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Abstract

The LHC injection transfer lines will transport intense high-energy beams over
considerable distances. Their relatively tight apertures require precise control of the
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A path approaching an optimized configuration can thus be established based on well-
defined quantitative criteria.

Presented at PAC’2001, June 18-22, 2001
Chicago, Illinois, USA

Geneva, Switzerland
August 2001

                                               
† On leave from Thomas Jefferson National Accelerator Facility.
   This work was supported in part by U.S. DOE Contract No DE-AC05-84-ER40150.



 OPTIMIZATION OF ORBIT CORRECTION SYSTEMS USING
GENERALIZED RESPONSE MATRICES AND ITS APPLICATION TO THE

LHC INJECTION TRANSFER LINES
Yu-Chiu Chao†, Volker Mertens, CERN, Geneva, Switzerland

Abstract
The LHC injection transfer lines will transport intense

high-energy beams over considerable distances. Their
relatively tight apertures require precise control of the
trajectory. An analytic method has been developed to
optimize the performance, reliability and cost of these
lines. This method invokes a comprehensive set of
performance criteria, makes detailed predictions on orbit
correction effectiveness, configuration defects and critical
elements, and gives indications for improvement. A path
approaching an optimized configuration can thus be
established based on well-defined quantitative criteria.

1  OVERVIEW
This report describes an analytic optimization program

developed for the LHC transfer lines TI 2 and TI 8,
currently under construction at CERN [1]. By establishing
response matrices for generalized actuator and responder
spaces that completely characterize an orbit correction
system, most performance issues can be cast in the form
of mapping properties between such spaces with a global
and probabilistic significance. Analyzing the structure of
these matrices further provides a systematic path for
optimization. All methods developed are implemented
through rigorous linear recipes, as this is the only way to
realize intuitive pictures on performance criteria with
efficient and robust numerical methods. In the following
the construction of the generalized response matrices and
various error distributions, the recipes for mapping and
solutions, and structural analyses of the response matrices
will be given, followed by a description of the optimiza-
tion program and its application to the LHC transfer lines.
Further details can be found in [2].

2  GENERALIZED ACTUATORS AND
RESPONDERS

Besides physical actuators (correctors) and responders
(BPM’s), the same concept is extendable to elements such
as errors and unmonitored locations [3]. Analyzing the
structure of the response matrices linking this extended
set of actuators and responders, as given in Table 1, can
provide quantitative predictions on the impact of errors, a
higher level of error interpretation and better control
through configuration changes. The matrix MMM

formalizes monitor errors as actuators in orbit correction.
With errors treated as generalized actuators, one can

formulate most of the performance criteria on a
probabilistic basis, by defining overall error distributions
according to machine and operation parameters. The

recipes discussed here are applicable to such distributions
if the constant probability density contours are convex
ellipsoidal surfaces [2]. In other words,

( )
T

Q

Q

E E

E E E

=P P

A E A= ⋅ ⋅
(1)

where PE is the probability density function of the error
represented by AE of Table 1, and EE a square symmetric
matrix with non-negative eigenvalues. This includes the
special case of multi-dimensional Gaussian distributions.

3  SECONDARY RESPONSE MATRICES
In order to further quantify physical concepts about the

performance of configurations in terms of probabilistic
envelopes, mapping of the distributions of (1) by various
“secondary response matrices” needs to be studied. These
are transformations derived from linear algebraic
operations on the response matrices of Table 1. Different
performance criteria require different operations and
combinations. An example is the response matrix
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and the direct sum (⊕ ) being a column-wise
concatenation. This matrix maps the concatenated vector

( )T
E E M M
1 1N NE M

,... , ,... ,A A A A= ⊕ =EM E MA A A

representing the combined alignment-type error (i.e.,
injection, alignment, field, etc.) and monitor error, to the
underlying orbit error after orbit correction at monitors.
More secondary response matrices can be constructed to
realize different physical processes and criteria [2].

4  MATHEMATICAL RECIPES
In order to understand the impact of error distributions

such as (1) on the performance criteria, through orbit
monitoring and correction processes such as (2), it

Table 1. Generalized response matrices.
Generalised

actuator
Generalised
responder

Response
coefficients

CM AC: correctors,
dipoles & strings

RM: position &
angle at monitors

M11,M12,M21,M22

and linear comb.
EM AE: alignment

type errors
RM: position &
angle at monitors

M11,M12,M21,M22

CA AC: correctors,
dipoles, & strings

RA: pos. & angle
at all elements

M11,M12,M21,M22

and linear comb.
EA AE: alignment

type errors
RA: pos. & angle
at all elements.

