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1. Introduction

The idea that we live on a hypersurface embedded in a higher dimensional space

has sparked a lot of interest recently. These theories are motivated from string the-

ory, where higher-dimensional objects, such as D-branes, play an essential role [1].

Similarily, compactifying M-theory (or its effective low-energy limit: 11-D supergrav-
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ity) on a S1/Z2-orbifold and compactifying six dimensions on a Calabi-Yau manifold,

results in a five-dimensional brane world scenario with two hypersurfaces, each lo-

cated at the orbifold fixed points (see e.g. [2] and [3]).

Brane world theories predict that our universe was higher-dimensional in the

past. Because of this, there is the hope that certain questions which cannot be

answered within the context of the standard model of cosmology, can be addressed

within these theories. Furthermore, cosmology should be a way to severely constrain

parameters in these models.

So far, most cosmological considerations of brane worlds centered around the

one-brane scenario of Randall and Sundrum [4]. In this model, the three-dimensional

brane universe is embedded in a 5-dimensional Anti-de Sitter (AdS) spacetime. In

particular, the bulk-space is empty, the only contribution to the curvature comes

from the negative cosmological constant in the bulk. This simple model already

leads to new effects which are interesting for cosmology [5]. However, most scenarios

motivated from particle physics predict matter in the bulk, such as scalar fields. In 5D

heterotic M-theory, for example, one particular scalar field measures the deformation

of the Calabi-Yau manifold, on which six other small dimensions are compactified [3].

Other models, motivated by supergravity (SUGRA), also predict bulk matter, whose

form is dictated by the field theory under consideration.

Cosmology may be a fruitful field where the above ideas can be tested. As such,

the study of the evolution of cosmological perturbations is extremely important [6],

because the higher-dimensional nature of the world can leave traces in the distribu-

tion of matter and/or anisotropies in the microwave sky. A lot of papers investigated

different aspects of perturbations in brane world scenarios [7].

The aim of this paper is to develop an understanding of the evolution of pertur-

bations in brane world scenarios, in which scalar field(s) are present in the bulk. As a

toy model, we will use a cosmological realization of a supergravity model in singular

spaces [8]. The evolution of the brane world was discussed in depth in [9] and [10]

(see also [11] for a discussion on brane cosmology and bulk scalar fields). In particu-

lar four different cosmological eras have been identified in this model. At high energy

above the brane tension the cosmology is non-conventional before entering the radia-

tion epoch where the scalar field is frozen. After matter-radiation equality the scalar

field starts evolving in time leading to a slow-down of the expansion rate compared to

FRW cosmology in the matter dominated era. Eventually the scalar field dynamics

becomes the dominant one leading to a supergravity era. Requiring that coincidence

between the matter and scalar field energy densities occurs in the recent past leads a

cosmological constant with a fine-tuning of the supersymmetry breaking tension on

the brane. In the supergravity era it has been shown that the observed acceleration

of the expansion of the universe can be understood, i.e. the computed acceleration

paremeter q0 = −4/7 is within the experimental ball-park. This accelerated expan-
sion is driven by a bulk scalar field, whose parameters are constrained by the gauged
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supergravity theory in the bulk. On top of this, the model predicts a significant

evolution of the induced gravitational constant G on the brane. Indeed, the value of

G can be seen to have changed by 37 percent since radiation/matter equality. Thus,

the study of cosmological perturbation theory in these models is rather important, in

particular the time evolution of G may leave traces in the evolution of perturbations.

In this paper we discuss the evolution of the density constrast and the effect of the

bulk scalar field on cosmological perturbations. In section 2 we review Einstein’s

equations induced on our brane world and discuss the Friedmann equation. We also

review the background solutions found in [10], which are needed in order to solve the

perturbation equations. In section 3 we derive the perturbation equations using the

fluid flow approach. This approach is very transparent for our purposes and makes

it easy to derive the necessary evolution equations. In section 4 we discuss some so-

lutions of these equations and discuss their properties. We point out the differences

to the Randall-Sundrum scenario and usual four-dimensional scalar-tensor theories.

We conclude in section 5. In the appendix we discuss some details concerning the

issue of supersymmetry breaking and conformal flatness.

2. Brane cosmology

In this section we discuss the field equations on the brane and discuss the background

evolution.

2.1 The background evolution

We consider our universe to be a boundary of a five dimensional space-time. The em-

bedding is chosen such that our brane-world sits at the origin of the fifth dimension.

We impose a Z2 symmetry along the fifth dimension and identify x5 with −x5. Our
brane-world carries two types of matter, the standard model fields at sufficiently

large energy and ordinary matter and radiation at lower energy. We also assume

that gravity propagates in the bulk where a scalar field φ lives. This scalar field

couples to the standard model fields living on the brane-world. At low energy when

the standard model fields have condensed and the electro-weak and hadronic phase

transitions have taken place, the coupling of the scalar field to the brane-world real-

izes the mechanism proposed in [12] with a self-tuning of the brane tension. In this

section we derive the brane cosmology equations describing the coupling between

ordinary matter on the brane and a scalar field in the bulk.

Consider the bulk action

Sbulk =
1

2κ25

∫
d5x
√
−g5

(
R− 3

4
((∂φ)2 + U(φ))

)
, (2.1)

where κ25 = 1/M
3
5 and the boundary action

SB = −
3

2κ25

∫
d4x
√
−g4UB(φ0) , (2.2)
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where φ0 is the boundary value of the scalar field. The Einstein equations read

Gab ≡ Rab −
1

2
Rgab = Tab + δx5T

B
ab , (2.3)

where Tab is the bulk energy-momentum tensor and T
B
ab is the boundary contribution.

The bulk term is

Tab =
3

4

(
∂aφ∂bφ−

1

2
gab(∂φ)

2

)
− 3
8
gabU (2.4)

and the boundary term

TBab = −
3

2
gabUB(φ) (2.5)

with a, b = 0 . . . 3 in the last equation. Following the self-tuning proposal we inter-

pret UB as arising from a direct coupling U
0
B to the brane degrees of freedom, i.e.

the standard model fields Φi. The vacuum energy generated by the Φi’s yields the

effective coupling
3UB
2κ25
= 〈V (Φ)〉U0B , (2.6)

where the dimension four potential V (Φ) represents all the contributions due to the

fields Φi after inclusion of condensations, phase transitions and radiative corrections.

We also consider that ordinary matter lives on the brane with a diagonal energy

momentum tensor

τab = diag(−ρ, p, p, p) (2.7)

and an equation of state p = ωρ. In this paper we will assume that the fluid couples

to the bulk scalar field only via gravity.

