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1.Introduction

Theideathatweliveon ahypersurfaceem bedded in ahigherdim ensionalspacehassparked

a lotofinterestrecently. These theoriesare m otivated from string theory,where higher{

dim ensionalobjects,such asD{branes,play an essentialrole[1].Sim ilarily,com pactifying

M {theory (or itse�ective low{energy lim it: 11{D supergravity)on a S1=Z2{orbifold and
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com pactifyingsixdim ensionson aCalabi{Yau m anifold,resultsin a�ve{dim ensionalbrane

world scenario with two hypersurfaces,each located at the orbifold �xed points (see e.g.

[2]and [3]).

Brane world theories predict that our universe was higher{dim ensionalin the past.

Because ofthis,thereisthehopethatcertain questionswhich cannotbeanswered within

the context ofthe standard m odelofcosm ology,can be addressed within these theories.

Furtherm ore,cosm ology should bea way to severely constrain param etersin thesem odels.

So far,m ost cosm ologicalconsiderations ofbrane worlds centered around the one{

brane scenario ofRandalland Sundrum [4]. In this m odel,the three{dim ensionalbrane

universe is em bedded in a 5{dim ensionalAnti{de Sitter (AdS) spacetim e. In particular,

the bulk{space isem pty,the only contribution to the curvature com es from the negative

cosm ologicalconstant in the bulk. Thissim ple m odelalready leads to new e�ects which

areinteresting forcosm ology [5].However,m ostscenariosm otivated from particlephysics

predictm atter in the bulk,such as scalar �elds. In 5D heterotic M {theory,forexam ple,

oneparticularscalar�eld m easuresthedeform ation oftheCalabi{Yau m anifold,on which

six othersm alldim ensionsare com pacti�ed [3].O therm odels,m otivated by supergravity

(SUG RA), also predict bulk m atter, whose form is dictated by the �eld theory under

consideration.

Cosm ology m ay be a fruitful�eld where the above ideascan be tested. Assuch,the

study ofthe evolution ofcosm ologicalperturbations is extrem ely im portant [6],because

the higher{dim ensionalnature ofthe world can leave traces in the distribution ofm atter

and/oranisotropiesin them icrowave sky.A lotofpapersinvestigated di�erentaspectsof

perturbationsin braneworld scenarios[7].

Theaim ofthispaperisto develop an understandingoftheevolution ofperturbations

in brane world scenarios,in which scalar�eld(s)are presentin the bulk.Asa toy m odel,

we willuse a cosm ologicalrealization ofa supergravity m odelin singularspaces[8]. The

evolution ofthe brane world was discussed in depth in [9]and [10](see also [11]for a

discussion on brane cosm ology and bulk scalar�elds). In particularfourdi�erentcosm o-

logicalerashavebeen identi�ed in thism odel.Athigh energy abovethebranetension the

cosm ology is non-conventionalbefore entering the radiation epoch where the scalar �eld

is frozen. After m atter-radiation equality the scalar �eld starts evolving in tim e leading

to a slow-down ofthe expansion rate com pared to FRW cosm ology in the m atter dom i-

nated era. Eventually the scalar �eld dynam ics becom es the dom inant one leading to a

supergravity era. Requiring that coincidence between the m atter and scalar �eld energy

densitiesoccursin the recentpastleadsa cosm ologicalconstantwith a �ne-tuning ofthe

supersym m etry breaking tension on the brane.In the supergravity era ithasbeen shown

thattheobserved acceleration oftheexpansion oftheuniversecan beunderstood,i.e.the

com puted acceleration parem eter q0 = � 4=7 is within the experim entalball-park. This

accelerated expansion isdriven by a bulk scalar�eld,whoseparam etersareconstrained by

thegauged supergravity theory in thebulk.O n top ofthis,them odelpredictsasigni�cant

evolution oftheinduced gravitationalconstantG on thebrane.Indeed,thevalueofG can

beseen to havechanged by 37 percentsinceradiation/m atterequality.Thus,thestudy of

cosm ologicalperturbation theory in thesem odelsisratherim portant,in particularthetim e
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evolution ofG m ay leavetracesin theevolution ofperturbations.In thispaperwediscuss

theevolution ofthedensity constrastand thee�ectofthebulk scalar�eld on cosm ological

perturbations.In Section 2 wereview Einstein’sequationsinduced on ourbraneworld and

discuss the Friedm ann equation. W e also review the background solutions found in [10],

which are needed in orderto solve the perturbation equations.In Section 3 we derive the

perturbation equations using the uid ow approach. Thisapproach is very transparent

forourpurposesand m akesiteasy to derivethenecessary evolution equations.In Section

4 we discusssom e solutionsofthese equationsand discusstheirproperties.W e pointout

thedi�erencesto theRandall{Sundrum scenario and usualfour{dim ensionalscalar{tensor

theories. W e conclude in Section 5. In the appendix we discuss som e details concerning

the issueofsupersym m etry breaking and conform alatness.

2.B rane C osm ology

In this section we discuss the �eld equations on the brane and discuss the background

evolution.

2.1 T he B ackground Evolution

W econsiderouruniversetobeaboundaryofa�vedim ensionalspace-tim e.Theem bedding

ischosen such thatourbrane-world sitsatthe origin ofthe �fth dim ension.W e im pose a

Z2 sym m etry along the�fth dim ension and identify x5 with � x5.O urbrane-world carries

two types ofm atter,the standard m odel�elds at su�ciently large energy and ordinary

m atterand radiation atlowerenergy.W ealso assum ethatgravity propagatesin thebulk

wherea scalar�eld � lives.Thisscalar�eld couplesto thestandard m odel�eldsliving on

the brane-world. At low energy when the standard m odel�eldshave condensed and the

electro-weak and hadronic phase transitions have taken place,the coupling ofthe scalar

�eld to the brane-world realizes the m echanism proposed in [12]with a self-tuning ofthe

brane tension. In this section we derive the brane cosm ology equations describing the

coupling between ordinary m atteron the braneand a scalar�eld in thebulk.

Considerthe bulk action

Sbulk =
1

2�2
5

Z

d
5
x
p
� g5(R �

3

4
((@�)2 + U (�))) (2.1)

where�25 = 1=M 3
5 and theboundary action

SB = �
3

2�2
5

Z

d
4
x
p
� g4UB (�0) (2.2)

where�0 istheboundary valueofthe scalar�eld.TheEinstein equationsread

G ab � Rab�
1

2
Rgab = Tab+ �x5T

B
ab (2.3)

whereTab isthebulk energy-m om entum tensorand TB
ab
istheboundary contribution.The

bulk term is

Tab =
3

4

�

@a�@b� �
1

2
gab(@�)

2

�

�
3

8
gabU (2.4)
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and the boundary term

T
B
ab = �

3

2
gabUB (�) (2.5)

with a;b= 0:::3 in thelastequation.Following the self-tuning proposalwe interpretUB

as arising from a direct coupling U 0
B
to the brane degrees offreedom ,i.e. the standard

m odel�elds� i.Thevacuum energy generated by the �i’syieldsthe e�ective coupling

3UB

2�2
5

= < V (�)> U
0
B (2.6)

where thedim ension fourpotentialV (�)representsallthe contributionsdueto the �elds

�i afterinclusion ofcondensations,phasetransitionsand radiative corrections.

