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1. Introduction

W itten’s gauge linear sigm a approach []1to N = 2 super-conform al theories has provided
desp Insight not only to the study of the phases of the eld theory but also to the un-
derstanding of the m athem atics of G eom etric Invariant T heory quotients In toric geom etry.
T hereafter, them ethod was readily applied to the study ofthe N = 1 supersym m etric gauge
theories on D branes at singularities [, [, B, 1. desd the classical m oduli space of the
gauge theory corregoonds precisely to the spacetin e which the D brane probes transversely.
In Iight of this therefore, toric geom etry has been widely used in the study of the m oduli
gpace of vacua of the gauge theory living on D Jorane probes.

The m ethod of encoding the gauge theory data into the m oduli data, or m ore specif-
ically, the Ftem and D +termm inform ation into the toric diagram of the algebraic variety
describing the m oduli space, has been wellestablished [, B]. The reverse, of determ ining
the SUSY gauge theory data in temm s of a given toric singularity upon which the D brane
probes, has also been addressed using the m ethod partial resolutions of abelian quotient
singularities. Nam ely, a general non-orbifold sinqularity is regarded as a partial resolution
of a worse, but orbifold, singularity. This \Inverse Procedure" was form alised into a linear
optim isation algorithm , easily i plem entable on com puter, by [}], and was subsequently
checked extensively in [g].

O ne feature of the Inverse A gorithm is its non-uniqueness, viz., that for a given toric
singularity, one could in theory construct countless gauge theories. T his m eans that there
are classes of gauge theories w hich have ddentical toricm oduli space in the IR . Such a salient
feature was dubbed in []]as toric duality. Indeed in a ollow-up work, [] attem pted to
analyse this duality in detail, concentrating in particular on a m ethod of fabricating dual
theories which are physical, in the sense that they can be realised as world-volum e theories
on D branes. Henceforth, we shall adhere to thism ore restricted m eaning of toric duality.

Because the details of this m ethod will be clear In later exam ples we shall not delve
into the speci cs here, nor shall we devote too m uch space review ing the algorithm . Let us
highlight the key points. T he gauge theory data of D Joranes probing Abelian orbifolds is
wellknown (see eg. the appendix of [§]); also any toric diagram can be em bedded into that
of such an orbifold (in particular any toric local CalbiYau threefold D can be em bedded
nto (133=(zarl Z,) for su ciently large n. W e can then obtain the subsector of orbifold
theory that corresponds the gauge theory constructed for D . T his is the m ethod of \Partial
R esolution."

A key point of [§] was the application of the welkknown m athem atical fact that the
toric diagram D of any toric variety has an inherent am biguity in itsde nition: nam ely any



unin odular transform ation on the lattice on which D isde ned must leave D Invariant. n
other words, for threefolds de ned in the standard Jattice z°3, any SL (3;C ) transform ation
on the vector endpoints of the de ning toric diagram gives the sam e toric variety. Their
em bedding into the diagram of a xed Abelian orbifold on the other hand, certainly is
di erent. Ergo, the gauge theory data one obtains in general are vastly di erent, even

though per constructio, they have the sam e toric m oduli space.

W hat then is this \toric duality"? How clearly it isde ned m athem atically and yet how

flusive it is as a physical phenom enon. T he purpose of the present w riting is to m ake the

rst Jeap toward answering this question. In particular, we shall show , using brane setups,
and especially brane diam onds, that known cases for toric duality are actually interesting
realisations of Seiberg D uality. T herefore the m athem atical equivalence of m oduli spaces for
di erent quiver gauge theories is related to a realphysical equivalence of the gauge theories
In the far nfrared.

T he paper is organised as follow s. In Section 2, we begin w ith an illustrative exam ple of
two torically dual cases of a generalised conifold. T hese are wellknown to be Seiberg dual
theories as seen from brane setups. Thereby we are m otivated to congcture in Section 3
that toric duality is Seilberg duality. W e proceed to check this proposal in Section 4 w ith all
the known cases of torically dual theories and have successfully shown that the phases of the
partial resolutions of(t3=(23 Zs ) constructed in ﬂ] are Indeed Selberg dual from a eld
theory analysis. Then in Section 6 we reanalyse these exam ples from the perspective of brane
diam ond con gurations and once again obtain strong support of the statem ent. From rules
used In the diam ond dualisation, we extracted a so-called \quiver duality” which explicits
Seiberg duality as a transform ation on the m atter ad pcency m atrices. U sing these ruleswe
are able to extract m ore phases of theories not yet obtained from the Inverse A lgorithm . Tn
a m ore geom etrical vein, in Section 7, we ram ark the connection between Seiberg duality
and P icard-L.efschetz and point out cases w here the two phenom ena may di er. Fihally we

nish with conclusions and prospects in Section 8.
W hile this m anuscript is about to be released, we becam e aware of the nice work @],

which discusses sin ilar issues.

2.An Ilustrative Exam ple

W e begin w ith an illustrative exam ple that w ill dem onstrate how Seiberg D uality is realised
as toric duality.



2.1 The Brane Setup

T he exam ple is the wellknow n generalized conifold described as the hypersurface xy = zw 2
in C*, and which can be obtained as a z, quotient of the fam ous coniod xy = zw by the
action z ! z;w ! w . The gauge theory on the D brane sitting at such a singularity
can be established by orbibding the conifold gauge theory in [I9], as .n [241. A Iso, it can
be derived by another m ethod altemative to the Inverse A Igorithm , nam ely perform ing a
T duality to a brane sstup w ith N S-branes and D 4-branes J, P1]. Therefore this theory
serves as an excellent chedk on ourm ethods.

T he setup involves stretching D 4 branes (spanning 01236) between 2 pairs of NS and N S°
branes (spanning 012345 and 012389, respectively), w ith x° param eterizing a circle. These
con gurations are analogous to those in [L1]]. There are in fact two nequivalent brane setups
(@) and (b) (see F:'gureﬂl), di ering in the way the N S—and N S%Pbranes are ordered in the
circle coordinate. U sing standard rules [13,[[1], we see from the gure that there are 4

NS NS NS
<l o2 | 5 NS
C
D oA A 5
NS NS NS NS

(@ (b)

Figure 1: The two possble brane setups for the generalized conifold xy = z°w?. They are related
to each other passing one N S-brane through an N S’Jrane. A;;B;;Ci;D ; i= 1;2 arebifundam entals
while 1; , aretwo adjpint elds.

product gauge groups (in the Abelian case, it is sin ply U (1)*. A's for the m atter content,
theory (a) has 8 bifundam entalchiralm ultipletsA;,B;,C;,D;i= 1;2 (with charge (+1; 1)
and ( 1;+1) with respect to adjcent U (1) factors) and 2 adpint chiralmultplets 1, as
Indicated. On the other hand (b) has only 8 bifundam entals, w ith charges as above. The
superpotentials are respectively 27,201

(@) W.= A;ABB,+B:B, , CiCy; 2+ CiCyDDy DDy 1+ A1A, 15



(b) Wyp= A1ABB, B1BC:Co+ C1CoD1D, DDA A;
W ith som e foresight, for com parison w ith the results later, we rew rite them as
Wa= BBz CiC2)( 2 AiAz)+ (A1Az DiD)( 1 CiCy) (2.1)
Wp= (A1A; CiC)(B1B, DiD3y) (22)

2.2 PartialR esolution

Let us see whether we can reproduce these eld theordes w ith the Inverse A gorithm . The
toric diagram forxy = z°w? isgiven in the very left of Figuref]. O f course, the hypersurface
is three com plex-din ensional so there is actually an undraw n apex for the toric diagram , and
each of the nodes is 1n fact a threevector n z°. Indeed the fact that it is ocally CalabiYau
that guarantees all the nodes to be coplanar. T he next step is the realisation that it can be
em bedded into the wellknown toric diagram for the A belian OJ:bjﬁJJdGZ3=(za3 %3 ) consisting
of 10 lttice points. T he reader is referred to [],[§] for the actual coordinates of the points,
a detail which, though crucial, we shall not belabour here.