We will be mainly concerned with models derived from supergravity in singular

spaces. They involve N = 2 supergravity with vector multiplets. When supergravity

in the bulk couples to the boundary in a supersymmetric way the Lagrangian is

entirely specified by the superpotential

UB = W (2.8)

and the bulk potential

U =

(
∂W

∂φ

)2
−W 2 . (2.9)

If one considers a single vector supermultiplet then supersymmetry imposes that

W = ξeαφ , (2.10)

where α = 1/
√
3, −1/

√
12, these values arising from the parametrisation of the

moduli space of the vector multiplets, and ξ is a characteristic scale related to the

brane tension.
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Since supersymmetry is not observed in nature, one should incorporate super-

symmetry breaking. A natural way to break supersymmetry is by coupling the bulk

scalar field to brane fields fixed at their vevs. This leads to

UB = TW , (2.11)

where T = 1 is the supersymmetric case. Larger values of T correspond to supersym-

metry breaking effects with a positive energy density on the brane. We will analyse

the dynamics of the coupled system comprising gravity, the scalar field φ and matter

on the brane.

The dynamics of the brane world is specified by the four dimensional Einstein

equations [13]

Ḡab = −
3V

8
nab +

UB

4
τab + πab +

1

2
∇aφ∇bφ−

5

16
(∇φ)2nab −Eab , (2.12)

where τab is the matter energy momentum tensor, nab the induced metric on the

brane and Eab the projected Weyl tensor of the bulk onto the brane. It appears

as an effective energy momentum tensor on the brane, called the Weyl fluid [5].

Note that one can identify the four-dimensional Newton’s constant with the brane

tension [13], i.e.

8πGN =
UB

4
. (2.13)

The tensor πab is quadratic in the matter energy momentum tensor

πab =
τ

12
τab −

τacτ
c
b

4
+
τab

24
(3τcdτ

cd − τ 2) , (2.14)

where τ = τaa, The Bianchi identity ∇aGab = 0 leads to the conservation equation

∇aEab =
∇aUB
4

τab +∇aπab +∇aPab , (2.15)

where the tensor Pab is defined by

Pab = −
3V

8
nab +

1

2
∇aφ∇bφ−

5

16
(∇φ)2nab . (2.16)

This consistency equation (2.15) will allow us to follow the time evolution of E00 in

the background and at the perturbative level. This is crucial in order to define the

time evolution of the background and of the scalar field and matter perturbations.

The dynamics of the scalar field is specified by the Klein-Gordon equation which

reads

∇2φ+ τ

6

∂UB
∂φ
=
∂V

∂φ
−∆Φ2 , (2.17)

where we have defined the loss parameter by

∆Φ2 = ∂
2
nφ|0 −

∂UB

∂φ

∂2UB

∂φ2
(2.18)
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and ∂2nφ|0 stands for the second normal derivative of the scalar field at the brane
location. The effective scalar potential is defined by

V =
U + (∂UB/∂φ)

2 − U2B
2

. (2.19)

We derive these equations in section 3.

In order to illuminate the role of UB further, we point out that the projected

Klein-Gordon equation can be seen as an equation for the brane energy-momentum

tensor

Tab = ∇aφ∇bφ−
1

2
((∇φ)2 + 2V )nab, (2.20)

which reads

∇aTab = −
τ

6
∇bUb −∆Φ2∇bφ (2.21)

and can be derived from the four dimensional effective action for φ

S =

∫
d4x
√
−g4

(
(∇φ)2 + 2V − τ

3
UB − 2∆Φ2φ

)
, (2.22)

whenever ∆Φ2 is constant. It is remarkable that UB plays the role of a dilaton

coupled to the trace of the matter energy-momentum tensor.

For the background cosmology the Klein-Gordon equation reduces to (see sec-

tion 3)

φ̈+ 4Hφ̇− τ

6
U ′B = −V ′ +∆Φ2 , (2.23)

where dot stands for the proper time derivative. The bulk expansion rate is defined

by 4H ≡ ∂τ ln
√−g|0 evaluated on the brane.

The background cosmology is characterized by its isotropy so we consider that

E0i = 0, Eij = 0, i 6= j. Moreover we assume that we obtain a FRW induced

metric on the brane. Due to the tracelessness of Eab it is then sufficient to obtain

the differential equation for E00

Ė00 + 4HBE00 = ∂t

(
3

16
φ̇2 +

3

8
V

)
+
3

2
HBφ̇

2 +
U̇B

4
ρ , (2.24)

where HB is the brane expansion rate 3HB ≡ ∂τ ln
√
−n|0 as a function of the brane

metric n. This leads to

E00 =
1

a4

∫
dta4

(
∂t

(
3

16
φ̇2 +

3

8
V

)
+
3

2
HBφ̇

2 +
U̇B
4
ρ

)
. (2.25)

Writing the bulk metric as

ds2 = e2A(z,tb)(−dt2b + dz2) + e2B(z,tb)dx2 , (2.26)
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the proper time on the brane is defined by dt = eA(0,tb)dtb. We can always choose the

boundary condition A(0, tb) = B(0, tb) in such a way

H = HB . (2.27)

Together with the Klein-Gordon equation this leads to

E00 =
1

16a4

∫
dta4

(
U̇B(4ρ− τ) + 6∆Φ2φ̇

)
. (2.28)

In particular we find that conformal flatness is broken as soon as φ becomes time-

dependent and either matter is present on the brane or the energy loss parameter

does not vanish. Notice that a sufficient condition for breaking conformal flatness

is that Newton’s constant becomes time-dependent (see eq. 2.13). We will comment

on this expression when discussing the various cosmological eras.

Using

Ḡ00 = 3H
2
B (2.29)

and after one integration by parts we obtain the Friedmann equation

H2B =
ρ2

36
+
UB

12
ρ+

1

16a4

∫
dt
da4

dt
(2V − φ̇2)− 1

12a4

∫
dt
dUB

dt
ρ+

C

a4
. (2.30)

This equation has already been derived in [10]. We remember that the scalar field

φ enters in the definition of the effective Newton’s constant (see eq. 2.13. The last

three terms are a combination of the energy flow onto or away from the brane and

the changes of the pressure along the fifth dimension [14].

Using the conservation of matter

∇aτab = 0 (2.31)

we find that

ρ̇ = −3HB(ρ+ p) . (2.32)

This completes the description of the three equations determining the brane cosmol-

ogy, i.e. the Klein-Gordon equation, the Friedmann equation and the conservation

equation.

Notice that there are two entities which depend on the bulk. First of all there is

the dark radiation term C/a4 whose origin springs from the possibility of black-hole

formation in the bulk. Then there is the loss parameter ∆Φ2 which depends on the

evolution of the scalar field in the bulk. It specifies the part of the evolution of φ,

which is not constrained by considerations of the brane dynamics.

In the following we shall describe the case where the bulk theory is N = 2

supergravity with vector multiplets. When no matter is present on the brane, the

7
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background cosmology can be explicitly solved. In particular the metric is confor-

mally flat implying that

C = 0 . (2.33)

Moreover the loss parameter vanishes explicitly

∆Φ2 = 0 . (2.34)

A detailed analysis is presented in the appendix. In particular the last equation

implies that the brane dynamics is closed. When matter density is present on the

brane, we show in the appendix that conformal flatness is not preserved. Nevertheless

we assume that the breaking of conformal flatness is small enough to allow one to

assume that (2.33) and (2.34) are still valid, both for the background as well as on

the perturbative level.