W e also considerthatordinary m atterliveson the brane with a diagonalenergy m o-

m entum tensor

�
a
b = diag(� �;p;p;p) (2.7)

and an equation ofstate p = !�.

W ewillbem ainly concerned with m odelsderived from supergravity in singularspaces.

They involve N = 2 supergravity with vector m ultiplets. W hen supergravity in the bulk

couplesto the boundary in a supersym m etric way the Lagrangian isentirely speci�ed by

the superpotential

UB = W (2.8)

and the bulk potential

U =

�
@W

@�

� 2

� W
2
: (2.9)

Ifone considersa single vectorsuperm ultipletthen supersym m etry im posesthat

W = �e
�� (2.10)

where � = 1=
p
3; � 1=

p
12,these values arising from the param etrisation ofthe m oduli

space ofthe vectorm ultiplets,and � isa characteristic scale related to the branetension.

Sincesupersym m etryisnotobserved in nature,oneshould incorporatesupersym m etry

breaking. A naturalway to break supersym m etry is by coupling the bulk scalar �eld to

brane�elds�xed attheirvevs.Thisleadsto

UB = TW (2.11)

whereT = 1 isthesupersym m etriccase.LargervaluesofT correspond to supersym m etry

breaking e�ectswith a positiveenergy density on thebrane.W ewillanalysethedynam ics

ofthe coupled system com prising gravity,thescalar�eld � and m atteron the brane.

Thedynam icsofthebraneworld isspeci�ed bythefourdim ensionalEinstein equations

[13]

�G ab = �
3V

8
nab+

UB

4
�ab+ �ab+

1

2
r a�r b� �

5

16
(r �)2nab� Eab; (2.12)

where�ab isthem atterenergy m om entum tensor,nab theinduced m etricon thebraneand

E ab theprojected W eyltensorofthebulk onto thebrane.Itappearsasan e�ectiveenergy

m om entum tensoron thebrane,called theW eyluid [5].
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Thetensor�ab isquadraticin the m atterenergy m om entum tensor

�ab =
�

12
�ab�

�ac�
c
b

4
+
�ab

24
(3�cd�

cd � �
2) (2.13)

where� = �aa,TheBianchiidentity r
aG ab = 0 leadsto theconservation equation

r a
E ab =

r aUB

4
�ab+ r a

�ab+ r a
Pab; (2.14)

wherethe tensorPab isde�ned by

Pab = �
3V

8
nab+

1

2
r a�r b� �

5

16
(r �)2nab (2.15)

This consistency equation (2.14) willallow us to follow the tim e evolution ofE 00 in the

background and at the perturbative level. This is crucial in order to de�ne the tim e

evolution ofthe background and ofthe scalar�eld and m atterperturbations.

Thedynam icsofthescalar�eld isspeci�ed by theK lein-G ordon equation which reads

r 2
� +

�

6

@UB

@�
=
@V

@�
� �� 2 (2.16)

wherewe have de�ned thelossparam eterby

�� 2 = @
2
n�j0 �

@UB

@�

@2UB

@�2
(2.17)

and @2n�j0 standsforthesecond norm alderivativeofthescalar�eld atthebranelocation.

Thee�ective scalarpotentialisde�ned by

V =
U + (

@UB

@�
)2 � U2

B

2
: (2.18)

W e derive these equationsin section 3.

In orderto illum inate the role ofUB further,we pointoutthatthe projected K lein-

G ordon equation can beseen asan equation forthe braneenergy-m om entum tensor

Tab = r a�r b� �
1

2
((r �)2 + 2V )nab; (2.19)

which reads

r aTab = �
�

6
r bUb� �� 2r b� (2.20)

and can bederived from the fourdim ensionale�ective action for�

S =

Z

d
4
x
p
� g4

�

(r �)2 + 2V �
�

3
UB � 2�� 2�

�

; (2.21)

whenever�� 2 isconstant.Itisrem arkablethatUB playstherole ofa dilaton coupled to

the trace ofthe m atterenergy-m om entum tensor.

Forthe background cosm ology the K lein-G ordon equation reducesto (see section 3)

�� + 4H _� �
�

6
U
0
B = � V

0+ �� 2 (2.22)

{ 5 {



where dot stands for the proper tim e derivative. The bulk expansion rate is de�ned by

4H � @� ln
p
� gj0 evaluated on the brane.

The background cosm ology ischaracterized by itsisotropy so we considerthatE 0i=

0;E ij = 0;i6= j.M oreoverweassum ethatweobtain a FRW induced m etricon thebrane.

Due to the tracelessness ofE ab itis then su�cientto obtain the di�erentialequation for

E 00

_E 00 + 4H B E 00 = @t

�
3

16
_�2 +

3

8
V

�

+
3

2
H B

_�2 +
_UB

4
�; (2.23)

whereH B isthe braneexpansion rate 3H B � @� ln
p
� gB j0.Thisleadsto

E 00 =
1

a4

Z

dta
4

 

@t

�
3

16
_�2 +

3

8
V

�

+
3

2
H B

_�2 +
_UB

4
�

!

: (2.24)

W riting the bulk m etric as

ds
2 = e

2A (z;tb)(� dt
2
b + dz

2)+ e
2B (z;tb)dx

2
; (2.25)

the proper tim e on the brane is de�ned by dt = eA (0;tb)dtb. W e can always choose the

boundary condition A(0;tb)= B (0;tb)in such a way

H = H B : (2.26)

Togetherwith the K lein-G ordon equation thisleadsto

E 00 =
1

16a4

Z

dta
4

�
_UB (4� � �)+ 6��2 _�

�

(2.27)

In particularwe�nd thatconform alatnessisbroken assoon as� becom estim e-dependent

and either m atter is present on the brane or the energy loss param eter does not vanish.

Noticethata su�cientcondition forbreaking conform alatnessisthatNewton’sconstant

becom estim e-dependent.W ewillcom m enton thisexpression when discussing thevarious

cosm ologicaleras.

Using

�G 00 = 3H 2
B (2.28)

and afterone integration by partsweobtain the Friedm ann equation

H
2
B =

�2

36
+
UB

12
� +

1

16a4

Z

dt
da4

dt
(2V � _�2)�

1

12a4

Z

dt
dUB

dt
� +

C

a4
(2.29)

Thisequation hasalready been derived in [10].Notice thatthescalar�eld � entersin the

de�nition ofthee�ectiveNewton’sconstant.Thelastthreeterm sarea com bination ofthe

energy ow onto or away from the brane and the changes ofthe pressure along the �fth

dim ension [14].

Using the conservation ofm atter

r a�
a
b = 0 (2.30)
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we �nd that

_� = � 3HB (� + p): (2.31)

This com pletes the description ofthe three equations determ ining the brane cosm ology,

i.e.the K lein-G ordon equation,theFriedm ann equation and the conservation equation.