The In portant point is that there are six ways to enbed our toric diagram into the
orbifold one, all related by SL (3;€ ) transfom ations. This is indicated in parts (a)—~(f) of
Figure[d. W e an phasise that these six diagram s,drawn in red, are equivalentdescriptions of
xy = z°w? by virtue of their being unin odularly related; therefore they are all candidates
for toric duality.

Now we use our Inverse A Igorithm , by partially resolving C°=(z5 %), to obtain the
gauge theory data for the D -brane probing xy = z?w?. In summ ary, after exploring the
six possible partial resolutions, we nd that cases (a) and (b) give dentical results, while
(cdef) give the sam e result which is lnequivalent from (ab). T herefore we conclude that
cases (a) and (c) are inequivalent torically dual theories for xy = z?w?. In the Hllow ing we
detail the data for these two contrasting cases. W e refer the reader to [], §] for details and
notation.

2.3 Case (a) from PartialR esolution

For case (a), the m atter content is encoded the d-m atrix which indicates the charges of the
8 bifundam entals under the 4 gauge groups. This is the incidence m atrix for the quiver
diagram drawn in part (a) of F igure[.
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Figure 2: T he standard toric diagram for the generalized coniold xy = uv = z° (far kft). To the
right are six SL (3;€ ) transform ations (a)—(f) thereof (drawn in red) and hence are equivalent toric

diagram s for the variety. W e em bed these six diagram s into the A belian orbifold C3=(zs z3) i
order to perform partial resolution and thus the gauge theory data.

A g B A 4 C
5 8
7!16 14 3 4 5|2
2 6
C 3 D B 7 D
Case (a) Case ()

Figure 3: The quiver diagram encoding the m atter content of Cases (a) and (c) of F igure E

O n the other hand, the F-tem s are encoded in the K -m atrix

X2 X3 Xz X5 Xg X7 X81
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From K wegettwo relationsX sX g = X (X 5 and X 1X 4 = X ,X 3 (these are the relations one
must In pose on the quiver to obtain the nalvariety; equivalently, they correspond to the



F+term constraints arising from the superpotential). N otice that here each termm is chargeless
under all 4 gauge groups, sO when we Integrate back to get the superpotential, we should
multiply by chargeless quantities also?.

The relations must com e from the F- athess @%iw = 0 and thus we can use these
relations to integrate back to the superpotential W . However we m eet som e am biguities .

In principle we can have two di erent choices:

(1) W= XsXg XeX7)X1Xs X3X3)

(i1) Wo= 1(XsXg XeXq)+ 2(X1Xyg XX3)

where fornow ; are sin ply chargeless elds.

W e shall evoke physical argum ents to determ ine which is correct. Expanding (i) gives
Wi = XXX 11Xy XeXX1Xs XeXgX,X3+ XXX ,X5. Notice the tem X ¢X 7X 1X 4¢
there isno com m on gauge group underw hich there four eldsare charged, ie. these 4 arrow s
(.v. Fiure[]) do not intersect at a sihgle node. Thism akes (i) very unnaturaland exclude
it.

Case (i) does not have the above problem and indeed all four elds X 5;X ;X ;X 7 are
charged under the U (1) gauge group, o considering ; to be an adpint of U (1), , we
do obtain a physically m eaningful interaction. Sin ilarly , will be the adpint of U (1) ,
Interacting with X 1 ;X 4;X 5;X 3.

However, we are not nish yet. From Figure E we see that X 5;X ;X ;X4 are all
charged under U (1)z , while X ¢;X 7;X ;X 3 are all charged under U (1) . From a physi-
calpoint of view , there should be som e interaction tem s between these elds. Possibilities
areX sX gX 1X 4 and X X ;X ;X 3. To add these term s Into W , is very easy, we sin ply perform
the ©llow ing replacement? | | | XX 4; ., !, X ¢X4:Putting everything
together, we nally obtain that Case (a) has m atter content as described in Figure [ and
the superpotential

W = (1 X1X4)XsXg XeXq)+ (2 XegX9)X1Xs X2X3) (2.3)

2In m ore general situations the left-and right-hand sidesm ay not be singlets, but transform in the sam e
gauge representation.

3T he am biguities arise because in the abelian case (toric Janguage) the ad pints are chargeless. In fact, no
am biguity arises if one perfom s the H iggsing associated to the partialresolution in the non-abelian case. W e
have perform ed this exercise in cases (a) and (c), and veri ed the result obtained by the di erent argum ent
o ered in the text.

4H ere we choose the sign purposefully or later convenience. H ow ever, we do need, for the cancellation of
the unnatural interaction term X 1X 4X ¢X 7, that they both have the sam e sign.



This is precisely the theory (a) from the brane setup in the last section! C om paring (23)
with @.), we see that they are exact sam e under the fllow ing rede nition of variables:

B1/Bs () X5;Xg C1iCo () XXy D1;Do () X2;X5
A;A, () X1;Xa 2 () 1 1 () 2

In conclusion, case (a) of our Inverse A Igorithm reproduces the results of case (a) of the

brane sstup.

2.4 Case (c) from PartialR esolution

For case (c), the m atter content is given by the quiver in Figure [§, which has the charge
m atrix d equal to

X1 Xy X3 Xz X5 Xg X7 Xg
0 1 1 0 0 0 1 %
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T his is precisely the m atter content of case (b) of the brane sstup. T he F-term s are given
by

X1 X2 X3 X4z X5 Xg X7 Xg

o o o r o
o o o o
o~ P O O O
o o o o o
o o o o o
= o o o o
o o o o o
= o o o o o
OO =

From it we can read out the relations X (X g = X 45X 7 and X ,X 5 = X3X 4. Again there are
wo ways to write down the superpotential

(1) Wi= X1Xg XeX7)X3Xy X X5)

(ii) Wo= 1(X1Xg XeXq)+ 2(X3Xy XX5)
In this case, because X 1,X g, X ¢, X 7 are not charged under any com m on gauge group, it is
n possible to include any ad pint eldd  to give a physically m eaningful interaction and so

(i) is unnatural. W e are left the superpotential W ; . Indeed, com paring with £4), we see
they are dentical under the rede nitions

AAy () XXy B1/By () X3;Xy
C1;Co () Xg;Xy Di;Dy () X32;X5

T herefore we have reproduced case (b) of the brane setup.



W hat have we achieved? W e have shown that toric duality due to inequivalent em bed-
dings of unin odularly related toric diagram s for the generalized coniold xy = z?w? gives
two inequivalent physical world-volum e theories on the D Jorane probe, exem pli ed by cases
(@) and (c). On the other hand, there are two T -dual brane sstups for this sinqularity, also
giving two inequivalent eld theories (a) and (b). Upon com parison, case (a) (resp. (c)) from
the Inverse A Ijorithm beautifillly corresponds to case (a) (resp. (b)) from the brane sstup.
Som ehow , a seem Ingly ham less trick In m athem atics relates inequivalent brane setups. In

fact we can say much m ore.

3. Seiberg D uality versus Toric D uality

Asfollows from [[]], the two theories from the brane setups are actually related by Sebery
Duality [IJ], as pointed out in [24] (see also [13,R3]. Letus rst review them ain features of
this fam ous duality, for unitary gauge groups.