We now turn to the discussion of the background evolution. The solutions given

below have been obtained in [10], but we need to present them in detail in order to

discuss the evolution of density perturbations in section 4.

2.2 Radiation dominated eras

The background cosmology can be solved in four different eras: the high energy era,

the radiation and matter dominated epochs and finally the supergravity era where

the scalar field dynamics dominates. We discuss these four eras in turn paying par-

ticular attention to the matter-supergravity transition where we show that requiring

coincidence now implies a fine-tuning of the supersymmetry breaking part of the

brane tension.

First of all we consider the high energy regime where the non-conventional ρ2

dominates, i.e. for energies higher than the brane tension. In that case we can neglect

the effective potential V and find that

a = a0

(
t

t0

)1/4
, (2.35)

while the scalar field behaves like

φ = φ0 + β ln

(
t

t0

)
. (2.36)

In the following we will focus on the case β = 0, i.e. a constant scalar field, for which

the projected Weyl tensor vanishes altogether

E00 = 0 . (2.37)

Notice that Newton’s constant does not vary in time in this case.

The usual radiation era is not modified by the presence of the scalar field

φ = φ0 (2.38)
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and

a = ar

(
t

tr

)1/2
. (2.39)

Newton’s constant does not vary in time, while

E00 = 0 , (2.40)

as in the high energy regime. Note that the solution in the radiation era in this brane

world scenario is similar to the radiation era solution found in Brans-Dicke theory,

see [15] and [16], for example. The field φ approaches quickly the attractor for which

φ =constant.

2.3 Matter dominated era

The matter dominated era leads to a more interesting background cosmology. Let

us first consider the pure sugra case where T = 1. This is a good approximation

until coincidence where the potential energy of the scalar field cannot be neglected

anymore. The solution to the evolution equations is

φ = φ0 + β ln

(
t

te

)

a = ae

(
t

te

)γ
, (2.41)

where τe and ae are the time and scale factors at radiation-matter equality. We are

interested in the small α case as it leads to an accelerating universe when no matter

is present and small time deviations for Newton’s constant.

For small α we get

β = − 8
15
α

γ =
2

3
− 8
45
α2 . (2.42)

The projected Weyl tensor is given by

E00 = −
4α2

3t2
, (2.43)

which decreases like a−3 to leading order in α.
It is useful to compare these results with general relativity, so for the moment

we identify in a phenomenological way Newton’s constant with the ratio

8πGN(τ)

3
≡ H2

ρm
, (2.44)
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which is now time dependent, whereas in general relativity this ratio is strictly con-

stant. In terms of the red-shift z this is

GN(z)

GN(ze)
=

(
z + 1

ze + 1

)4α2/5
. (2.45)

For the supergravity case with α2 = 1/12 the exponent is 1/15. As ze ∼ 103 this
leads to a decrease of the quantity (2.44) by 37% since equality.

Notice that Newton’s constant, as defined in eq. (2.13), starts to decrease only

from the time of matter and radiation equality and is strictly constant during the

radiation dominated era. Nucleosynthesis constraints the variation to be less than

20% at the time of nucleosynthesis. In order to confront our theory with local tests

for the variation of Newton’s constant we need to extract the weak field limit, which

is beyond the scope of the paper. In addition, we note that many of the tests for

the variation of the Newton constant assume all other masses and couplings are

constant [17].

2.4 Broken supergravity era

After coincidence matter does not dominate anymore; this is the supergravity era

dominated by the scalar field dynamics. Let us review it briefly. Consider first the

pure sugra case. It is easy to see that the potential vanishes

VSUGRA = 0 (2.46)

leading to a static universe with

φ = − 1
α
ln(1− α2ξ|y|)

a = (1− α2ξ|y|)1/4α2 , (2.47)

where we have defined dy = adx5. This is a flat solution corresponding to a vanishing

cosmological constant on the brane-world.

As soon as supergravity is broken on the brane T 6= 1 the static solution is not
valid anymore. The new four dimensional potential becomes

V =
(T 2 − 1)
2

(
W 2 −

(
∂W

∂φ

)2)
. (2.48)

The time dependent background is obtained from the static solution by going to

conformal coordinates

ds2 = a2(u)(−dη2 + du2 + dxidxi) (2.49)
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and performing a boost along the u axis

a(u, η) = a

(
u+ hη,

ξ√
1− h2

)

φ(u, η) = φ

(
u+ hη,

ξ√
1− h2

)
, (2.50)

where we have displayed the explicit ξ dependence. Now for

h = ±
√
T 2 − 1
T

(2.51)

we find that the Friedmann equation is solved [10]. Similarly the Klein-Gordon

equation is satisfied. Moreover we find that

E00 = 0 , (2.52)

as the bulk metric is conformally flat.

The resulting universe is characterized by the scale factor in cosmic time

a(t) =
1√
T

(
1− t

t0

)1/3+1/6α2
(2.53)

with t0 =
2
3α2

1
hT 3/2ξ

and h < 0. The scale factor corresponds to a solution of the four

dimensional FRW equations with an acceleration parameter

q0 =
6α2

1 + 2α2
− 1 (2.54)

and an equation of state

ωSUGRA = −1 +
4α2

1 + 2α2
(2.55)

which never violates the dominant energy condition. The solution with α = −1/
√
12

is accelerating. In particular we find that

q0 = −
4

7
(2.56)

and for the equation of state

ωSUGRA = −
5

7
. (2.57)

This is within the experimental ball-park.
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2.5 The matter-supergravity transition

Let us now investigate the transition between the matter dominated and supergravity

eras. If we denote by HSUGRA the Hubble parameter derived in the unbroken super-

gravity case, i.e. T = 1, then the Friedmann equation in the broken supergravity

case is

H2 = H2SUGRA +
V

8
, (2.58)

where we have used the fact that φ varies slowly compared to α. The evolution coin-

cides with the one obtained from unbroken supergravity as long as the contribution

from the potential does not dominate. In the radiation dominated era this requires

T 2 − 1
T

W

2κ25
� 2
3

ρe
1− α2 , (2.59)

where ρe is the matter density at equality. This implies that the left-hand side is much

smaller that 10−39 GeV4. Let us now denote the supersymmetric brane tension by

M4
S =
3W

2κ25
(2.60)

and the supersymmetry breaking contribution

M4
BS = (T − 1)M4

S . (2.61)

We find that

M4
BS �

ρe
1− α2 . (2.62)

Now this is an extreme fine-tuning of the non-supersymmetric contribution to the

brane tension.