Notice thatthere are two entities which depend on the bulk. Firstofallthere isthe

dark radiation term C=a4 whoseorigin springsfrom thepossibility ofblack-holeform ation

in the bulk.Then there isthe lossparam eter�� 2 which dependson the evolution ofthe

scalar�eld in thebulk.Itspeci�esthepartoftheevolution of�,which isnotconstrained

by considerationsofthe branedynam ics.

In thefollowing weshalldescribethecasewherethebulk theory isN = 2 supergravity

with vectorm ultiplets.W hen nom atterispresenton thebrane,thebackground cosm ology

can beexplicitly solved.In particularthem etric isconform ally atim plying that

C = 0: (2.32)

M oreoverthe lossparam etervanishesexplicitly

�� 2 = 0: (2.33)

A detailed analysis is presented in the appendix. In particular the last equation im plies

thatthebranedynam icsisclosed.W hen m atterdensity ispresenton thebrane,weshow

in theappendix thatconform alatnessisnotpreserved.Neverthelessweassum ethatthe

breakingofconform alatnessissm allenough toallow onetoassum ethat(2.32)and (2.33)

are stillvalid,both forthe background aswellason theperturbative level.

W enow turn to thediscussion ofthebackground evolution.Thesolutionsgiven below

have been obtained in [10],butwe need to presentthem in detailin orderto discussthe

evolution ofdensity perturbationsin section 4.

2.2 R adiation D om inated Eras

The background cosm ology can be solved in fourdi�erenteras: the high energy era,the

radiation and m atterdom inated epochsand �nally the supergravity era where the scalar

�eld dynam icsdom inates.W ediscussthesefourerasin turn paying particularattention to

the m atter-supergravity transition where we show thatrequiring coincidence now im plies

a �ne-tuning ofthe supersym m etry breaking partofthebranetension.

First ofallwe consider the high energy regim e where the non-conventional�2 dom -

inates,i.e. for energies higher than the brane tension. In that case we can neglect the

e�ective potentialV and �nd that

a = a0

�
t

t0

� 1=4

; (2.34)

while thescalar�eld behaveslike

� = �0 + � ln

�
t

t0

�

: (2.35)
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In the following we willfocuson the case � = 0,i.e.a constantscalar�eld,forwhich the

projected W eyltensorvanishesaltogether

E 00 = 0: (2.36)

Notice thatNewton’sconstantdoesnotvary in tim e in thiscase.

Theusualradiation era isnotm odi�ed by the presenceofthescalar�eld

� = �0 (2.37)

and

a = ar

�
t

tr

� 1=2

: (2.38)

Newton’sconstantdoesnotvary in tim e,while

E 00 = 0; (2.39)

as in the high energy regim e. Note that the solution in the radiation era in this brane

world scenario issim ilarto theradiation era solution found in Brans{Dicketheory,see[15]

and [16],forexam ple.The�eld � approachesquickly theattractorforwhich � = constant.

2.3 M atter D om inated Era

The m atterdom inated era leadsto a m ore interesting background cosm ology.Letus�rst

considerthepuresugra case whereT = 1.Thisisa good approxim ation untilcoincidence

where the potentialenergy ofthe scalar�eld cannotbe neglected anym ore. The solution

to theevolution equationsis

� = �0 + � ln

�
t

te

�

(2.40)

a = ae

�
t

te

� 

(2.41)

where �e and ae are the tim e and scale factors at radiation{m atter equality. W e are

interested in the sm all� case as it leads to an accelerating universe when no m atter is

presentand sm alltim e deviationsforNewton’sconstant.

Forsm all� weget

� = �
8

15
�

 =
2

3
�

8

45
�
2
:

(2.42)

Theprojected W eyltensorisgiven by

E 00 = �
4�2

3t2
; (2.43)
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which decreaseslike a� 3 to leading orderin �.

In a phenom enologicalway we identify Newton’sconstantwith the ratio

8�G N (�)

3
�
H 2

�m
: (2.44)

In term softhe red-shiftz thisis

G N (z)

G N (ze)
=

�
z+ 1

ze + 1

� 4�2=5

: (2.45)

Forthe supergravity case with �2 = 1=12 the exponentis1=15. Asze � 103 thisleadsto

a decrease by 37% since equality.

Notice thatthe Newton constantstartsto decrease only from the tim e ofm atterand

radiation equality and isstrictly constantduring theradiation dom inated era.Nucleosyn-

thesisconstrainsthevariation tobelessthan 20% .However,in ourm odelwewould expect

thecouplingsto standard m odelparticlesto also vary in a sim ilarm anner.Thiscould lead

toavariation in,forexam ple,theproton and neutron m assessincethesearisefrom Yukawa

couplingsin the standard m odel. W e note thatm any ofthe testsforthe variation ofthe

Newton constant assum e allother m asses and couplings are constant [17];it is possible

thatoursupergravity variation would evade detection.

2.4 Supergravity Era

After coincidence m atter does not dom inate anym ore;this is the supergravity era dom i-

nated by the scalar�eld dynam ics. Letusreview itbriey. Consider�rstthe pure sugra

case.Itiseasy to see thatthe potentialvanishes

VSU G R A = 0 (2.46)

leading to a static universe with

� = �
1

�
ln(1� �

2
�jyj)

a = (1� �
2
�jyj)1=4�

2

(2.47)

where we have de�ned dy = adx5. This is a at solution corresponding to a vanishing

cosm ologicalconstanton the brane-world.

Assoon assupergravity isbroken on the brane T 6= 1 the static solution isnotvalid

anym ore.Thenew fourdim ensionalpotentialbecom es

V =
(T2 � 1)

2

 

W
2 �

�
@W

@�

� 2
!

: (2.48)

Thetim e dependentbackground isobtained from the static solution by going to con-

form alcoordinates

ds
2 = a

2(u)(� d�
2 + du

2 + dx
i
dxi) (2.49)
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and perform ing a boostalong theu axis

a(u;�)= a

�

u + h�;
�

p
1� h2

�

�(u;�)= �

�

u + h�;
�

p
1� h2

�

(2.50)

wherewe have displayed theexplicit� dependence.Now for

h = �

p
T2 � 1

T
(2.51)

we �nd that the Friedm ann equation is ful�lled. Sim ilarly the K lein-G ordon equation is

satis�ed.M oreoverwe �nd that

E 00 = 0; (2.52)

asthe bulk m etric isconform ally at.

Theresulting universe ischaracterized by thescale factorin cosm ic tim e

a(t)=
1
p
T

�

1�
t

t0

� 1=3+ 1=6�2

(2.53)

with t0 =
2

3�2
1

hT 3=2�
. The scale factor corresponds to a solution ofthe four dim ensional

FRW equationswith an acceleration param eter

q0 =
6�2

1+ 2�2
� 1 (2.54)

and an equation ofstate

!SU G R A = � 1+
4�2

1+ 2�2
(2.55)

which never violates the dom inant energy condition. The solution with � = � 1p
12

is

accelerating.In particularwe �nd that

q0 = �
4

7
(2.56)

and forthe equation ofstate

!SU G R A = �
5

7
: (2.57)

Thisiswithin the experim entalball-park.