Selberg duality is a non-trivial Infrared equivalence of N = 1 supersymmetric eld
theories, which are di erent in the ultraviolet, but ow the the sam e interacting xed point
In the Infrared. Tn particular, the very low energy features of the di erent theordies, 1ke their
m oduli space, chiral ring, global sym m etries, agree for Seberg dual theories. G iven that
toric dual theories, by de nition, have denticalm oduli spaces, etc , it is natural to propose
a connection between both phenom ena.

T he prototypical exam ple of Sedberg duality s N = 1 SU (N.) gauge theory with N«
vector-lke fundam ental avours, and no superpotential. The global chiral symm etry is
SUN¢), SU(N¢)R,so thematter content quantum num bers are

SU M) SU M) SUN:K
O 1
1 u

Q O
09 O
In the conform al window , 3N =2 N« 3N ., the theory ows to an interacting infrared
xed point. The dual theory, owing to the same xed pointisgiven N = 1 SUN ¢ N.)

gauge theory with N fundam ental avours, nam ely

[SUM: No)SUMek SUM:k

f
q O O 1
QP 0 1 O
M 1 O O



and superpotential W = M go’. From the m atching of chiral rings, the fnesons’M can be
thought of as com posites Q Q ° of the original quarks.

Tt is well established ], thatinan N = 1 (ITA ) brane sstup for the four dim ensional
theory such as F igure [l], Seberg duality is realised as the crossing of 2 non-parallel N SN S°
branes. In other words, as pointed out in ], cases (a) and (b) are In fact a Seiberg dual
pair. T herefore it seam s that the results from the previous section suggest that toric duality
is a guise of Seiberg duality, for theories w ith m oduli space adm itting a toric descriptions.
It is therefore the intent of the rem ainder of this paper to exam ine and support

CONJECTURE 3.1 Toric duality is Seiberg duality for N = 1 theories with toric m oduli
soaces.

4.PartialR esolutions ofC’=(z3 z3) and Seiberg duality

Let us procead to check m ore exam ples. So far the other known exam ples of torically dual
theories are from various partial resolutions of € —(my z3). In particular t was found in [§]
that the (com plex) cones over the zeroth H irzebruch surface aswell as the second del Pezzo

surface each has two toric dualpairs. W e ram ind the reader of these theories.

4.1 H irzebruch Zero

T here are tw o torically dual theories for the cone over the zeroth H irzebruch surface Fy. The
toric and quiver diagram s are given in Figure[d, the m atter content and interactions are

M atter Content d Superpotential

X1 Xp X3 X4 X5 Xg X7 Xg X9 X139 X11 X712
oo ol 10l XXX X3X97X10 X2XgX9 X1XeXipt
0 10 11 0 0 0 1 0 0 0

0o 1 0 1 0 1 1 1 0 1 1 1 X3X X 11+ XXX g+ X2X5X 12 X 21X 5X 11 (4.1)
1 0 1 0 0 1 0 0 0 1 0 0

H
O w >

X112 Y122 Y222 Y111 Y211 X121 X212 X221

ij kL
T K 12k 22X 521Y111

H
U 0w >
-
-
-
o
o
o
=
o

Let us use the el theory rules from Section 3 on Selberg Duality to exam ine these
wo cases n detail. The charges of the m atter content for case IT, upon prom otion from
U (1) to SU N ) ° (Pr instance, Hllow ng the partial resolution in the non-abelian case, as

SConceming the U (1) factors, these are In fact generically absent, since they are anom alous i the orighal
Z3 %3 singularity, and the G reen-Schwarz m echanism canceling their anom aly m akes them m assive ]
(see [@,@,E} for an analogous 6d phenom enon). H ow ever, there is a wellde ned sense n which one can
use the abelian case to study the toric m oduli space [@].

10
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Figure 4: The quiver and toric diagram s of the 2 torically dualtheories corresponding to the cone

over the zeroth H irzebruch surface Fyg.

in @,F), can be rewritten as (rede ning eds (X 1;Yi;2;W 5) = Xi12;Y1 205X 1215¥511)

with i= 1;2 and gauge groups (a;b;c;d) = (A ;C ;B ;D ) for convenience):

SUM ), SUM ), SUN ). SU (N )q
X 0O O
Y O O
7 O a
Wi O O

T he superpotential is then
W= X1Y1Z, W, X1Y,Z,W 1 XoY1Z21W,+ XoY,Z2,Wq:

Let us dualise with respect to the a gauge group. This isa SU (N ) theory with N, =
N and N¢ = 2N (as there are two X ;’s). The chiral symm etry is however broken from
SU@N ), SU(@@N ) toSUN ), SU (N )z ,which m oreoverisgauged asSU (N ), SU (N )4.
Ignoring the superpotential W 1, the dual theory would be:

SU N ), SUWM ), SUM ). SU (N )q
a O O
Y; O 0
_ 4.2)
7, O 0
g | O O

W e note that there are M ;; giving 4 bifundam entals for ld. They arise from the Seiberg
m esons in the biffiindam ental of the enhanced chiral symmetry SU (2N ) SU (2N ), once
decom posad w ith respect to the unbroken chiral sym m etry group. T he superpotential is

W =M 11%0_[8 M 12%0_[8 M 21q1q(2) + M 2zqzq§=

11



T he choice of signs n W *w ill be explained shortly.

O foourse, W 17 isnot zero and so give rise to a deform ation In the original theory, anal-
ogous to those studied In eg. B3]. In the dual theory, this deform ation sin ply corresponds
to W 11 rew ritten in term s of m esons, which can be thought of as com posites of the original
quarks, ie., M ;5 = W ;X 5. Therefore we have

Wir=M2nY1Z2, M11Y2Z, M Y121+ M 12Y07,

which iswritten in the new variables. T he rule for the signs isthateg. the eld M ,; appears
w ith positive sign in W 11, hence it should appear w ith negative sign in W %, and analogously
for others. Putting them together we get the superpotential of the dual theory

dual _ 0_
Wdale W+ W 0=

Mpngd Mipd Maaggp+ Mo+ M Y12, MpYZ, MpYiZo+ M pYe7
(4.3)

Upon the eld rede nitions

M ! Xy M ! Xg Mo ! Xnp Mo ! X
qll X4 qz' X2 qJ_O! Xg q20! X5

we have the eld content [@J) and superpotential ({J3) m atching precisely with case I in
#J]). W e conclude therefore that the two torically dualcases I and II obtained from partial
resolutions are Indeed Seiberg duals!

4.2 delPezzo 2

Encouraged by the results above, let us procead w ith the cone over the second del Pezzo
surface, which also have 2 torically dual theordes. T he toric and quiver diagram s are given

in Figure .

M atter Content d Superpotential
Y1 Yy Y3 Y4 Y5 Yg Yy Yg Yg Yig9 Y31 Yip Y33
Al 1 0 o0 1 0 10 1 0 o0 0 1 1
lo o 10 11 0o o o 1 o o o |Y2Yo¥Y1r YoY3Yip YaYg¥ir YaYpY9Yiz+ Yi3Y3Ye
clo o 1 0 1 o0 1 1 1 0 1 1 1
D |1 10 0 0 0O 0O 0 1 10 0 0 Ys¥12¥6 + Y1Y¥s¥eY10 + YqY¥7Y¥12 (4 4)
E 0 0 1 0 N

1 0 1 0 0 0 1 0 0

X1 Xp X3 X4 X5 Xg X7 Xg Xg X310 X711
1 0 1 0 0 0 0 1
1

1 0 o o X5XgXeXog+ X1X2X 10X 7+ X11X3Xy4
0 0 1 1 0 0

o o o o o 1 1 o 1 o XyX10Xg X2XgX7X3Xg9 X11X1X5s
0 0

1 1 1 0 0 10 1 1

Again we start with Case II. W orking analogously, upon dualisation on node D neglecting
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Toric Diagram Quiver Diagram

A

3,5
Casell ° ° °
[
D 9 c .