In the matter dominated era the supergravity Hubble parameter decreases faster

than the potential contribution. Coincidence between the matter dominated super-

gravity contribution H2SUGRA and the potential energy occurs at zc

M4
BS =

1

1− α2

(
zc + 1

ze + 1

)3+αβ/γ
ρe . (2.63)

Imposing that coincidence has occurred only recently leads to

M4
BS ≈ ρc , (2.64)

where ρc is the critical density. This is the usual extreme fine-tuning of the cosmolog-

ical constant. Indeed it specifies that the energy density received by the brane-world

from the non-supersymmetric sources, e.g. radiative corrections and phase transi-

tions, cannot exceed the critical energy density of the universe.
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3. Cosmological perturbations using the fluid flow approach

We now turn to the discussion of cosmological perturbations. As we investigate the

brane point of view and do not intend to solve the full five-dimensional equations,

we will set ∆Φ2 = 0 and π
i
j = 0 for i 6= j. The off-diagonal components of πµν are

formally an additional stress induced by bulk gravitons [7].

There are different effects which will influence the evolution of perturbations:

• The evolution of the gravitational constant in the matter era changes the evolu-
tion of the background: In the matter era, the gravitational constant decreases

and furthermore the universe is expanding slower (up to order α2) than in the

FRW matter dominated era in general relativity.

• Perturbations in the scalar field are the source of matter fluctuations and vice
versa.

• Perturbations in the projected Weyl tensor act as sources for the scalar and
matter perturbations and vice versa.

These effects will change the growth of perturbations compared to normal 4D

cosmological models or the Randall-Sundrum model. In particular it should be noted

that our formalism allows us to treat the Randall-Sundrum cosmology. Indeed by

putting α = 0, T = 1 and neglecting the scalar field contribution we obtain the

Randall-Sundrum case with a flat boundary brane while putting T 6= 1 leads to a de
Sitter boundary brane.

While discussing perturbations, we use the fluid-flow approach (see [18, 19]

and [20]) rather than the metric-based approach [6]. The main difference is that

all perturbation variables are expressed in terms of fluid-quantities, rather than

metric-variables. For our purpose, i.e. discussing the evolution of the density con-

trast δ = δρ/ρ of the dominant fluid at each epoch, this approach is simpler in order

to obtain the evolution equations. To do so, we need to derive the Raychaudhuri

equation and the Klein-Gordon equation in the comoving frame.

3.1 The Raychaudhuri and Klein-Gordon equation

On the brane B, see figure 1, the matter energy-momentum tensor is conserved.
Denoting by n the normal vector to the brane and defining the induced metric by

nab = gab − nanb (3.1)

such that n2 = 1 and nabn
b = 0, the conservation equation reads

∇aτab = 0 , (3.2)
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u
n

B

C

S

Figure 1: The brane-world B is perpendicular to the normal vector n. The four dimen-
sional hypersurface C is orthogonal to the velocity vector u. The surface S = C ∩ B is a
set of comoving observers following matter on the brane. Note that the perturbed brane

is not necessarily located at y =constant. The different metrics in the text are as follows:

gab is the full five-dimensional metric, nab is the induced metric on the brane B, hab is the
induced metric on C and uab is the induced metric on the comoving hypersurface S.

where ∇a = nbaDb is the brane covariant derivative and

τab = (ρ+ p)uaub − pnab (3.3)

is the energy-momentum tensor. Notice that the vector ua is the velocity field of the

brane matter and thus must be orthogonal to n and satisfies u2 = −1. In addition
we have the usual decomposition in terms of the shear σab, the helicity ωab and the

expansion rate

∇cud = −ucu̇d +HBudc + σdc + ωdc , (3.4)

where we set σab = 0, ωab = 0 later on.

Using the relations

∇aua = 3HB , u̇a = u
b∇bua (3.5)

one derives from (3.2)

ρ̇ = −3HB(ρ+ p) . (3.6)

Notice that no matter leaks out of the brane. Defining

∇̄a ≡ uab∇b = ∇a + uaubDb , (3.7)
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which is nothing but the spatial covariant derivative on the brane, one obtains

u̇a = −
∇̄ap
ρ+ p

, (3.8)

whose divergence ∇au̇a leads to the Raychaudhuri equation

3ḢB + 3H
2
B = −R00 − ∇̄a

(
∇̄ap
ρ+ p

)
. (3.9)

We have neglected σab and ωab here as we will consider linear scalar perturbations

only.

In order to have a closed system of differential equations for the perturbations

we need the Klein-Gordon equation in the comoving gauge. The metric on a hyper-

surface C orthogonal to u, see figure 1, is given by

hab = gab + uaub , (3.10)

where u2 = −1 and habub = 0. Defining the covariant derivative on the hypersurface
C by D̄a = habDb and using Daua = 4H one obtains

DaD
a = D̄aD̄

a − 4HucDc − uaubDaDb . (3.11)

In the comoving gauge we have u0 = −1, ui = 0 leading to

D2φ = D̄2φ− 4Hφ̇− φ̈ . (3.12)

We can now evaluate the laplacian D̄2 in terms of the laplacian on the comoving

surface S (see figure 1) orthogonal to u. Notice that ∇̄a = nabD̄
b. Expanding ∇̄2

leads to

D̄2 = ∇̄2 + (K + uaubKab)ncD̄c + nanbD̄aD̄b . (3.13)

Now Kabu
aub = uaDa(u · n)− u̇ana, where

Kab = Danb (3.14)

is the extrinsic curvature tensor. Using (u · n) = 0 and na∇̄ap = 0 we find that

Kabu
aub = 0 . (3.15)

The junction conditions lead to

K =
τ

6
− UB , (3.16)

with τ = −ρ+ 3p. Finally we can read off the Klein-Gordon equation

φ̈+ 4Hφ̇− φ′′ −
(τ
6
− UB

)
φ′ − ∇̄2φ = −1

2

∂U

∂φ
, (3.17)
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where prime stands for the normal derivative. Now the junction conditions lead to

φ′ =
∂UB

∂φ
. (3.18)

We find that the Klein-Gordon equation reduces to

φ̈+ 4Hφ̇+
1

6

∂UB

∂φ
(ρ− 3p)− ∇̄2φ = −∂V

∂φ
+∆Φ2 . (3.19)

Notice that it involves only brane derivatives when the loss parameter ∆Φ2 = 0. We

now turn to the evolution equation for E00 which enters in the evaluation of R00.