M11,M12,M21,M22

AM AA: angle at all
elements

RM: position &
angle at monitors

M12,M22

MM AM: monitor
offset error

RM: orbit error at
monitor

δij
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remains to develop mathematical recipes to perform
mapping, intersection, extremum determination, and other
operations based on (1) and (2). The apparent quadratic
form of (1) implies that direct application of off-the-shelf
numerical optimization tools is not an option, especially if
efficiency and robustness are desired when the number of
error sources and monitored points run to the hundreds or
even thousands. Thus all calculations must be rigorously
cast in linear form for which efficient and robust tools
exist. A list of such linear recipes is given below:

•  Orthonormal transformation and decomposition.
•  Projection of ellipsoids onto lower/higher dimensions.
•  Inverse projection of point(s) onto ellipsoids.
•  Tangent point between ellipsoids and hyper-planes.
•  Extreme values of operators on a constrained surface.
•  Curvature of ellipsoids through the Hessian operator.
•  Recipes for multi-dimensional Gaussian distribution.

Different recipes have to be devised depending on
whether the map is under-, over-, or critically-constrained.
With the involved high dimensionality in mind, measures
against rank deficiency also need to be built in. A
complete delineation of the recipes can be found in [2].

5  MEASURES OF PERFORMANCE

5.1 Fundamental Observability, Monitor
Coverage, and Effects of Residual Orbit
Unobservable Error

The unobservable subspace of AE is defined by the
error projection operator orthogonal to MEM. Taking the
3σ ellipsoid in this space and the boundary of its image by
MEA, we get the unobservable error effect at all elements.
Effect of Finite Residual RMS Orbit

The observable subspace of AE is defined by the error
projection operator parallel to MEM. Taking the 1σ
ellipsoid in AM, enhanced by MN , and the boundary of its

image by the inverse of this projection followed by MEA,
one obtains the maximal orbit error at all elements if the
RMS orbit observed at the monitors is equal to the
assumed monitor offsets. This is further scaled so that the
final error is within a criterion determined by a cutoff.
Combined Effects of Finite Residual RMS Orbit

The error envelopes from the two previous sections
come from complementary orthogonal subspaces. Their
quadratic sum gives the real underlying orbit envelope at
the same combined probability density as individual ones.

An alternative view can be obtained by treating
alignment and observed orbit errors on an equal basis [2].

5.2 Monitor Efficiency and Redundancy
Monitor Efficiency

The efficiency of a monitor configuration is measured
by the projection of EE in (1) along all axes in the monitor
space. Inspection of such envelopes can reveal strategic
locations and gaps in the monitor configuration.
Redundant Monitor Combination

An SVD analysis on the response matrix MEM can be

used to reveal excessive monitors or their combinations.

5.3 Fundamental Correctability, Correction
Range and Residual Orbit
Corrector Range

By taking the projection of EE onto the corrector space
by MEM followed by the pseudo-inverse of MCM, and
applying the technique for tangent points in Section 4, one
can derive the maximum error, in units of the global error
distribution σ, that can be handled by each corrector.
Increasingly more vulnerable correctors can be tabulated.

If MEA and MCA are used instead, the evaluation will
be independent of the monitor configuration and reflect
“fundamental” correction range for each of the correctors.
Uncorrectable Orbit

By mapping EE onto the corrector space by MEM

followed by the projection orthogonal to MCM, one gets
the uncorrectable orbit at all monitors. If MEA and MCA

are used, the result will be independent of the monitors.
Monitor Offset Induced Orbit Error

The normalized monitor error ellipsoid can be projected
onto the element space via MMM, the pseudo-inverse of
MCM, and MCA, providing evaluation on the effect of
monitor offsets on the global corrected orbit.
Orbit Error Implied by Observed Orbit at Monitors

The implication of an observed, corrected orbit on the
underlying errors and correctors, and in turn on its effect
at all elements, can be calculated in a least-square sense
by projecting the 1σ ellipsoid in AM via a complicated
secondary response matrix [2]. Proper scaling is needed
such that it amounts to no more than 3σ in the errors.

5.4 Actual Underlying Corrected Orbit Error
Similar to (2), be the secondary response matrix

defined
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where RUA is a responder representing the real underlying
orbit and angle after correction at all elements, AEM an
actuator of combined alignment-type and monitor errors,
and ZMM an all-zero matrix. The projection of an error
ellipsoid of all such errors under a global distribution is
mapped by UOE

EMAM , its image boundary solved, and the
maximum along each axis of RUA obtained. This is an
important measure of the correction configuration, and
can be directly compared with simulation.