Toric Diagram

E

Quiver Diagram

Figure 5: The quiver and toric diagram s of the 2 torically dualtheories corresponding to the cone

over the second del Pezzo surface.

the superpotential, the m atter content of IT undergoes the follow ing change:

SUMN )a SUN )g SUN )¢ SUN )p SU N )g
X6 O O
SUMN )a SUMN )g SUN )c SUN )p SUN )g X5 O O
X1 O O X 3 O O
X5 0 O X1 0 O
Xs O O X4 O O
X3 O O X 10 O O
X4 O O dua=1)<>nD X 13 O O
X O O ®, ] O
X1 O O €, O O
X6 O O g O O
X 7 O O ®10 O O
X g O O Mgaa O O
X 10 O O Mzgaz O O
MEgca O O
MEgcp O O
(4.5)

Let us explain the notations in ). Before Seberg duality we have 11 elds X 1;...41 -
A fter the dualisation on gauge group D , the we obtain dual quarks (corresponding to bi-
fiindam entals conjugate to the originalquark X ¢ ;X 7 ;X g;X 10) which wedenote £ ;% ;% ;% 1.
Furthem ore we have added meson elds M gaaMga2iMecaiMec 2, which are Seberg
m esons decom posed w ith respect to the unbroken chiral symm etry group.

A s before, one should incorporate the interactions as a deform ation of this duality.
Na vely we have 15 elds in the dual theory, but aswe w ill show below , the resulting super-
potential provides a m ass term for the elds X, and M gc », which transform in conjigate

13



representations. Integrating them out,we willbe left with 13 elds, the num ber of eldds in
Case I. In fact, w ith the m apping

dualof TIX 1 |X o[X s|x 5| X4 [Xo|x 0 |& %[ £e]% 0
Case I |Ye|Y¥s|Ys| Yy |massive]Yso| vis | ¥a|Ya|vu| ¥y

and
dualof M ga M ca o

MEC;].‘ MEC;Z

CaselI ‘ Yg ‘ Yio ‘ Yo ‘massjye
we conclude that the m atter content of the Case IT dualised on gauge group D is dentical
toCase I!
Let us nally check the superpotentials, and also verify the clain that X4, and M gc »
becom e m assive. R ew riting the superpotential of IT from  (€.4) In tem s of the dualvariables
(m atching the mesons as composites M gag = XgX 7, Mgap = X10X7, Mgcag = XXy,

M EC2 = X10X6),wehave

W= XsMgcaXog+ X1 XoMgap+t X11X3Xy

XMpecp XoMppaX3Xg X11X1X5:

A s is with the previous subsection, to the above we must add the m eson interaction
term s com ing from Seidberg duality, nam ely

WmesonzMEA;l§7?28 MEA;Z?E7?210 MEC;1§6?E8+MEC;2?E6§IO;
(notice again the choice of sign N W 1 eson ) - A dding this two together we have

dual
W% = XsMgcaXo+ X1 X Mgap+ X11X3X 4
XM gep XoMgaaXizXg X11X X5

+Mpaa%%s Mpapg®: R MpcaXeko+ Muc Xk o:
Now it is very clear thatboth X, and M ¢ » arem assive and should be integrated out:
X,= %K 0; Mgcp= X11X3:
Upon substitution we nally have

WM = X MgeaXo+ X1 XoMgao+ X1X3XeK g XoMgaaXsXo

X 11X 1X 5+ MEA;1?E7?28 MEA;2?§7§10 MEC;1£6?28;
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which with the replacam ent rules given above we obtain

WA = YoYoYio + Ye¥sYi, + YisY1Y,Ys  YsYiYioYe

Y13Y¥3 + Ye¥yu¥11  Yi2Y4Y7  YoYo¥qq:

This we instantly recognise, by referring to (4.4), as the superpotential of Case T.

In conclusion therefore, w ith them atching ofm atter content and superpotential, the two
torically dual cases I and IT of the cone over the second del Pezzo surface are also Seiberg
duals.

5. Brane D ilam onds and Seiberg D uality

H aving seen the above argum ents from eld theory, let us support that toric duality is Seiberg
duality from yet another perspective, nam ely, through brane sstups. The use of this T dual
picture for D 3-branes at singularities w ill tum out to be quite helpfiill In show ing that toric
duality reproduces Selberg duality.

W hat we have leamt from the exam ples where a brane interval picture is available (ie.
N S-and D 4-branes in the m anner of [[J]) is that the standard Seiberg duality by brane
crossing reproduces the di erent gauge theories obtained from toric argum ents (di erent
partial resolutions of a given singularity). N otice that the brane crossing corresoonds, under
T duality, to a change of the B eld in the sinqularity picture, rather than a change in the
sinqularity geom etry 24,[4]. H ence, the two theories arise on the workl<olim e of D -branes
probing the sam e singularity.

U nfortunately, brane intervals are rather Iim ited, in that they can be used to study
Seberg duality or generalized conifold sihgularities, xy = w*w!l. A Ithough this is a large
class of m odels, not m any exam ples arise in the partial resoluitions of € —(my  Z5). Hence
the relation to toric duality from partial resolutions cannot be checked for m ost exam ples.

T herefore it would be ussful to nd other singularities for which a nice T dual brane
picture is available. Nice In the sense that there is a m otivated proposal to realize Seiberg
duality in the corresponding brane setup. A good candidate for such a brane sstup isbrane
diam onds, studied In {L4].

Reference Rg] (see also 29, BJ) introduced brane box con gurations of intersecting
N S—and N Sbranes (gpanning 012345 and 012367, respectively ), w ith D 5-boranes (spanning
012346) suspended am ong them . Brane diam onds [[4] generalized (and re ned) this setup
by considering situations where the N S—and the N S’Jbranes recom bine and span a an ooth
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holom orphic curve in the 4567 directions, in whose holes D 5-branes can be suspended as soap
bubbles. Typical brane diam ond pictures are as in gures in the rem ainder of the paper.

Brane diam onds are related by T duality along 46 to a large set of D oranes at singu—
larities. W ith the set of rules to read o the m atter content and Interactions in ], they
provide a useful pictorial representation of these D orane gauge eld theories. In particular,
they correspond to singularities obtained as the abelian orbifolds of the conifold studied in
Section 5 of (], and partial resolutions thereof. C oncemning this last point, brane diam ond
con gurations adm it two kinds of deform ations: m otions of diam ond walls in the directions
57, and m otions of diam ond walls in the directions 46. T he form er T dualize to geom etric
sizes of the collapse cycles, hence trigger partial resolutions of the sinqularity (notice that
when a diam ond wallm oves in 57, the suspended D 5Jranes snap back and tw o gauge factors
recom bine, leading to a H iggsm echanisn , triggered by FI tem s). T he Jater do not m odify
the T dual singularity geom etry, and correspond to changes in the B— elds in the collapsed
cycles.