3.2 The evolution equation for Eµν

Let us consider the hypersurface S on the brane with induced metric uab and or-
thogonal to the velocity vector ua such that uabu

a = 0 and uaua = −1. The induced
metric is given by uab = nab + uaub, where nab is the brane metric. Let ∇a be the
brane covariant derivative and ∇̄a the covariant derivative with respect to uab.
Consider now ∇aEab:

∇aEab = uac∇cEab − uauc∇cEab . (3.20)

The last term can be written as

uauc∇cEab = uc∇c(uaEab)− u̇aEab . (3.21)

The first term in equation (3.20) can be rewritten as

uac∇cEab = ∇c(uacEab)−Eab(∇cuac)
= ∇c(uacEab)−Eab (u̇a + 3HBua) . (3.22)

As a next step we consider

∇c(uacEab) = ∇c(uacndbEad)
= ∇c(uacudbEad)−∇c(uacudubEad)
= ∇c(uacudbEad)− ud∇c(uacubEad)− (∇cud)uacEadub . (3.23)

Using (3.4)

(∇cud)uacEadub = HBuadEadub + (σ dc + ω dc )uacEadub . (3.24)

Let us further define the projected tensor

Ēab = u
c
a u

d
b Ecd . (3.25)

Then

∇cĒcd = ∇̄cĒcd − u̇cĒcd . (3.26)
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So, from eq. (3.23) we get

∇c(uacEab) = ∇̄cĒcb − u̇cẼcb − ud∇c(uacEacub)−HBuadEadub −
−(σ dc + ω dc )uacEadub . (3.27)

Collecting everything and defining Ē = uabEab ,the spatial trace, we end up with

∇aEab = ∇̄cĒcb − u̇cĒcb − ud∇c(uacEadub)− (uaEab). −HBĒub − 3HBuaEab −
−(σ dc + ω dc )uacEadub. (3.28)

Let us now specialize to the comoving gauge, i.e. the surface S is a comoving
one and u0 = 1, ui = 0. Notice that the first term of the last expression vanishes.

We obtain

∇aEa0 = ∇̄cEc0 − 4HBE00 − Ė00 − u̇aEa0 + (σdc + ωdc )uacEad , (3.29)

where we have used the tracelessness of Eab to get Ē = E00. For the background we

retrieve the previous expression as u̇a = 0 and E
i
0 = 0 and we explicitly assume that

σ = 0, ω = 0 for the background.

We need further to evaluate (see eq. (2.14))

∇aπab = ∇̄cπc0 − 3HBπ00 −HBπ̄ − u̇aπa0 − π̇00 (3.30)

which simplifies to

∇aπab = ∇̄cπc0 − u̇aπa0 (3.31)

and finally we need (see eq. (2.16))

∇aPa0 = ∇̄cPc0 − 3HBP00 −HBP̄ − u̇aP a0 − Ṗ00 . (3.32)

Collecting all these ingredients leads to the consistency equation (2.15) expressed in

the comoving frame.

3.3 The perturbed dynamics

We have now obtained all the necessary equations in order to derive the perturbation

equations up to linear order. In doing so we decompose all fluid quantities into an

average (over the comoving hypersurface) of the quantity plus a perturbation, i.e.

ρ(x, t) = ρb(t) + δρ(x, t), and similar for the pressure and the expansion rate H . We

insert these expressions for all quantities into the equations we obtained above and

subtract the average.

We begin with the Raychaudhuri equation and energy conservation equation

evaluated in a comoving basis. The Raychaudhuri equation reads

3Ḣ + 3H2 = − ∇
2p

ρ+ p
− R00 . (3.33)
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In this expression H is the expansion rate, p the pressure and ρ the energy density.

All quantites are measured with respect to a comoving observer.1 R00 is the time-time

component of the Ricci tensor. The dot represents the time-derivative with respect

of the comoving observer (i.e. proper time). The Raychaudhuri equation expresses

just the behaviour of matter under the influence of geometry and is independent of

the field equation. In particular, for matter on the brane, it is the same as in the

usual 4D case. The five-dimensional character of the spacetime enters only through

R00. For the FRW metric, R00 is

R00 = −
3

8
V +

Ub

8
(ρ+ 3p) +

1

12
ρ (2ρ+ 3p)− 7

16
φ̇2 − E00 . (3.34)

The proper time is not a unique label of the comoving hypersurfaces, because it can

vary in space. Therefore, we need to transform to coordinate time, which labels these

comoving hypersurfaces. This transformation from proper time to coordinate time

is given by (see [19] or [20])
dtpr
dt
= 1− δp

ρ+ p
. (3.35)

This gives the variation of proper time due to the perturbations. Using the conser-

vation equation we obtain

δH = H
ω

1 + ω
δ − δ̇

3(1 + ω)
. (3.36)

where we have defined the density contrast

δ =
δρ

ρ
. (3.37)

In the rest of the paper we denote by dot the coordinate time derivative of the

perturbations. In this paper we concentrate on the case of w = p/ρ = const. and

c2s = w. We deduce that

δḢ =
ω

1 + ω
(Hδ̇ + Ḣδ)− δ̈

3(1 + ω)
, (3.38)

which combined with the perturbed Raychaudhuri equation

δḢ =
δp

ρ+ p
Ḣ − 2HδH + 1

3

k2

a2
δp

ρ+ p
− 1
3
δR00 (3.39)

leads to an equation for the density constrast

δ̈ + (2− 3ω)Hδ̇ − 6ω(H2 + Ḣ)δ = (1 + ω)δR00 − ω
k2

a2
δ , (3.40)

1This observer is, of course, confined onto the brane world.
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where we have used ∇̄2 = k2/a2. Notice that the left-hand side coincide with the

usual four dimensional expression. The new physical ingredients all spring from

δR00. As the Friedmann equation and its time-derivative are given by complicated

expressions, we do not derive a general equation for the evolution of δ but rather

analyse each regime separately and derive the corresponding equation.

In the same fashion, we derive the perturbed Klein-Gordon equation, using

eq. (3.35):

(δφ)... + 4H(δφ). +

[
k2

a2
+
ρ

6
(1− 3w) ∂

2UB

∂φ2
+
∂2V

∂φ2

]
δφ =

=
c2s
1 + ω

[
φ̇δ̇ + δ(φ̈+ 4Hφ̇)

]
+
1

6

∂UB

∂φ
[3δp− δρ] . (3.41)

where the coupling between the matter and scalar perturbations is explicit.

Finally we need the perturbed version of the E00 consistency equation. From the

equations we derived in the previous section we obtain

δ(∇aEa0) = ∇̄cδEc0 − 4δHBĖ00 − 4HBδE00 − δĖ00 −
δp

p+ ρ
Ė00 , (3.42)

where the shear term vanishes automatically at first order. Similarly we have

∇aδπa0 = ∇̄cδπc0 − u̇aπa0 (3.43)

and

∇aδPa0 = ∇̄cδPc0− 3δHBP00− 3HBδP00− δHBP̄ −HBδP̄ − u̇aP a0 − (δP00). . (3.44)

This allows us to write down the necessary perturbed equation.

Notice that the components of Ea0 play a role in the perturbed dynamics. As

can be seen, they are not constrained by the brane dynamics and lead to a direct

influence of the bulk perturbations on the brane perturbations. For this reason the

perturbed dynamics is not closed on the brane. In the rest of this paper we will only

deal with long wave-length phenomena where the dynamics is closed.