2.5 T he M atter-Supergravity Transition

Letusnow investigatethetransition between them atterdom inated and supergravity eras.

Ifwedenoteby H SU G R A theHubbleparam eterderived in thepuresupergravity case,then

the Friedm ann equation in the broken supergravity case is

H
2 = H

2
SU G R A +

V

8
; (2.58)
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where we have used the factthat� variesslowly com pared to �. The evolution coincides

with the one obtained from unbroken supergravity as long as the contribution from the

potentialdoesnotdom inate.In the radiation dom inated era thisrequires

T2 � 1

T

W

2�2
5

�
2

3

�e

1� �2
; (2.59)

where �e is the m atter density at equality. This im plies that the left-hand side is m uch

sm allerthat10� 39 G eV 4.Letusnow denote the supersym m etricbranetension by

M
4
S =

3W

2�2
5

(2.60)

and the supersym m etry breaking contribution

M
4
B S = (T � 1)M 4

S: (2.61)

W e �nd that

M
4
B S �

�e

1� �2
: (2.62)

Now this is an extrem e �ne-tuning ofthe non-supersym m etric contribution to the brane

tension.

In them atterdom inated era thesupergravity Hubbleparam eterdecreasesfasterthan

the potentialcontribution. Coincidence between the m atterdom inated supergravity con-

tribution H 2
SU G R A and the potentialenergy occursatzc

M
4
B S =

1

1� �2

�
zc+ 1

ze + 1

� 3+ ��=

�e: (2.63)

Im posing thatcoincidence hasoccurred only recently leadsto

M
4
B S � �c; (2.64)

where �c isthe criticaldensity. Thisisthe usualextrem e �ne-tuning ofthe cosm ological

constant. Indeed it speci�es that the energy density received by the brane-world from

the non-supersym m etric sources,e.g. radiative corrections and phase transitions,cannot

exceed thecriticalenergy density oftheuniverse.

3.C osm ologicalPerturbations using the Fluid Flow A pproach

W e now turn to the discussion ofcosm ologicalperturbations. There are di�erent e�ects

which willinuencethe evolution ofperturbations:

� The evolution ofthe gravitationalconstantin the m atterera changesthe evolution

ofthe background: In the m atterera,the gravitationalconstantdecreasesand fur-

therm oretheuniverseisexpanding slower(up to order�2)than in theFRW m atter

dom inated era in generalrelativity.
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� Perturbationsin thescalar�eld arethesourceofm atteructuationsand viceversa.

� Perturbationsin the projected W eyltensoractassourcesforthe scalarand m atter

perturbationsand vice versa.

Thesee�ectswillchange the growth ofperturbationscom pared to norm al4D cosm o-

logicalm odelsorthe Randall{Sundrum m odel. In particularitshould be noted thatour

form alism allows usto treatthe Randall{Sundrum cosm ology. Indeed by putting � = 0,

T = 1 and neglecting the scalar �eld contribution we obtain the Randall-Sundrum case

with a atboundary branewhileputting T 6= 1 leadsto a deSitterboundary brane.

W hilediscussing perturbations,weusetheuid{ow approach (see[18],[19]and [20])

rather than the m etric{based approach [6]. The m ain di�erence is that allperturbation

variablesare expressed in term sofuid{quantities,ratherthan m etric{variables.Forour

purpose,i.e. discussing the evolution ofthe density contrast � = ��=� ofthe dom inant

uid ateach epoch,thisapproach issim plerin orderto obtain theevolution equations.To

do so,weneed to derivetheRaychaudhuriequation and theK lein{G ordon equation in the

com oving fram e.

3.1 T he R aychaudhuriand K lein-G ordon Equation

O n thebraneB,see�gure1,them atterenergy-m om entum tensorisconserved.Denoting

by n thenorm alvectorto thebraneand de�ning the induced m etric by

nab = gab� nanb (3.1)

such thatn2 = 1 and nabn
b = 0,theconservation equation reads

r a�
ab = 0 (3.2)

wherer a = nbaD b isthe branecovariantderivative and

�ab = (� + p)uaub� pnab (3.3)

istheenergy-m om entum tensor.Noticethatthevectorua isthevelocity �eld ofthebrane

m atterand thusm ustbe orthogonalto n and satis�esu2 = � 1. In addition we have the

usualdecom position in term softhe shear�ab,the helicity !ab and the expansion rate

r cu
d = � uc_u

d + H B u
d
c + �

d
c + !

d
c (3.4)

wherewe set�ab = 0; !ab = 0 lateron.

Using the relations

r au
a = 3H B ; _ua = u

br bua (3.5)

one derivesfrom (3.2)

_� = � 3HB (� + p): (3.6)

Notice thatno m atterleaksoutofthebrane.De�ning

�r a � uabr
b = r a + uau

b
D b; (3.7)
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which isnothing butthe spatialcovariantderivative on thebrane,one obtains

_ua = �
�r ap

� + p
; (3.8)

whose divergence r a _u
a leadsto theRaychaudhuriequation

3 _H B + 3H 2
B = � R00 � �r a(

�r ap

� + p
) (3.9)

W e have neglected �ab and !ab = 0 here.

u

n

B

C

S

Figure 1: The brane-world B is perpendicular to the norm alvector n. The four dim ensional

hypersurfaceC isorthogonalto the velocity vectoru.The surfaceS = C \ B isa setofcom oving

observersfollowing m atteron the brane.Note thatthe perturbed brane isnotnecessarily located

at y = constant. The di�erent m etrics in the text are as follows: gab is the full�ve{dim ensional

m etric,hab is the induced m etric on the brane B,uab is the induced m etric on C and nab is the

induced m etricon the com oving hypersurfaceS.

In order to have a closed system ofdi�erentialequations for the perturbations we

need the K lein-G ordon equation in the com oving gauge. The m etric on a hypersurface C

orthogonalto u,see �gure1,isgiven by

hab = gab+ uaub; (3.10)
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where u2 = � 1 and habu
b = 0.De�ning the covariantderivative on the hypersurfaceC by

�D a = habD
b and using D au

a = 4H one obtains

D aD
a = �D a

�D a � 4H ucD
c� uaubD

a
D
b
: (3.11)

In the com oving gauge we have u0 = � 1;ui= 0 leading to

D
2
� = �D 2

� � 4H _� � ��: (3.12)

W e can now evaluate theLaplacian �D 2 in term softheLaplacian on thecom oving surface

S (see �gure1)orthogonalto u.Notice that �r a = nab
�D b.Expanding �r 2 leadsto

�D 2 = �r 2 + (K + u
a
u
b
K ab)nc�D

c+ nanb
�D a �D b (3.13)

Now K abu
aub = uaD a(u � n)� _uan

a,where

K ab = D anb (3.14)

istheextrinsic curvaturetensor.Using (u � n)= 0 and na�r ap = 0 we �nd that

K abu
a
u
b = 0: (3.15)

Thejunction conditionslead to

K =
�

6
� UB ; (3.16)

with � = � � + 3p.Finally we can read o� the K lein-G ordon equation

�� + 4H _� � �
00�

�
�

6
� UB

�

�
0� �r 2

� = �
1

2

@U

@�
(3.17)

whereprim estandsforthe norm alderivative.Now the junction conditionslead to

�
0=

@UB

@�
: (3.18)

W e �nd thattheK lein-G ordon equation reducesto

�� + 4H _� +
1

6

@UB

@�
(� � 3p)� �r 2

� = �
@V

@�
+ �� 2: (3.19)

Notice thatitinvolvesonly branederivativeswhen the lossparam eter�� 2 = 0.W e now

turn to theevolution equation forE 00 which entersin theevaluation ofR 00.