T he Jast statem ent m otivates the proposalm ade in ] for Selberg duality in this setup.
It corresponds to closing a diam ond, while keeping it in the 46 plane, and reopening it w ith
the opposite orientation. T he orientation of a diam ond determ ines the chiralm ultiplets and
Interactions arising from the picture. The e ect of this is shown In g 7 of [[4]]: The rules

are

1. W hen the orientation of a diam ond is Ipped, the arrow s going in or out of it change
ordientation;

2. one has to include/rem ove additional arrow s to ensure a good ‘arrow ow ’ (ultin ately

connected to anom alies, and to Seiberg m esons)
3. Interactions correspond to closed loops of arrow s in the brane diam ond picture.

4. In addition to these rules, and based In our experience w ith Seiberg duality, we propose
that when in the nalpicture som e m esons appear In gauge representations con jigate

to som e of the original eld, the conjugate pair gets m assive.

T hese rules reproduce Seiberg duality by brane crossing in cases where a brane Interval
picture exists. In fact, one can reproduce our previous discussion of the xy = z?w? in this
language, as shown In  gure Figure ff. Notice that In analogy w ith the brane interval case
the diam ond transition proposed to reproduce Seiberg duality does not involve changes in
the T dual singularity geom etry, hence ensuring that the two gauge theories w i1l have the

sam e m oduli space.

16



(mn

Figure 6: Seberg duality from the brane diam ond construction for the generalized conifold xy =
z’w?. Part (I) corresponds to the brane interval picture w ith altemating ordering of N S— and
N So—branes, w hereas part (II) m atches the other ordering.

Let us reexam Ine our aforem entioned exam ples.

5. Brane diam onds for D 3-branes at the cone over Fy

Now let us show that diam ond Selberg duality indeed relates the two gauge theories arising
on D 3-branes at the singularity which isa com plex cone over Fy. T he toric diagram of Fy is
sin ilar to that of the conifold, only that it has an additionalpoint (ray) in them iddle of the
sJquare. Hence, it can be obtained from the conifold diagram by sim ply re ning the lattice
(by a vector (1=2;1=2) if the coniod kttice is generated by (1;0), (0;1)). This in plies [3))
that the space can be obtained asa %z, quotient of the conifold, speci cally m odding xy = zw
by the action that ips all coordinates.

Perform ing two T dualities in the conifold one reaches the brane diam ond picture de-
scribed i [I4] ( g. 5), which is com posed by two-diam ond cell w ith sides denti ed, see
Part (I) of Figure I] However, we are interested not In the conifold but on a z, quotient
thereof. Q uotienting a singularity am ounts to including m ore diam onds in the unit cell, ie.
picking a Jarger unit cell in the periodic array. T here are two possible ways to do so, corre—
sponding to two di erent z, quotients of the conifold. O ne corresponds to the generalized
conifod xy = z?w? encountered above, and whose diam ond picture is given in Part (II) of
F igure[] for com pleteness. T he second possibility is shown in Part (I1T) of F igure[] and does
correspond to the T -dual of the com plex cone over Fy, so we shall henceforth concentrate
on this case. Notice that the denti cations of sides of the unit cell are shifted. The nal
spectrum  agrees w ith the quiver before eg (22) in []1. M oreover, ollow ing [[4], these elds
have quartic Interactions, associated to squares in the diam ond picture, w ith signs given by
the ordentation of the arrow ow . They m atch the ones in case IT in (@).

Now let us perform the diam ond duality in the box labeled 2. Follow ing the diam ond
duality rules above, we ocbtain the result shown i Figure . Carefil com parison with the
spectrum and interactions of case I in (@J]), and also with the Sedberg dual com puted in
Section 4.1 show s that the new diam ond picture reproduces the toric dual / Seberg dualof
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Z,Quotient ’ Z,Quotient

gg (1) Conifoldxy =zw ee

2.2 (111) Cone over FO
(Ixy=

Figure 7: (I) Brane diam ond for the conifold. Identi cations in the in nite periodic array of boxes
leads to a two-diam ond unit cell, whose sides are denti ed iIn the cbvious m anner. From (I) we
have 2 types of Z, quotients: (II) Brane diam ond for the %, quotient of the coniod xy = z°w?,

which is a case of the socalled generalised conifold. The denti cations of sides are trivial, not
tilting. The nal spectrum is the fam iliar non-chiral spectrum for a brane interval w ith two N S
and two N S’ branes (in the alternate con guration); (III) B rane diam ond for the Z, quotient of the
conifold yielding the com plex cone over Fy. The identi cations of sides are shifted, a fact related

to the speci ¢ “lted’ re nem ent of the toric lattice.

Qg Diamond (Se| berg)

Figure 8: Brane diam ond for the two cases of the cone over Fy. (I) isas in Fjgureﬂ and (II) is
the result after the diam ond duality. T he resulting spectrum and interactions are those of the toric
dual (and also Seiberg dual) of the initial theory (I).

(1

the initial one. Hence, brane diam ond con gurations provide a new geom etric picture for
this duality.

5.2 Brane diam onds for D 3-branes at the cone over dP,

The toric diagram for dP, shows it cannot be constructed as a quotient of the conifold.
However, it is a partial resolution of the orbiblded conibld descrbed as xy = v2,uv = z2
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S — L
del Pezzo 2 Xy=uv=7

F igure 9: Embedding the toric diagram ofdP 2 into the orbifolded conifold described as xy = v,

(1) Orbifolded Cor;ifold (I1) del Pezzo 3 (I11) del Pezzo 2
Xy=uv=z

Figure 10: (I) Branediamond ra %, %, orbidd of the coniod, nam ely xy = z?;uv = z°.
From thiswe can partial resolve to (II) the cone over dP 3 and thenceforth again to (III) the cone
over dP,,which we shalldiscuss in the context of Seiberg duality.

in €° (we refer the reader to F gure g. Thisisa z, =z, quotient of the conifold whose
brane diam ond, shown in Part (I) of Figure , contains 8 diam onds in its unit cell
Partial resolutions in the brane diam ond language correspond to partial H iggsing, nam ely
recom bination of certain diam onds. A s usual, the di cult part is to dentify which diam ond
recom bination corresponds to which partialresolution. A system atic way proceed would be’ :

1. Pick a diam ond recom bination;
2. Com pute the nalgauge theory;

3. Com pute itsm oduli space, which should be the partially resolved singularity.

6A s an aside, Jet us ram ark that the use of brane diam onds to follow partial resolutions of singularities
may provide an altemative to the standard m ethod of partial resolutions of orbifold singularities H,ﬂ].
T he existence of a brane picture for partial resolutions of orbifolded conifolds m ay tum out to be a usefiil
advantage in this respect.
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H owever, instead of being systam atic, we prefer a shortcut and sim ply m atch the spectrum
of recom bined diam ond pictures w ith known results of partial resolutions. In order to check
we pick the right resolutions, it is usefill to discuss the brane diam ond picture for som e
Interm ediate step in the resolution to dP,. A good interm ediate point, for which the eld
theory spectrum is known is the com plex cone over dP3.

By trial and error m atching, the diam ond recom bination which reproduces the world—
volum e spectrum for D 3-branes at the cone over dP; (see [], B1), is shown in Part (II)
of Figure @ Perform ing a further resolution, chosen so as to m atch known results, one
reaches the brane diam ond picture for D 3-branes on the cone over dP,, shown in Part
(I1T) of Figure [[J. M ore speci cally, the spectrum and interactions in the brane diam ond
con guration agrees w ith those of case Tin (E4).