4. Time evolution of cosmological perturbations

In this section we discuss some solutions to the perturbed dynamics. The equations

are very difficult to solve in general so we restrict ourselves to the different cosmolog-

ical eras. We start in the high-energy regime, assuming the universe to be dominated

by relativistic particles. Then we discuss the normal (low-energy) radiation domi-

nated epoch, followed by the matter dominated epoch. Because the system is not

closed on the brane for large k (small wavelength), we present solutions only for the

k → 0 limit. This limit enables us to deduce the effects of the bulk scalar field and
Eµν on density perturbations.
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In particular we can write the perturbed Eµν equation in that limit as

δĖ00 +
δp

ρ+ p
Ė00 + 4HBδE00 + 4δHBE00 =

= −δU̇B
4
ρ− δp

ρ+ p

U̇Bρ

4
− U̇Bρ

4
δ + δṖ00 +

δP

ρ+ p
Ṗ00 + 3HBδP00 + 3δHBP00 +

+HBδP̄ + δHBP̄ . (4.1)

Explicitly we need

P00 =
3V

8
+
3φ̇2

16
, P̄ = −9V

16
+
15φ̇2

16
. (4.2)

The perturbed quantities are then

δU̇B = U
′
Bδφ̇ (4.3)

and

δP00 =
3

8
φ̇δφ̇ (4.4)

as we neglect the potential in the different eras. This equation will be made more

explicit in each era.

As a first step we will first analyse cosmological versions of the Randall-Sundum

scenario with a single boundary brane, i.e. we consider a brane embedded in Anti-de

Sitter bulk spacetime. The differential equation for the density contrast is of third

order leading to the appearance of three modes. This is to be compared to the usual

two FRW cosmology modes derived from four dimensional general relativity. As

already mentioned two of the modes will coincide with FRW cosmology while the

third mode is entirely due to perturbations in the Weyl tensor signalling a breaking

of conformal invariance in the bulk.

4.1 The Randall-Sundrum scenario

4.1.1 The high energy era

In the high energy regime, the equations for δE00 and δ read

δ̈ +Hδ̇ − 18H2δ = −4
3
δE00 ,

(δE00)
. + 4H(δE00) = 0 . (4.5)

This leads to

δE00 =
δE0

t
. (4.6)

The overall solution of the equation for the density contrast is a sum of the solution

of the homogeneous equation as well as the general solution. It can easily be found

as

δ = δ0t
3/2 + δ1t

−3/4 +
16

51
δE0t . (4.7)
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4.1.2 The low-energy radiation era

In this era, the equations for δE00 and δ read

δ̈ +Hδ̇ − 2H2δ = −4
3
δE00 ,

(δE00)
. + 4H(δE00) = 0 . (4.8)

Again, the solution to the last equation is

δE00 =
δE0

t2
. (4.9)

The full solution to the first equation is found to be

δ = δ0t+ δ1t
−1/2 +

8

3
δE0 . (4.10)

We do, therefore, find the normal growing and decaying modes in this regime and a

constant mode, which is absent in FRW cosmology.

4.1.3 The matter dominated epoch

Finally, in the matter dominated epoch the equation for δE00 and δ read

δ̈ + 2Hδ̇ − 3
2
H2δ = −δE00 ,

(δE00)
. + 4H(δE00) = 0 . (4.11)

The solution to the last equation is

δE00 = δE0t
−8/3 , (4.12)

and the solution to the first equation can then found to be

δ = δt2/3 + δ1t
−1 +

9

4
δE0t

−2/3 . (4.13)

We recover thus the normal growing and decaying mode as well as a mode sourced

by δE00, which is decaying rapidly.

We now turn to the case with a scalar field in the bulk. The previous Randall-

Sundrum modes will be modified in two ways. First of all the brane potential will

lead to slight deviations of the mode exponents similar to the modification of the

scale factor exponent in the matter era. Then there will also appear new modes due

to the fluctuations of the scalar field governed by the Klein-Gordon equation. We

will now analyse each of the different regimes in turn.
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4.2 Effects of the bulk scalar field on cosmological perturbations

4.2.1 The high-energy regime

In this regime, the terms which are quadratic in ρ and p dominate both in the

background and in the perturbation equations. We assume, that relativistic particles

dominate the expansion, i.e. p = ρ/3.

Considering the large wavelength limit is sufficient because all cosmologically

relevant scales are far outside the horizon. The perturbation equations in this regime

are

δ̈ +Hδ̇ = 18H2δ − 4
3
δE00 ,

(δφ).. + 4H(δφ). = 0 ,

(δE00)
. + 4HδE00 = −

αUBρ

4
(δφ). , (4.14)

where we have assumed that 3H(δφ). � V δφ.

To obtain the solutions to these equations, we first consider the Klein-Gordon

equation. The solutions are

δφ = δφ0 + δφ1 ln t , (4.15)

where δφ0 is a constant mode. We can now find δE00.

δE00 =
δE0

t
− 3αUB

8
δφ1
ln t

t
. (4.16)

Notice that the solution comprises two parts. The 1/t mode is a solution of the

homogeneous equation while the logarithmic mode solves the complete equation.

In the following we will always find that the solutions are expressible as a sum of

homogeneous modes and modes solving the complete differential equations.

We can now deduce the density constrast

δ = δ0t
3/2 + δ1t

−3/4 + δ2(t) , (4.17)

where the complete solution reads

δ2(t) = −
4

3
t3/2

∫ t
dt′(t′)−13/4

∫ t′
dt′′δE00(t′′)7/4 . (4.18)

In the long time regime, we focus on the leading growing mode, obtained by approx-

imating

δ2(t) = O((ln t)t) . (4.19)

This implies that we find two leading growing modes in t3/2 and (ln t)t. Notice that

the logarithmic mode is triggered by the scalar fluctuation, δφ1, and is therefore

absent in the Randall-Sundrum case. Moreover for very long times we see that
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the leading mode increases like t3/2, which is much larger than in FRW cosmology.

Interestingly, this growth of fluctuations is anomalous, in the sense that the exponent

of the growing mode is larger than one. The reason for this is the source term (18H2δ)

which is much larger than the normal 4πGρmδ. In addition, there is the contribution

of bulk gravity. In this regime we cannot expect the normal behaviour, because

gravity is simply not four-dimensional.

4.2.2 Radiation domination

In this regime the Newton’s constant is not varying in time. Moreover matter does

not appear in the Klein-Gordon equation. This leads to the perturbation equations

for the scalar field and the density contrast

(δφ).. + 4H(δφ). = 0 ,

δ̈ +Hδ̇ − 2H2δ = 4αH2δφ− 4
3
δE00 ,

(δE00)
. + 4HδE00 = −3αH2(δφ). . (4.20)

As before we find homogeneous and complete solutions. More specifically

δφ = δφ0 + δφ−t−1 , (4.21)

leading to the perturbed δE00

δE00 =
δE0

t2
+
3α

4
δφ−
ln t

t2
. (4.22)

Notice that the first mode springs from the homogeneous equation and the last one

from the complete equation. The density contrast can then be deduced:

δ = δ1t+ δ−1/2t−1/2 + t
∫ t

dt′(t′)−5/2
∫ t′ ( α

(t′′)1/2
δφ− 4

3
(t′′)3/2δE00

)
. (4.23)

There are two homogeneous modes as in FRW cosmology. New contributions emerge

from the scalar field. In particular there is a growing mode in O(δφ− ln t) which is
triggered by the decreasing scalar mode in δφ−/t.