3.2 T he Evolution Equation for E ��

LetusconsiderthehypersurfaceS on thebranewith induced m etricuab and orthogonalto

thevelocity vectorua such thatuabu
a = 0 and uaua = � 1.Theinduced m etricisgiven by

uab = nab+ uaub,wherenab isthebranem etric.Letr a bethebranecovariantderivative

and �r a the covariantderivative with respectto uab.

Considernow r aE ab:

r a
E ab = u

acr cE ab� u
a
u
cr cE ab: (3.20)
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Thelastterm can bewritten as

u
a
u
cr cE ab = u

cr c(u
a
E ab)� _uaE ab: (3.21)

The�rstterm in equation (3.20)can berewritten as

u
acr cE ab = r c(u

ac
E ab)� Eab(r cu

ac)

= r c(u
ac
E ab)� Eab(_u

a + 3H B u
a): (3.22)

Asa nextstep weconsider

r c(u
ac
E ab)= r c(u

ac
n
d
bE ad)

= r c(u
ac
u
d
bE ad)� rc(u

ac
u
d
ubE ad)

= r c(u
ac
u
d
bE ad)� u

dr c(u
ac
ubE ad)� (rcu

d)uacE adub: (3.23)

Using (3.4)

(r cu
d)uacE adub = H B u

ad
E adub+ (� d

c + !
d
c )u

ac
E adub: (3.24)

Letusfurtherde�netheprojected tensor

�E ab = u
c
a u

d
b E cd (3.25)

Then

r c
�E c
d =

�r c
�E c
d � _uc�E

c
d: (3.26)

So,from eq.(3.23)weget

r c(u
ac
E ab)= �r c

�E c
b� _uc~E

c
b� u

dr c(u
ac
E acub)� HB u

ad
E adub

� (�d
c + !

d
c )u

ac
E adub: (3.27)

Collecting everything and de�ning �E = uabE ab ,the spatialtrace,we end up with

r a
E ab = �r c

�E c
b� _uc�E

c
b� u

dr c(u
ac
E adub)� (uaE ab)

:� HB �E ub� 3HB u
a
E ab

� (�d
c + !

d
c )u

ac
E adub: (3.28)

Letusnow specialize to thecom oving gauge,i.e.thesurfaceS isa com oving oneand

u0 = 1; ui= 0.Notice thatthe �rstterm ofthe lastexpression vanishes.W e obtain

r a
E a0 = �r cE

c
0 � 4HB E 00 � _E 00 � _uaE

a
0 + (�dc + !

d
c)u

ac
E ad (3.29)

wherewehaveused thetracelessnessofE ab toget �E = E 00.Forthebackground weretrieve

the previousexpression as _ua = 0 and E i
0
= 0 and we explicitly assum ethat� = 0; ! = 0

forthebackground.

W e need furtherto to evaluate

r a
�ab = �r c

�c0 � 3HB �00 � HB �� � _ua�
a
0 � _�00 (3.30)

which sim pli�esto

r a
�ab = �r c

�c0 � _ua�
a
0 (3.31)

and �nally weneed

r a
Pa0 = �r c

Pc0 � 3HB P00 � HB
�P � _uaP

a
0 �

_P00 (3.32)

Collecting allthese ingredients leads to the consistency equation (2.14) expressed in the

com oving fram e.
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3.3 T he Perturbed D ynam ics

W e have now obtained allthe necessary equations in order to derive the perturbation

equationsup to linearorder.In doing so wedecom posealluid quantitiesinto an average

(overthecom oving hypersurface)ofthequantity plusa perturbation,i.e.�(x;t)= �b(t)+

��(x;t),and sim ilarforthepressureand theexpansion rateH .W einserttheseexpressions

forallquantitiesinto theequationsweobtained above and subtracttheaverage.

W ebegin with theRaychaudhuriequation and energy conservation equation evaluated

in a com oving basis.TheRaychaudhuriequation reads

3 _H + 3H 2 = �
r 2p

� + p
� R00: (3.33)

In this expression H is the expansion rate,p the pressure and � the energy density. All

quantitesare m easured with respectto a com oving observer1. R 00 isthe tim e{tim e com -

ponent ofthe Riccitensor. The dot represents the tim e{derivative with respect ofthe

com oving observer(i.e. propertim e). The Raychaudhuriequation expressesjustthe be-

haviourofm atterundertheinuenceofgeom etry and isindependentofthe�eld equation.

In particular,for m atter on the brane,itis the sam e as in the usual4D case. The �ve{

dim ensionalcharacterofthespacetim eentersonly through R 00.FortheFRW m etric,R 00

is

R 00 = �
3

8
V +

Ub

8
(� + 3p)+

1

12
�(2� + 3p)�

7

16
_�2 � E00: (3.34)

The propertim e isnota unique labelofthe com oving hypersurfaces,because itcan vary

in space.Therefore,weneed to transform to coordinatetim e,which labelsthesecom oving

hypersurfaces. Thistransform ation from propertim e to coordinate tim e isgiven by (see

[19]or[20])
dtpr

dt
= 1�

�p

� + p
: (3.35)

Thisgives the variation ofpropertim e due to the perturbations. Using the conservation

equation we obtain

�H = H
!

1+ !
� �

_�

3(1+ !)
: (3.36)

wherewe have de�ned thedensity contrast

� =
��

�
: (3.37)

In therestofthepaperwedenotebydotthecoordinatetim ederivativeoftheperturbations.

In thispaperweconcentrate on thecaseofw = p=� = const:and c2s = w.W ededucethat

� _H =
!

1+ !
(H _� + _H �)�

��

3(1+ !)
; (3.38)

which com bined with the perturbed Raychaudhuriequation

� _H =
�p

� + p
_H � 2H �H +

1

3

k2

a2

�p

� + p
�
1

3
�R00 (3.39)

1Thisobserveris,ofcourse,con�ned onto the brane world.
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leadsto an equation forthe density constrast

�� + (2� 3!)H_� � 6!(H2 + _H )� = (1+ !)�R00 � !
k2

a2
� (3.40)

where we have used �r 2 = k2=a2. Notice that the left-hand side coincide with the usual

four dim ensionalexpression. The new physicalingredients allspring from �R00. As the

Friedm ann equation and itstim e-derivativearegiven bycom plicated expressions,wedonot

derive a generalequation forthe evolution of� butratheranalyse each regim e separately

and derive the corresponding equation.

