergence of critical fluctuations
of the order parameter with an enormous increase of the
correlation lengths. However, for physical quark masses
Rajagopal and Wilczek [12, 32] argued that due to close-
ness of the pion mass to the critical temperature, it
would be unlikely for the correlation volumes to include
large numbers of pions, if the cooling of the plasma and
hadronization proceeds in an equilibrated manner. If,
on the contrary, the high temperature configuration sud-

denly finds itself at a low temperature, a self-organized
criticality regime settles in, and the critical local fluctu-
ations develop fully[12, 32].

The NA44 data reported here signifies absence of dy-
namical fluctuations on the scales probed, within the
limit of sensitivity discussed in Section V. Convincing ev-
idence of thermal equilibration can be provided by event-
by-event observables. Our data is consistent with local
thermal equilibrium, understood as an absence of phys-
ically distinguished scales between the scale of a hadron
and the scale of the system, or scale invariance of fluctu-
ations [33] (“white noise”). However to probe equilibra-
tion directly with this method, texture sensitivity at least
down to the typical fireball (cluster) sizes observed in
pN collisions in cosmic rays and accelerator experiments
[34, 35] would be necessary. In the absence of such direct
evidence, the non-observation of critical fluctuations can
imply either absence of the second order phase transition
or presence of thermal equilibration – the latter voids the
criticality signature, according to Rajagopal and Wilczek
[12].

VII. CONCLUSION

We have developed a method of measuring the dynamic
component of local fluctuations in charged particle den-
sity in pseudorapidity and azimuthal angle, and applied
the analysis to Pb+Pb collisions measured by the NA44
experiment. Comparison of the data to a simple Monte
Carlo texture event generator indicates that sensitivity to
pseudorapidity density clusters of ≥ 3% is accomplished
in this experiment. The probability of encountering a
real event whose dynamic azimuthal texture exceeds in
strength that of a random mixed event by 3 RMS, is be-
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low 10%. For the pseudorapidity texture, the respective
probability is below 5%.

We conclude that this novel method of event-by-event
analysis, sensitive to particular signatures of first and
second order phase transitions, does not reveal such sig-
natures in 158 GeV/A Pb + Pb collisions at the SPS.
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Correction Irredu-

event mixing cible

Source subtract subtract preserve do remain-

empty mixed sectors MC der

target events estimate

σ2/〈dEMIP 〉2

stat. fluctuations N/A yes N/A yes 0.

dN/ dη shape, N/A yes OK yes 0.

offset, dead pads

finite beam yes 0.14

Xsection N/A N/A N/A

1 × 2 mm

background hits yes yes yes can’t

channel Xtalk

}

> 0.070, < 0.37

8.5% for N/A yes yes can’t

neighbors

TABLE I: Sources of background texture (dynamic and static)
and their treatment. The irreducible remainder estimate is
quoted for diagonal texture correlation in the 326 < dN/ dη <
398 bin, and is expressed in the units of σ2/〈dEMIP 〉2; see text
for information on how it was obtained.