4.2.3 Matter domination

In this regime Newton’s constant varies in time as the background scalar field is time

dependent. This leads to a very rich structure of modes for the density contrast.

The perturbation equations read

δ̈ + 2Hδ̇ =
3

2
αH2

[
δφ+

1

α
δ

]
− δE00 ,

(δφ).. + 4H(δφ). + 2α2H2(δφ) = −2αH2δ ,
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(δE00)
. + 4H(δE00) + 4(δH)E00 = −3αH2(δφ). − 3αH2

β

t
δ +

+
3β

8

[
−t−2(δφ). + t−1(δφ)..

]
+ 3H

β

t
(δφ). −

−1
2
β2t−2δ̇ . (4.24)

This system of equations possesses power law solutions, which we derive up to order

α2. Defining each mode by the ansatz

δ = δit
ai , δφ = δφit

bi , δE00 = δE
i
00t
ci (4.25)

we find that

ai = bi = ci + 2 (4.26)

for all modes. There are two types of modes. Let us first discuss the complete

solutions of the coupled differential equations. We find that there are three modes

corresponding to the exponents

a2/3 =
2

3
− 11624
7875

α2 , a−1 = −1−
1036

375
α2 , a−2/3 = −

2

3
+
808

225
α2 . (4.27)

The modes δ2/3 and δ−1 are deformations of the FRW modes due to the scalar field.
In particular we find that a2/3 ≈ 0.55. Thus, the growth of fluctuations is smaller,
than in the normal matter dominated epoch. The perturbation of the bulk scalar

field is growing with the same exponent as the density constrast and δE00 is rapidly

decaying with an exponent c = a− 2 ≈ −1.45.
In addition to the growing mode, there are two decaying modes. One of these

decaying modes is a modification of the usual a = −1 decaying mode. We obtain
a = −1.23. Thus, the mode is decaying even faster than normal. The other decaying
mode corresponds to a = −0.37.
On top of these three modes there are seven homogeneous modes corresponding

to zero modes of the various differential operators appearing in the three coupled

equations. Let us discuss them in some detail as they have remarkable properties.

The homogeneous modes of the perturbed Raychaudhuri equation have characteristic

exponents

ã2/3 =
2

3
+
16

225
α2 , ã−1 = −1 +

64

225
α2 . (4.28)

Notice that these modes are two deformations of the usual FRW modes. The scalar

field potential lifts the degeneracy between the doublets of a = 2/3 and a = −1
modes. We find that ã2/3 ≈ 0.67 very close to the FRW value. That the growing
mode is larger than the one found in general relativity comes from the fact that the

matter dominated universe is expanding slower in the brane world model. Therefore,

overdensities, which want to contract but have to compete with the cosmological

expansion, can grow more easily in the brane world model.
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The homogeneous modes of the Klein-Gordon equation are characterized by the

exponents

a0 = −
8

15
α2 , a−5/3 = −

5

3
+
56

45
α2 , (4.29)

corresponding to an almost constant mode and a mode which decreased very fast.

The E00 equations comprises three differential operators. The first order differ-

ential operator acting on δE00 leads to a single mode with

a−2/3 = −
2

3
+
32

45
α2 . (4.30)

The differential operator acting on δφ leads to two modes

ã0 = 0 , a−10 = −10 +
512

135
α2 . (4.31)

Eventually the operator acting on δ leads to

ā0 =
10

27
. (4.32)

Notice that in the epoch of accelerated expansion the structures get frozen in. We

have thus described the perturbation modes in the four cosmological eras.

In conclusion, we have found two the growing modes, with exponent ã2/3 ≈ 0.67
and a2/3 ≈ 0.55. The 00-component of the Weyl-tensor is always decaying, whereas
perturbations in φ follow the density contrast. It is instructive to compare these

results to the ones found in Brans-Dicke theory. Here the exponent of the growing

and decaying modes are modified as follows [21]:

a+ =
2

3
+
2

3ω
and a− = −1−

1

3ω
, (4.33)

where ω is the Brans-Dicke parameter. Note, that there are more modes in these

theories as well. Here we find that the growing and decaying modes are shifted due

to the presence of a scalar field which couples to gravity in a way which differs from

Brans-Dicke theory.

4.2.4 Observational consequences

Although we have focused on the large wavelength limit only, we can draw some

(qualitative) conclusions from our findings. First of all, which of the two growing

modes in the matter dominated epoch appear, depends on the initial conditions

imposed in the early universe. It is likely that both modes are generated. If the

mode with exponent a ≈ 0.67 is not generated and the power spectrum is normalized
to the observations today (such as to galaxy clusters), the brane world model would

have much more power in the matter perturbations than one would expect in normal

quintessence models, for example. Thus, in this case there should be more galaxy
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clusters at high redshift in the brane world model than in normal Einstein gravity

with comparable matter density (with a cosmological constant or quintessence field).

If the mode with exponent a ≈ 0.67 contributes significantly to perturbations, then
the power in the perturbations in both theories would be similar. However, much

more work is needed in order to make this more concrete.

Another consequence is a modification of the spectrum of anisotropies in the

cosmic microwave background radiation (CMB). This is because the distance to the

last scattering surface (LSS) will be modified due to the slower expansion in the

matter dominated epoch. As a result, the first peak will be shifted to larger angular

scales. However, we believe this effect to be small to be detected. In addition to

this effect, it is conceivable that isocurvature modes (between the Weyl fluid and

radiation, for example) might survive quite long in the radiation era, leaving their

imprint in the CMB. To make more concrete predictions, it is necessary to go beyond

the small k-limit, which we considered in this paper. This involves a study of the

bulk gravitational field, as well as perturbations in the bulk scalar field away from

the brane [7]. The calculations are very difficult and a detailed discussion of the bulk

equations is beyond the scope of this paper and will be presented elsewhere.

5. Conclusions

We have presented a discussion of cosmological perturbations in brane world sce-

narios with a bulk scalar field. For a model motivated from SUGRA in singular

spaces, we were able to find solutions of the perturbation equations in the large scale

limit. As is the case with brane world scenarios of the Randall-Sundrum type, the

pertrubation equations on the brane are not closed. Instead one has also to solve the

bulk equations, which is a very difficult task in general. In [7], cosmological pertur-

bations where analysed from the full five dimensional point of view using either the

metric based approach or the covariant approach. Here, in this paper we have used

another formalism, namely the fluid flow approach introduced by Hawking [18]. For

our purposes this formalism allowed us to derive easily the evolution equation for

the density contrast.