T his brane box diam ond, obtained in a som ew hat roundabout way, is our starting point
to discuss possible dual realizations. In fact, recall that there is a toric dual eld theory
for dP,, given ascase II in (E4). A fter som e inspection, the desired e ect is obtained by
applying diam ond Seiberg duality to the diam ond labeled B . T he corresponding process and
the resulting diam ond picture are shown in Figure[I]. Two comm ents are in order: notice
that in applying diam ond duality using the rules above, som e vector-like pairs of elds have
to be ram oved from the nalpicture; in fact one can check by eld theory Seiberg duality
that the superpotentialm akes them m assive. Second, notice that in thiscase we are applying
duality in the direction opposite to that followed in the eld theory analysis in Section 4 2; it
isnot di cult to check that the eld theory analysis works in this direction as well, nam ely
the dual of the dual is the original theory. T herefore this new exam ple provides again a
geom etrical realization of Seiberg duality, and allow s to connect it w ith Tordic D uality.

W e conclude this Section with som e rem arks. T he brane diam ond picture presum ably
provides other Seiberg dual pairs by picking di erent gauge factors. A 11 such m odels should
have the sam e sinqularities asm oduli space, and should be toric duals In a broad sense, even
though all such toric duals m ay not be obtainable by partial resolutions of €°=(z5  z5).
From this viewpoint we leam that Seberg duality can provide us with new eld theordes
and toric duals beyond the reach of present com putational tools. T his is further explored in
Section 7.

A second comm ent along the sam e lines is that Seberg duality on nodes for which
Nf 6 2N will lead to dual theordes where som e gauge factors have di erent rank. Taking
the theory back to the ‘abelian’ case, som e gauge factors tum out to be non-abelian. Hence,
n these cases, even though Seiberg duality ensures the nal theory has the sam e singularity
as m oduli space, the com putation of the corresponding sym plectic quotient is beyond the
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A

Diamond (Seiberg)

Dual

(I

Figure 11: The brane diam ond setup for the Sedberg dualcon gurations of the cone over dP, . (I)
isasin Fjgure and (II) is the results after Sedberg (diam ond) duality and gives the spectrum for
the toric dualtheory. The added m eson eldsaredrawn in dashed blue lines. N otice that applying
the diam ond dual rules carelessly one gets som e additional vectorlike pairs, shown in the picture
w ithin dotted lines. Such m ultiplets presum ably get m assive In the Seiberg dualization, hence we

do not consider them in the quiver.

standard tools of toric geom etry. T herefore, Seiberg duality can provide (‘hon-toric’) gauge

theordes w ith toric m oduli space.

6.A Quiver D uality from Seiberg D uality

If we are not too concemed with the superpotential, when we m ake the Seberg duality
transform ation, we can obtain the m atter content very easily at the level of the quiver
diagram . W hat we obtain are rules for a socalled \quiver duality" which is a rephrasing
of the Seberg duality transform ations In eld (brane diam ond) theory in the language of

quivers. Denote (N.); the num ber of colors at the it

node, and a;; the number of arrow s
from the node i to the j (the ad Acency m atrix) T he rules on the quiver to obtain Seiberg

dual theories are

1. Pick the dualisation node iy. D e ne the follow Ing sets of nodes: I, = nodes having
arrow s going into iy; I,y = those having arrow com ing from iy and I,, = those
unconnected w ith iy. The node iy should not be included in this classi cation.

2. Change therank ofthenode iy from N.toN¢ N.whereN ¢ isthenum ber of vector-like
P P

avours, N ¢ = Aib, = Aig i
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4. Onlky arrow s Iinking I;, to Ioy: willbe changed and all others ram ain una ected.

5. Forevery pairofnodesA ,B ,A 2 I+ and B 2 I;,, change the num ber of arrow s ax s
to

dual
aA% = aamp Aiya A i, forA 2 Iout; B 2 Ijn:

If this quantity is negative, we sin ply take f tomean a®4! arrow go from B to A .

These rules follow from applying Seilberg duality at the eld theory level, and therefore are
consistent w ith anom aly cancellation. Tn particular, notice the forany node 12 I, ,we have
replaced a;; N fundam ental chiral multiplets by a;; N  N¢) + :
equals ai; Ng No)+ a;Ne = a;; N, and ensures anom aly cancellation in the nal
theory. Sin ilarly for nodes j 2 Iue.

Tt is straightforward to apply these rules to the quivers in the by now fam iliar exam ples
In previous sections.

32 Toue 45084, 5 Which

Tn general, we can choose an arbitrary node to perform the above Seiberg duality rules.
H owever, not every node is suitable for a toric description. T he reason is that, if we start
from a quiver whose every node has the sam e rank N , after the transform ation it is possible
that this no longer holds. W e of course wish so0 because due to the very de nition of the
C action for toric varieties, toric descriptions are possible i allnodes are U (1), or in the
non-A belian version, SU (N ). If for instance we choose to Seiberg dualize a node w ith 3N
avours, the dualnode willhave rank 3N N = 2N while the others w ill ram ain w ith rank
N , and our description would no longer be toric. For this reason we m ust choose nodes w ith
only 2N ¢ avors, ifwe are to ram ain w ithin toric descriptions.
O ne natural question arises: if we Seiberg-dualise every possible allowed node, how
m any di erent theories w illwe get? M oreover how m any of these are torically dual? Letwe

reanalyse the exam ples we have thus far encountered.

6.1 H irzebruch Zero

Starting from case (II) of Fy (recallF igure[d.]) all of four nodes are quali ed to yield toric
Selberg duals (they each have 2 incom ing and 2 outgoing arrow s and hence N¢ = 2N ).
Dualising any one will give to case (I) of Fy. On the other hand, from (I) of Fy, we see
that only nodes B ;D are quali ed to be dualized. Choosing either, we get back to the

£ (IT) of Fy. In another word, cases (I) and (II) are closed under the Sedberg-duality
transform ation. In fact, this is a very strong evidence that there are only two toric phases
for Fy no matter how we embed the diagram into higher z, %, singularities. This also
solves the old question [],[d] that the Inverse A orithm does not in principle tell us how
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m any phases we could have. Now by the closeness of Seiberg-duality transform ations, we
do have a way to calculate the num ber of possible phases. Notice, on the other hand, the

existence of non-toric phases.

6.2 delPezzo 0,1,2

Continuing our above calculation to del Pezzo singularities, we see that for dPy no node is
quali ed, so there is only one toric phase which is consistent w ith the standard result flasa
resolution O p2( 1) ! (E3=Z3 .FordP;,nodes A ;B arequali ed (all notations com ing from
[@1), but the dualization gives back to sam e theory, so it too has only one phase.

For our exam ple dP, studied earlier (recallF igure £ 4), there are four points A ;B ;C ;D
which are quali ed In case (IT).Nodes A ;C give back to case (IT) while nodes B ;D give rise
to case (I) of dP,. On the other hand, for case (I), three nodes B ;D ;E are quali ed. Here
nodes B ;E give case (II) whilk node D give case (I). In other words, cases (I) and (II) are
also closed under the Seiberg-duality transform ation, so we conclude that there too are only
tw o phases for dP,, as presented earlier.

6.3 The Four Phases of dP;

T hings becom e m ore com plex when we discuss the phases of dP3. A s we ram arked before,
due to the running-tin e lin itations of the Inverse A lgorithm , only one phase was obtained
in []. However, one may expect this case to have m ore than just one phase, and In fact
a recent paper has given another phase [[§]. Here, ushg the closeness argum ent we give
evidence that there are four (toric) phases for dP;. W e will give only one phase in detail.
O thers are sin ilarly obtained. Starting from case (I) given In [§]and dualizing node B , (we
refer the reader to F igure[I]) we get the charge (incidence) m atrix d as

q? qS X1 X2 X7 X9 Xi10 X111 M1 X1z M2 Xg Mf X5 Xi12 Mgl
0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0

0 1 1
1 1 0 X
0 0 1
1 0 0

U ©
0 oE U QW
o o o kR = o®
o o o o "~ 8
o O b O

L ©

o o

o o

= o
o o o
o R O
o B O | O

=

[

o

w here

Mi=XgX3; My=X,Xg; M{=X13X3; MJ=X13X5

are the added m esons. Notice that X 14 and M , have opposite charge. In fact, both are

m assive and w ill be integrate out. Sam e for pairs (X g;M {) and (X 5;M J).
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Figure 12: T he four Selberg dual phases of the cone over dP5.