In thesam efashion,wederivetheperturbed K lein-G ordon equation,using eq.(3.35):

(��):: + 4H (��):+

�
k2

a2
+
�

6
(1� 3w)

@2UB

@�2
+
@2V

@�2

�

��

=
c2s

1+ !

h
_�_� + �(�� + 4H _�)

i

+
1

6

@UB

@�
[3�p� ��]: (3.41)

wherethe coupling between them atterand scalarperturbationsisexplicit.

Finally we need the perturbed version of the E 00 consistency equation. From the

equationswederived in theprevioussection we obtain

�(raE a0)= �r c
�Ec0 � 4�HB _E 00 � 4HB �E00 � �_E 00 �

�p

p+ �
_E 00; (3.42)

wherethe shearterm vanishesautom atically at�rstorder.Sim ilarly we have

r a
��a0 = �r c

��c0 � _ua�
a
0 (3.43)

and

r a
�Pa0 = �r c

�Pc0 � 3�HB P00 � 3HB �P00 � �HB
�P � HB �

�P � _uaP
a
0 � (�P00)

: (3.44)

Thisallowsusto writedown the necessary perturbed equation.

Notice thatthe com ponentsofE a0 play a role in the perturbed dynam ics.Ascan be

seen,they arenotconstrained by thebranedynam icsand lead to a directinuenceofthe

bulk perturbationson thebraneperturbations.Forthisreason theperturbed dynam icsis

notclosed on the brane.In the restofthispaperwe willonly dealwith long wave-length

phenom ena wherethe dynam icsisclosed.

4.T im e Evolution ofC osm ologicalPerturbations

In this section we discuss som e solutions to the perturbed dynam ics. The equations are

very di�cultto solve in generalso we restrictourselvesto the di�erentcosm ologicaleras.

W estartin thehigh{energy regim e,assum ing theuniverseto bedom inated by relativistic

particles. Then we discussthe norm al(low{energy) radiation dom inated epoch,followed

by them atterdom inated epoch.Becausethesystem isnotclosed on thebraneforlargek

(sm allwavelength),wepresentsolutionsonly forthek ! 0 lim it.Thislim itenablesusto

deduce thee�ectsofthe bulk scalar�eld and E �� on density perturbations.
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In particularwe can writethe perturbed E �� equation in thatlim itas

� _E 00 +
�p

� + p
_E 00 + 4H B �E00 + 4�HB E 00 = �

�_UB

4
� �

�p

� + p

_UB �

4
�

_UB �

4
� + �_P00

+
�P

� + p
_P00 + 3H B �P00 + 3�HB P00 + H B �

�P + �HB
�P

(4.1)

Explicitly we need

P00 =
3V

8
+
3_�2

16
; �P = �

9V

16
+
15_�2

16
(4.2)

Theperturbed quantitiesare then

�_UB = U
0
B �

_� (4.3)

and

�P00 =
3

8
_��_� (4.4)

aswe neglectthepotentialin thedi�erenteras.Thisequation willbem adem ore explicit

in each era.

Asa �rststep wewill�rstanalysetheRandall-Sundum scenario with a atboundary

brane. The di�erentialequation for the density contrast is ofthird order leading to the

appearanceofthreem odes.Thisistobecom pared totheusualtwoFRW cosm ology m odes

derived from fourdim ensionalgeneralrelativity. Asalready m entioned two ofthe m odes

willcoincide with FRW cosm ology while the third m ode is entirely due to perturbations

in theW eyltensorsignalling a breaking ofconform alinvariance in the bulk.

4.1 T he R andall{Sundrum scenario

4.1.1 T he high energy era

In the high energy regim e,theequationsfor�E00 and � read

�� + H _� � 18H2� = �
4

3
�E00; (4.5)

(�E00)
:+ 4H (�E00)= 0: (4.6)

Thisleadsto

�E00 =
�E0

t
: (4.7)

Theoverallsolution oftheequation forthedensity contrastisa sum ofthesolution ofthe

hom ogeneousequation aswellasthe generalsolution.Itcan easily befound as

� = �0t
3=2 + �1t

� 3=4 +
16

51
�E0t: (4.8)
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4.1.2 T he low {energy radiation era

In thisera,the equationsfor�E00 and � read

�� + H _� � 2H2� = �
4

3
�E00; (4.9)

(�E00)
:+ 4H (�E00)= 0: (4.10)

Again,thesolution to thelastequation is

�E00 =
�E0

t2
: (4.11)

Thefullsolution to the �rstequation isfound to be

� = �0t+ �1t
� 1=2 +

8

3
�E0: (4.12)

W edo,therefore,�nd thenorm algrowingand decayingm odesin thisregim eand aconstant

m ode,which isabsentin FRW cosm ology.

4.1.3 T he m atter dom inated epoch

Finally,in them atterdom inated epoch the equation for�E00 and � read

�� + 2H _� �
3

2
H

2
� = � �E00; (4.13)

(�E00)
:+ 4H (�E00)= 0: (4.14)

Thesolution to the lastequation is

�E00 = �E0t
� 8=3

; (4.15)

and the solution to the�rstequation can then found to be

� = �t
2=3 + �1t

� 1 +
9

4
�E0t

� 2=3
: (4.16)

W erecoverthusthenorm algrowing and decaying m odeaswellasam odesourced by �E00,

which isdecaying rapidly.

W enow turn tothecasewith ascalar�eld in thebulk.ThepreviousRandall-Sundrum

m odes willbe m odi�ed in two ways. First ofallthe brane potentialwilllead to slight

deviationsofthe m ode exponentssim ilarto the m odi�cation ofthe scale factorexponent

in the m atter era. Then there willalso appear new m odes due to the uctuations of

the scalar�eld governed by the K lein-G ordon equation. W e willnow analyse each ofthe

di�erentregim esin turn.

4.2 E�ects ofthe bulk scalar �eld on cosm ologicalperturbations

4.2.1 T he high{energy regim e

In thisregim e,theterm swhich arequadraticin � and p dom inateboth in thebackground

and in the perturbation equations. W e assum e,that relativistic particles dom inate the

expansion,i.e.p = �=3.
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Considering thelargewavelength lim itissu�cientbecauseallcosm ologically relevant

scalesare faroutside thehorizon.Theperturbation equationsin thisregim e are

�� + H _� = 18H 2
� �

4

3
�E00; (4.17)

(��)::+ 4H (��):= 0; (4.18)

(�E00)
:+ 4H �E00 = �

�UB �

4
(��): (4.19)

wherewe have assum ed that3H (��):� V ��.

Toobtain thesolutionstotheseequations,we�rstconsidertheK lein{G ordon equation.

Thesolutionsare

�� = ��0 + ��1lnt; (4.20)

where��0 isa constantm ode.W e can now �nd �E00.