Our findings indicate that there are considerable differences to the Randall-

Sundrum scenario as well as to usual scalar-tensor theories in four dimensions. The

growth of structures is different than in these models. A more elaborate investigation

of perturbations, in particular of the bulk perturbations, would be necessary in order

to make definitive predictions concerning cluster abundance, large scale structure

and the anisotropies in the CMB.

There are other open questions, which our work leaves. As discussed in [22], in

models based on SUGRA in singular spaces we expect a second brane in the bulk

at some distance from our brane universe. We have not addressed the influence of

this mirror brane on the structures on our brane universe. Similarly, we haven’t
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discussed the dynamics of the radion in these models. The effects of these should be

encompassed in the Weyl tensor. We will, however, turn to these questions in future

work.
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A. Supersymmetric backgrounds

A.1 BPS configurations

In this appendix we will consider configurations which preserve supersymmetry in

the bulk. To do so we will look for Killing spinors satisfying the identities

δεψµi = 0 , δελ
x
i = 0 , (A.1)

where ψµi is the gravitino spinor (i = 1, 2) and λ
x
i belongs to the vector multiplet

comprising the scalar field φx. This leads to the first order equations

Dµεi +
i

8
γµWQijε

j = 0 (A.2)

and

iγµ∂µφ
xεi +W

,xQijε
j = 0 , (A.3)

where Qji = Qa(σ
a)ji and QaQ

a = 1. Define the vector pa such that

∂aφ
x = pa∂zφ

x (A.4)

and the matrix

Γ =
paγ

a√
p2

(A.5)

such that Γ2 = 1. Rotation invariance implies that the only non-zero components

are pz = 1 and pt. The unknown component pt is fixed by the boundary condition.

Now the spinors εi can be split into positive and negative chiralities

εi = ε
+
i + ε

−
i (A.6)

satisfying

ε±i = ±iΓQijε±j . (A.7)
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At each point this select the chirality defined by Γ, i.e. we preserve one half of the

supersymmetries. Now (A.3) is satisfied provided

∂zφ
x = ± 1√

p2
W ,x . (A.8)

This is the BPS equation for supersymmetric configurations. Now choosing the

positive sign, we find that the boundary condition at z = 0 is automatically satisfied

provided

T
√
p2 = 1 . (A.9)

This leads to the vanishing

∆Φ2 = 0 . (A.10)

Let us come to the bulk evolution of the Killing spinors. They satisfy

Dµεi +
i

8
γµWQijε

j = 0 . (A.11)

This is a first order differential equation which can be solved provided the integra-

bility condition

[Da, Db]ε
+
i = Rabcd

γcd

8
ε+i (A.12)

is fulfilled. Now one gets

[Da, Db]ε
+
i = −

1

64
W 2γab +

1

8

paγb − pbγa√
p2

W ,xW,xΓ)ε
+
i (A.13)

from which we deduce that

Rabcd = −
1

16
W 2(gacgbd − gadgbc) +

1

4p2
W ,xW,x(pagb[dpc] − pbga[dpc]) . (A.14)

For W,x = 0, i.e. at the critical points of the superpotential one recognizes the

Riemann tensor of AdS5. More generally we find that the background geometry

which preserves supersymmetry in the bulk is such that the Weyl tensor vanishes

Wabcd = 0 (A.15)

as the Weyl tensors form, in the set of curvature tensors, the complement to the

antisymmetrized product of the metric tensor with itself or with a symmetric tensor.

This implies that the bulk geometry is conformally flat and can be written as

ds2 = e2A(z,t)(−dt2 + dz2 + dxidxi) . (A.16)

This leads to the vanishing of the projected Weyl tensor

Eab = 0 (A.17)
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in the bulk. Moreover the bulk and brane expansion rates coincide

HB = H . (A.18)

Notice that (A.14) leads to the Ricci tensor

Rab = −
W 2

4
gab +

W ,xW,x

4p2
(p2gab + 3papb) (A.19)

and the curvature scalar

a2R = −5W
2

4
+ 2W

′xW,x . (A.20)

This implies that Einstein equations

Rab −
R

2
gab = Tab (A.21)

are satisfied with

∂zA = −
UB

4
. (A.22)

Notice that (A.22) and (A.8) are the BPS equations which lead to the accelerating

universe. Solutions of these equations satisfy the Einstein equations and the Klein-

Gordon equation.

Let us now consider the second brane where supersymmetry is not broken. Now

the Killing spinors for the supersymmetric T = 1 case satisfy the projection equation

ε±i = ±iγ5Qijε±j (A.23)

as pt = 0. This is not compatible with (A.7) as Γ 6= γ5. The only solution is

therefore ε = 0, i.e. supersymmetry is completely broken by the non-supersymmetric

brane with T 6= 1. Notice that the breaking of supersymmetry is global due to the
presence of two boundaries respecting incompatible supersymmetries.

So we have shown that breaking supersymmetry on the brane leads to broken

N = 0 background configurations which still satisfy a system of two first order BPS

conditions.

A.2 Breaking conformal flatness

Let us now consider the case where matter and radiation are present on the brane.

We will show that one cannot deform the bulk geometry in such a way that the

boundary conditions are satisfied. This implies that matter on the brane breaks the

conformal flatness of the bulk.

Let us perform a small change of coordinates in the bulk

x̃ = x− ξ (A.24)
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inducing a variation of the bulk metric is

δgab = ∂aξb + ∂bξa (A.25)

and of the scalar field

δ(∂aφ) = ∂cφ∂aξ
c, δ(∂a∂bφ) = ∂c∂aφ∂bξ

c + ∂c∂bφ∂aξ
c . (A.26)

We also need to evaluate the variation

δ(∂zgab) = ∂zξ
c∂cgab + ∂aξ

c∂zgcb + ∂bξ
c∂zgca . (A.27)

The boundary equation δ(∂zφ)|0 = 0 leads to

∂zξ
z|0 + pt∂zξt = 0 . (A.28)

We then find that

δ(∂zgaa)|0 = 2∂aξa∂zgaa|0 (A.29)

with no summation involved. The metric boundary condition at the origin are mod-

ified according to

δ

(
∂zgaa

gaa

)
|0 =

δ(∂zgaa)

gaa
|0 −

∂zgaa

gaa
|0
δgaa

gaa
|0 (A.30)

implying that

δ

(
∂zgaa

gaa

)
|0 = −

UB

2
∂ag

aaξa|0 (A.31)

with no summation involved. The gii boundary condition then reads

UB

2
∂ig
iiξi|0 =

ρ

6
. (A.32)

As the background is xi independent this cannot be satisfied unless ρ = 0. This

proves that the bulk metric cannot be smootly obtained from the matterless case by

performing a change of coordinates in the bulk. In particular conformal flatness is

broken leading to an explicit breaking of supergravity by matter on the brane.
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