Let us derive the superpotential. Before dual transform ation, the superpotential is []]
Wi= X3XgX13 XgXoX11 XsXgXi3 X31X3X4X10X12
XX oX 12+ XyX X 14+ X1 XXX 10X 11 XX 97X 14
A fter dualization, superpotential is rew ritten as
Wo=MXg XgXoX11 XsMs XM XX,
XX X 12+ M X 14+ X1X X 5X 10X 11 XX 19X 14t

Tt is very clear that eldsX g;M ;X 5;M ;X 14;M , are allm assive. Furthem ore, we need to
add the m eson part

Wneson = M lngl M 2011(313 M ](_)ngZ + M §q§q2

where we detemm ine the sign as ©llows: since the term M X g in W ° in positive, we need
tem M g to be negative. A fter integration allm assive elds, we get the superpotential
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as
Wi = CISCI2X9X11 XM (X 10X 12+ X 7X X 12 + Xlxzqg%xloxll X2X7CI1CIS+ M 101(1)(3113

T he charge m atrix now becom es

0 a @ 9 o X1 Xz X7 X9 X10 X11 M1 Xl21
BRA O 1 0 0 1 0 0 1 0 0 0 1
BB 1 11 1 0 0 0 o0 0 0 o0 0 g
%c 1 0 o0 0 1 1 0 0 0 0 1 0
%D 0 0 1 0 0 0 0 0 11 1 o &
E 0 0 0 0 0 1 0 1 0 0 1
F 0o o0 O 0 ©0 1 1 1 0 0 0

This is in precise agreem ent w ith [L§]; very re-assuring indeed !
W ithout further ado let us present the rem aining cases. T he charge m atrix for the third
one (dualising node C of (I)) is

0 el 01(1) CIg P X5 Xi12 X3 Xg X9 M1 Xi0 X111 X3 le
BA 1 0 0 O0 1 1 0o 1 1 1 0 0 101
EB o o 0 0 0 1 0 0 0 0 0 101
Bc 1.1 1 1 0 0 o0 0 0o 0 0 0 o0 %
%D o 0 o 0o o 1 1 0 0 101 o o &
E 0 0 1 1 1 0 0 0 o0 1 0 0 0
F o 1 0 o0 O 0 0 0 1 1 o0 1 0 o0

w ith superpotential

Wir = X3XgX 13 XgXoXqg X5q2q§X13 M ,X 3X 19X 12

+ X oo + M 1XsX 10X 11 Mg + Mogag:

Finally the fourth case (dualising node E of (I1I)) has the charge m atrix

0 a W1 Wy q o X3 Xg W) W X9 M1 X112 X13 M2 p1 Pl p p 1

BA 1 1 1 o 1 1 1 1 1 o0 1 1 0 1 1 o0

EB 0 o 0o 0o 1 1 0 0 0 0 o0 0 1 1 0 0 0 0 %

Ec 1 1 1 1 1 0 0 0 0 0 0 0 0o 1 0 o0

ED 0 0 0 0 1 1 1 1 o0 0 0 0 0 0 0 &
E 0 O 0 0 0 0 0 0 0 o0 0 0 0 11 1 1
F 0 0 0 0 0 0 0 o 1 1 1 0 0o 0 0 0 0

w ith superpotential

0 0, 0
Wi = X3XgX 13 XgXoX1p WigpXi3 M2X3W2+q1X9W2+M1W10X11

Maiad + Mgy + Wipp, Wopp, W op + W op
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7. Picard-Lefschetz M onodrom y and Seiberg D uality

In this section let usm ake som e brief com m ents about P icard{ efschetz theory and Seberg
duality, a relation between which has been within the literature [[4]. It was argued in 1]
that at Jeast in the case of D 3-branes placed on ADE conifolds 81, 3] Seberg duality for
N = 1 SUSY gauge theories can be geom etrised into P icard-1.efschetz m onodrom y. M oreover
in [L§] Toric D uality is interpreted as P icard-Lefschetz m onodrom y action on the 3-cycles.
O n the level of brane setups, this interpretation seam s to be reasonable. Thdeed, consider

a brane crossing process in a brane interval picture. Two branes separated i x°

approach,
are exchanged, and m ove back. The T-dual operation on the singularity corresponds to
choosing a collapsaed cycle, decreasing its B— eld to zero, and continuing to negative values.
T his Jast operation is basically the one generating P icard-L.efschetz m onodrom y at the level
of hom ology classes. Sin ilarly, the closing and reopening of diam onds corresponds to contin—
uations past In nite coupling of the gauge theordes, nam ely to changes in the T dualB - elds
in the collapsed cycles.

Tt is the purpose of this section to point out the obsarvation that while for restricted
classes of theordes the two phenom ena are the sam e, in general Seiberg duality and a na ve
application of Picard-d.efschetz (PL) m onodromy do not seem to coincide. W e Jeave this
issue here as a puzzle, which we shall resolve In an upcom ing work.

T he organisation isas follow s. First we brie y introduce the concept of P icard{. efschetz
m onodrom y for the convenience of the reader and to establish som e notation. Then we give
two exam ples: the rst is one with two Seilberg dual theories not related by PL and the
second, PL dual theories not related by Seiberg duality.

7.1 Picard-L.efschetz M onodrom y

W e rstbrie y ram ind the reader of the key points of the PL theory [[§]. G iven a sihhqularity
onamanidM andabasisf ;g H,; M )Pritsvanishing (n 1)<ycles,going around
these vanishing cycles induces a m onodrom y, acting on arbitrary cyclesa 2 H (M );m oreover
this action is com putable in term s of intersection a ; of the cycle a w ith the basis:

THEOREM 7. The monodromy group of a singularity is generated by the P icardd.efschetz
operators hi, corresponding t© a kasis £ ;g H, ;1 of vanishing cycles. In particular for

anycycka2 H, ;1 (nosummaton in i)

n(n+1)

hi@)=a+ ( 1) @ 1) a:
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M ore concretely, the PL m onodrom y operator h; acts asa m atrix (h;)y on the basis  ;:

N ext we establish the relationship between this geom etric concept and a physical inter—
pretation. A cocording geom etric engineering, when a D borane w raps a vanishing cycle in the
basis, it give rise to a sim ple factor in the product gauge group. T herefore the total num ber
of vanishing cycles gives the num ber of gauge group factors. M oreover, the rank of each
particular factor is determm ined by how m any tim es it w raps that cycle.

For exam ple, an original theory w ith gauge group Q' SU (M ;) is represented by the brane
w rapping the cycle P_ M5 4.UnderPL monodromy, tlie cycle undergoes the transform ation

J
X X
My =) M)k x:
J J
Physically, the nalgauge theory is © SU (P 5M 5 (hi)gk ).

T he above show s how the rank };)f the gauge theory changes under PL. To determm ine
the theory com pletely, we also need to see how them atter content transform s. Th geom etric
engineering, the m atter content is given by intersection of these cycles ;. Incdentally, our
Inverse A gorithm gives a nice way and altermative m ethod of com puting such intersection
m atrices of cycles.