�E00 =
�E0

t
�
3�UB

8
��1

lnt

t
(4.21)

Notice thatthe solution com prisestwo parts. The 1=tm ode isa solution ofthe hom oge-

neousequation whilethelogarithm ic m odesolvesthecom plete equation.In the following

wewillalways�nd thatthesolutionsareexpressibleasa sum ofhom ogeneousm odesand

m odessolving the com plete di�erentialequations.

W e can now deduce thedensity constrast

� = �0t
3=2 + �1t

� 3=4 + �2(t) (4.22)

wherethe com plete solution reads

�2(t)= �
4

3
t
3=2

Z t

dt
0(t0)� 13=4

Z t0

dt
00
�E00(t

00)7=4 (4.23)

In thelong tim eregim e,wefocuson theleading growing m ode,obtained by approxim ating

�2(t)= O ((lnt)t) (4.24)

This im plies thatwe �nd two leading growing m odes in t3=2 and (lnt)t. Notice that the

logarithm ic m ode is triggered by the scalar uctuation,��1,and is therefore absent in

the Randall-Sundrum case. M oreover for very long tim es we see that the leading m ode

increasesliket3=2,which ism uch largerthan in FRW cosm ology.Interestingly,thisgrowth

ofuctuationsisanom alous,in the sensethattheexponentofthe growing m odeislarger

than one. The reason for thisis the source term (18H 2�) which is m uch larger than the

norm al4�G �m �. In addition,there isthe contribution ofbulk gravity. In thisregim e we

cannotexpectthe norm albehaviour,because gravity issim ply notfour{dim ensional.

4.2.2 R adiation dom ination

In this regim e the Newton’s constant is not varying in tim e. M oreover m atter does not

appear in the K lein-G ordon equation. This leads to the perturbation equations for the
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scalar�eld and thedensity contrast

(��)::+ 4H (��): = 0; (4.25)

�� + H _� � 2H2� = 4�H 2
�� �

4

3
�E00; (4.26)

(�E00)
:+ 4H �E00 = � 3�H 2(��):: (4.27)

Asbeforewe �nd hom ogeneousand com plete solutions.M ore speci�cally

�� = ��0 + ��� t
� 1
; (4.28)

leading to theperturbed �E00

�E00 =
�E0

t2
+
3�

4
���

lnt

t2
: (4.29)

Notice thatthe �rstm ode springsfrom the hom ogeneousequation and the lastone from

the com plete equation.Thedensity contrastcan then bededuced:

� = �1t+ �� 1=2t
� 1=2 + t

Z t

dt
0(t0)� 5=2

Z t0
�

�

(t00)1=2
�� �

4

3
(t00)3=2�E00

�

(4.30)

Therearetwo hom ogeneousm odesasin FRW cosm ology.New contributionsem ergefrom

the scalar�eld.In particularthereisa growing m odein O (��� lnt)which istriggered by

the decreasing scalarm odein ��� =t.

4.2.3 M atter dom ination

In this regim e Newton’s constant varies in tim e as the background scalar �eld is tim e

dependent. This leads to a very rich structure ofm odes for the density contrast. The

perturbation equationsread

�� + 2H _� =
3

2
�H

2

�

�� +
1

�
�

�

� �E00; (4.31)

(��):: + 4H (��):+ 2�2H 2(��)= � 2�H2�; (4.32)

(�E00)
: + 4H (�E00)+ 4(�H )E00 = � 3�H 2(��):� 3�H 2�

t
�

+
3�

8

�
� t

� 2(��):+ t
� 1(��)::

�
+ 3H

�

t
(��):�

1

2
�
2
t
� 2_�: (4.33)

Thissystem ofequations possessespower law solutions,which we derive up to order�2.

De�ning each m odeby theansatz

� = �it
ai;�� = ��it

bi;�E00 = �E
i
00t

ci (4.34)

we �nd that

ai= bi= ci+ 2 (4.35)

for allm odes. There are two types ofm odes. Letus�rstdiscussthe com plete solutions

ofthecoupled di�erentialequations.W e�nd thattherearethreem odescorresponding to

the exponents

a2=3 =
2

3
�
11624

7875
�
2
; a� 1 = � 1�

1036

375
�
2
; a� 2=3 = �

2

3
+
808

225
�
2 (4.36)
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The m odes �2=3 and �� 1 are deform ations ofthe FRW m odes due to the scalar �eld. In

particularwe�nd thata2=3 � 0:55.Thus,thegrowth ofuctuationsissm aller,than in the

norm alm atterdom inated epoch.Theperturbation ofthebulk scalar�eld isgrowing with

thesam eexponentasthedensity constrastand �E00 israpidly decaying with an exponent

c= a� 2 � � 1:45.

In addition to thegrowing m ode,therearetwo decaying m odes.O neofthesedecaying

m odesisa m odi�cation ofthe usuala = � 1 decaying m ode.W e obtain a = � 1:23.Thus,

the m ode is decaying even faster than norm al. The other decaying m ode correspondsto

a = � 0:37.

O n top ofthese three m odes there are seven hom ogeneous m odes corresponding to

zero m odesofthe variousdi�erentialoperatorsappearing in the three coupled equations.

Letusdiscussthem in som e detailasthey have rem arkableproperties.Thehom ogeneous

m odesoftheperturbed Raychaudhuriequation have characteristic exponents

~a2=3 =
2

3
+

16

225
�
2
; ~a� 1 = � 1+

64

225
�
2 (4.37)

Notice thatthese m odesare two deform ationsofthe usualFRW m odes. The scalar�eld

potentialliftsthedegeneracy between thedoubletsofa = 2=3 and a = � 1 m odes.W e�nd

that~a2=3 � 0:67 very close to the FRW value. Thatthe growing m ode islargerthan the

one found in generalrelativity com es from the fact that the m atter dom inated universe

is expanding slower in the brane world m odel. Therefore,overdensities,which want to

contract but have to com pete with the cosm ologicalexpansion,can grow m ore easily in

the braneworld m odel.

Thehom ogeneousm odesoftheK lein-G ordon equation arecharacterized by theexpo-

nents

a0 = �
8

15
�
2
; a� 5=3 = �

5

3
+
56

45
�
2
; (4.38)

corresponding to an alm ostconstantm odeand a m odewhich decreased very fast.

The E 00 equations com prises three di�erentialoperators. The �rstorder di�erential

operatoracting on �E00 leadsto a single m odewith

a� 2=3 = �
2

3
+
32

45
�
2
: (4.39)

Thedi�erentialoperatoracting on �� leadsto two m odes

~a0 = 0; a� 10 = � 10+
512

135
�
2
: (4.40)

Eventually the operatoracting on � leadsto

�a0 =
10

27
: (4.41)

Notice that in the epoch ofaccelerated expansion the structures get frozen in. W e have

thusdescribed theperturbation m odesin thefourcosm ologicaleras.