5.5 Near-Degeneracy in Response Matrices
Null-space and SVD analyses of MCM measure

degeneracy in a correction configuration and identify
offending corrector combinations that can lead to
excessive correction and orbit error in unobservable
locations. A well-defined procedure can be iteratively
applied to eliminate degeneracy in a configuration.

6  THE OPTIMIZATION PROGRAM
Optimizing an orbit correction configuration involves



the interplay between applying the performance criteria
discussed above and invoking well-defined optimization
recipes. The latter will be discussed in the following.

6.1 Configuration Optimization
Two approaches are adopted to improve the

performance:
Structural Improvement

For structural defects in a configuration, the following
algorithms are applied to identify weak points and provide
solutions to bring the performance to acceptable levels:
•  Adding monitors by unobservable error-induced orbit.
•  Adding correctors by uncorrectable residual orbit.
•  Adding correctors by principal axes of error ellipsoid.
•  Removing monitors by null space/SVD analysis.
•  Removing correctors by null space/SVD analysis.
Exhaustive Fine Tuning

The need for fine-tuning arises where the effect of
configuration parameters is algebraically intractable. For
example, locations of correctors may have considerable
impact on the residual orbit envelope, but the interplay
between competing factors prevents an analytic path to
the optimal solution. In this case scanning of the
parameter space is done with one performance criterion as
a merit function. This can be very efficient because the
analytic performance criteria can be calculated quickly for
a large number of candidate configurations. It would be
difficult to do the same scanning based on simulation.

6.2 Failure Mode Analysis
Using the mathematical recipes one can also

decompose an observed performance defect into
contributing errors. Examination of the combination
provides insight leading to improved configurations. As
example, Figure 1 shows the alignment, monitor and field
errors, and corrector responses that led to a peak in the
actual underlying orbit (abscissa: beam line in m,
ordinate: offsets in m / kicks in rad; full line: underlying
orbit, bars tagged “MCIAxxxxxx”: corrector kicks*100,
bars tagged “BPMIxxxxx”: monitor offsets*100, other
larger bars: quadrupole offset kicks*100; other smaller
bars: dipole tilt kicks*100, bars clipped at boundary).

6.3 Critical Elements
Study of the most vulnerable elements due to various

failure modes can also be efficiently carried out, using the
analytic performance criteria as merit functions.

7  APPLICATION TO TI 2 AND TI 8
The method described has been applied to the LHC

injection transfer lines TI 2 and TI 8 for evaluation and
optimization. Figure 2 shows the 3σ envelope of the
corrected orbit (horizontal plane) for the reference
configuration with 2 out of every 4 consecutive focusing
quadrupoles in the periodic section complemented by
monitors (marked by dots) and correctors (abscissa in m,
ordinate in mm). Figure 3 shows that for an alternative
configuration with monitors in 2 out of every 3 and
correctors in 1 of every 3 such locations. The latter
implies an over-constrained steering assisted by
computers, but provides a much tighter underlying orbit
envelope than the “2-in-4” scheme (2.3 mm vs. 3.3 mm in
the periodic section). A variation of the over-constrained
scheme has every other monitor disabled to allow a 1-to-1
steering without resorting to computers; its corrected orbit
envelope is shown in Figure 4. Similar schemes have been
developed for the vertical plane. These schemes have
been subjected to all other performance criteria discussed
and found satisfactory.

8  ACKNOWLEDGEMENTS
Eberhard Weisse is thanked for useful discussions and

Malika Meddahi for preparing configuration files for TI 8.

REFERENCES
[1] A. Hilaire, V. Mertens, E. Weisse, Proc. EPAC’98,

Stockholm (1998), p2117ff, and LHC Project Report 208.
[2] Y.-C. Chao, V. Mertens, LHC Project Report 470 (2001).
[3] Y.-C. Chao, Proc. ABS Workshop, ed. M. Lindroos,

CERN 1998, and Proc. PAC’97, Vancouver, Canada,
p2262ff.

-5 .E -0 4

-3 .E -0 4

-1 .E -0 4

1 .E -0 4

3 .E -0 4

5 .E -0 4

1 1 0 0 1 3 0 0 1 5 0 0 1 7 00

B P M IV 23304

B P M IV 23904

B P M IV 24504

M C IA V 2310

M C IAV 23704

M C IA V 2430

Figure 1: Decomposition of Contributing Errors.
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Figure 2: TI 2 (H), 2-in-4 monitor and corrector.
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Figure 3: TI 2 (H), 2-in-3 monitor, 1-in-3 corrector.
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Figure 4: TI 2 (H), 1-in-3 monitor and corrector.