Letustakea= 5, then

T his is particularly useful to us because (4 :),as iswellkknown, is the anti-sym m etrised
adpcency m atrix of the quiver (for a recent discussion on this, see ]). Indeed this Intersec—
tion m atrix of (the blow up of) the vanishing hom ological cycles speci es the m atter content
as prescribed by D dboranes w rapping these cycles in the m irror picture. T herefore we have
(5 i)= lai]l = a3 a;y Prjé iand ori= j, we have the self-intersection num bers
( 3 ;). Hence we can safely write (no summ ation in i)

P =hil )= 5+ Byl s (71)

for ay; the quiver (m atter) m atrix when Seiberg dualising on the node i; we have also ussd
the notation M ] to mean the antisym m etrisation M M " ofmatrix M . Incdentally in
the basis prescribed by £ g, we have the explicit form of the P icard-1.efschetz operators in

term s of the quiver m atrix (no summ ation over indices): (hi)x = « + [@4i] i« -
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From (7J) we have

[acj%ﬁal] = leual iual= ( 5+ [a3:] 1) (x+ laxi] 1)
@ 1+ laxilasil+ lyillaw I+ lBylaxi] 100 1 (72)

= [ax ]+ cilay k]

whereg = 1, are constants depending only on self=intersection.

W e observe that our quiver duality rules ocbtained from eld theory (see beginning of
Section 6) seam to resamble ),Le.when ¢, = 1 and j;k 6 i. However the precise relation
of tryIng to reproduce Selberg duality w ith PL theory still rem ains elusive.

7.2 Two Interesting E xam ples

However the situation is not as sin ple. In the follow ing we shall argue that while Seberg
duality and a straightforward P icard-Lefschetz transform ation certainly do have comm on
features and that in restricted classes of theordes such as those in ], for general singularities
the two phenom ena m ay bifurcate.

W e rst present two theordes related by Seberg duality that,cannot be so by P icard-
00 3°

Lefschetz. Consider the standard € °=z, theory with a;y= 3 0 0 and gaugegroup U 1),
given in (a) of Figure [13. Let,us Seiberg-dualise on nodeOA 3tooobtau'n a theory (b), with
m atter content af}** = 8 Z Z and gauge group SU (2) U (1)?. N otice especially that the
rank of the gauge group 3ﬁcoto?_'s In part (b) are (2;1;1) while those In part (a) are (1;1;1).

T herefore theory (b) has total rank 4 whik (a) has only 3. Since geom etrically PL only
shu es the vanishing cycles and certainly preserves their num ber, we see that (a) and (b)
cannot be related by PL even though they are Seberg duals.

On the other hand we give an exam ple in the other direction, nam ely two P icard-
Lefschetz dual theories which are not Seberg duals. Consider the case given In Figure[I4,
this is a phase of the theory for the com plex cone over dP3 as given in [34]. This is PL
dual to any of the 4 four phases in Figure in the previous section by construction with
(p;9)-webs. Note that the total rank rem ains 6 under PL even though the num ber of nodes

changed . H ow ever Selberg duality on any of the allowed node on any of the 4 phases cannot
change the num ber of nodes. T herefore, this exam ple in F igure[[4 is not Sedberg dualto the
other 4.

W hatwe have leamt in this short section is that Sedberg duality and a na ve application
of Picard-1.,efschetz m onodromy seem to have discrepancies for general singularities. T he
resolution of this puzzle w ill be delt w ith in a forthcom ing work.
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Figure 13: Seberg Dualisation on node A of the ¢ *=z5 orbibd theory. T he subsequent theory
cannot be obtained by a P icard-L.efschetz m onodrom y transform ation.

2
A Z B
o -

2
'4 2
D, e

Figure 14: A non-Abelian phase of the com plex cone over dP3. T his exam ple is P icard-L.efschetz
dual to the other 4 exam ples in Fjgure but not Seiberg dual thereto.

8. Conclusions

In [],[@] a mysterious duality between classes of gauge theories on D -branes probing toric
singularities was obsarved. Such a Toric Duality denti es the infrared m oduli space of
very di erent theories which are candidates for the world-wvolum e theory on D 3-oranes at
threefold singularities. On the other hand, Q, [[3]have recognised certain branem oves for
brane con gurations of certain toric singularities as Seiberg duality.

In this paper we take a uni ed view to the above. Indeed we have provided a physical
Interpretation for toric duality. The fact that the gauge theories share by de nition the
sam e m oduli space m otivates the proposal that they are indeed physically equivalent in the
Infrared. In fact, we have shown in detail that toric dual gauge theories are connected by
Seiberg duality.

This task has been facilitated by the use of T dual con gurations of NS and D Jbranes,
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in particular brane intervals and brane diam onds [[4]. These constructions show that the
Seiberg duality corresponds in the singularity picture to a change of B— elds In the collapsed
cycles. Hence, the speci ¢ gauge theory arising on D 3-branes at a given singularity, depends
not only on the geom etry of the singularity, but also on the B— eld data. Seiberg duality
and brane diam onds provide us w ith the tools to m ove around this m ore di cult piece of
the singular m oduli space, and probe di erent phases.

T his view point is nicely connected w ith that in [1,[8], where toric duals were cbtained as
di erent partial resolutions ofa given orbifod singqularity,C *=(z5 2z;), lading to equivalent
geom etries (w ith toric diagram s equivalent up to unin odular transform ations). Speci cally,
the original orbifold singularity has a speci ¢ assignm ents of B— elds on its collapsed cycles.
D i erent partial resolutions am ount to choosing a subset of such cycles, and blow ing up the
rest. Hence, In generaldi erent partial resolutions leading to the sam e geom etric singularity
end up with di erent assignm ents of B— elds. This explains why di erent gauge theordies,
related by Seiberg duality, arise by di erent partial resolutions.

In particular we have exam ined in detail the toric dual theories for the generalised
conifold xy = z?w?, the partial resolutions of € °=(z; %) exem pli ed by the com plex cones
over the zeroth H irzebruch surface as well as the second del Pezzo surface. W e have shown

how these theories are equivalent under the above schem e by explicitly having
1. unin odularly equivalent toric data;
2. them atter content and superpotential related by Seiberg duality;
3. the T dualbrane sstups related by brane<rossing and diam ond duality.

T he point d’appuiof this work is to show that the above three phenom ena are the sam e.

A s a nice bonus, the physical understanding of toric duality has allowed us to construct
new toric duals In cases where the partial resolution technique provided only one phase.
Indeed the exponential running-tim e of the Inverse A lgorithm currently prohibits larger
em beddings and partial resolutions. O ur new perspective greatly facilitates the calculation
of new phases. A s an exam ple we have constructed three new phases for the cone over del
Pezzo three one of which is in reassuring agreem ent w ith a recent work [[§] obtained from
com pletely di erent m ethods.

A nother Im portant direction is to understand the physical m eaning of P icard-1.efschetz
transform ations. A s we have pointed out in Section 7, PL transform ation and Selberg dual-
ity are really two di erent concepts even though they coincide for certain restricted classes
of theories. W e have provided exam ples of two theories which are related by one but not
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the other. Thdeed we must pause to question ourselves. For those which are Seiberg dual
but not PL related, what geom etrical action does corresoond to the eld theory transfom a—
tion. O n the other hand, perhaps m ore In portantly, for those related to each other by PL
transform ation but not by Seiberg duality, what kind of duality is realized in the dynam ics
of el theory? D oes there exists a new kind of dynam ical duality not yet uncovered??
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