In conclusion, we have found two the growing m odes, with exponent ~a2=3 � 0:67

and a2=3 � 0:55. The 00{com ponent of the W eyl{tensor is always decaying, whereas
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perturbations in � follow the density contrast. It is instructive to com pare these results

to the onesfound in Brans{Dicke theory.Here the exponentofthe growing and decaying

m odesare m odi�ed asfollows[21]:

a+ =
2

3
+

2

3!
and a� = � 1�

1

3!
; (4.42)

where! istheBrans{Dicke param eter.Note,thattherearem orem odesin thesetheories

aswell.Herewe�nd thatthegrowing and decaying m odesareshifted dueto thepresence

ofa scalar�eld which couplesto gravity in a way which di�ersfrom Brans-Dicke theory.

4.2.4 O bservationalconsequences

Although we have focused on the large wavelength lim it only,we can draw som e (quali-

tative)conclusionsfrom our�ndings.Firstofall,which ofthe two growing m odesin the

m atter dom inated epoch appear,depends on the initialconditions im posed in the early

universe. Itislikely thatboth m odesare generated. Ifthe m ode with exponenta � 0:67

is not generated and the power spectrum is norm alized to the observations today (such

asto galaxy clusters),the braneworld m odelwould have m uch m orepowerin them atter

perturbationsthan one would expectin norm alquintessence m odels,forexam ple. Thus,

in thiscasethereshould bem oregalaxy clustersathigh redshiftin thebraneworld m odel

than in norm alEinstein gravity with com parablem atterdensity (with a cosm ologicalcon-

stantorquintessence �eld). Ifthe m ode with exponenta � 0:67 contributessigni�cantly

to perturbations,then the power in the perturbationsin both theories would be sim ilar.

However,m uch m orework isneeded in orderto m ake thism oreconcrete.

Another consequence is a m odi�cation ofthe spectrum ofanisotropies in the cosm ic

m icrowavebackground radiation (CM B).Thisisbecausethedistanceto thelastscattering

surface(LSS)willbem odi�ed dueto theslowerexpansion in them atterdom inated epoch.

As a result,the �rst peak willbe shifted to larger angular scales. However,we believe

this e�ect to be sm allto be detected. In addition to this e�ect, it is conceivable that

isocurvature m odes (between the W eyluid and radiation, for exam ple) m ight survive

quite long in the radiation era,leaving theirim printin the CM B.To m ake m ore concrete

predictions,it is necessary to go beyond the sm allk{lim it,which we considered in this

paper.Thisinvolvesa study ofthebulk gravitational�eld,aswellasperturbationsin the

bulk scalar�eld away from thebrane[7].Thecalculationsarevery di�cultand a detailed

discussion ofthe bulk equations is beyond the scope ofthis paper and willbe presented

elsewhere.

5.C onclusions

W ehavepresented adiscussion ofcosm ologicalperturbationsin braneworld scenarioswith

a bulk scalar�eld. Fora m odelm otivated from SUG RA in singularspaces,we were able

to �nd solutionsoftheperturbation equationsin thelarge scale lim it.Asisthecase with

brane world scenarios ofthe Randall{Sundrum type,the pertrubation equations on the

brane are not closed. Instead one has also to solve the bulk equations,which is a very

di�culttask in general.
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Nevertheless,our�ndingsindicatethatthereareconsiderabledi�erencestotheRandall{

Sundrum scenarioaswellastousualscalar{tensortheoriesin fourdim ensions.Thegrowth

ofstructuresisdi�erentthan in thesem odels.A m oreelaborateinvestigation ofperturba-

tions,in particularofthebulkperturbations,would benecessary in ordertom akede�nitive

predictionsconcerning clusterabundance,largescalestructureand theanisotropiesin the

CM B.

Thereareotheropen questions,which ourwork leaves.Asdiscussed in [22],in m odels

based on SUG RA in singularspacesweexpecta second branein thebulk atsom edistance

from our brane universe. W e have not addressed the inuence ofthis m irror brane on

the structureson ourbrane universe.Sim ilarly,we haven’tdiscussed the dynam icsofthe

radion in these m odels. The e�ects ofthese should be encom passed in the W eyltensor.

W e will,however,turn to these questionsin futurework.
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A .Supersym m etric B ackgrounds

A .1 B P S con�gurations

In thisappendixwewillconsidercon�gurationswhich preservesupersym m etryin thebulk.

To do so we willlook forK illing spinorssatisfying the identities

�� �i= 0; ���
x
i = 0 (A.1)

where �iisthegravitinospinor(i= 1;2)and �xi belongstothevectorm ultipletcom prising

the scalar�eld �x.Thisleadsto the�rstorderequations

D ��i+
i

8
�W Q ij�

j = 0 (A.2)

and

i
�
@��

x
�i+ W

;x
Q ij�

j = 0 (A.3)

whereQ
j

i = Q a(�
a)
j

i and Q aQ
a = 1.De�nethe vectorpa such that

@a�
x = pa@z�

x (A.4)

and the m atrix

�=
pa

a

p
p2

(A.5)

such that �2 = 1. Rotation invariance im plies that the only non-zero com ponents are

pz = 1 and pt. The unknown com ponentpt is�xed by the boundary condition. Now the

spinors�i can besplitinto positive and negative chiralities

�i= �
+

i
+ �

�
i

(A.6)
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satisfying

�
�
i
= � i�Qij�

� j (A.7)

Ateach pointthisselectthe chirality de�ned by �,i.e.we preserve one halfofthe super-

sym m etries.Now (A.3)issatis�ed provided

@z�
x = �

1
p
p2
W

;x (A.8)

This is the BPS equation for supersym m etric con�gurations. Now choosing the positive

sign,we �nd thattheboundary condition atz = 0 isautom atically satis�ed provided

T
p
p2 = 1 (A.9)

Thisleadsto the vanishing

�� 2 = 0 (A.10)

Letuscom e to thebulk evolution ofthe K illing spinors.They satisfy

D ��i+
i

8
�W Q ij�

j = 0 (A.11)

This is a �rst order di�erentialequation which can be solved provided the integrability

condition

[D a;D b]�
+

i
= R abcd

cd

8
�
+

i
(A.12)

isful�lled.Now one gets

[D a;D b]�
+

i = �
1

64
W

2
ab+

1

8

pab� pba
p
p2

W
;x
W ;x�)�

+

i (A.13)

from which we deducethat

R abcd = �
1

16
W

2(gacgbd � gadgbc)+
1

4p2
W

;x
W ;x(pagb[dpc]� pbga[dpc]) (A.14)

For W ;x = 0,i.e. atthe criticalpointsofthe superpotentialone recognizes the Riem ann

tensor ofAdS5. M ore generally we �nd that the background geom etry which preserves

supersym m etry in the bulk issuch thatthe W eyltensorvanishes

W abcd = 0 (A.15)

astheW eyltensorsform ,in the setofcurvaturetensors,thecom plem entto theantisym -

m etrized productofthem etrictensorwith itselforwith a sym m etrictensor.Thisim plies

thatthe bulk geom etry isconform ally atand can bewritten as

ds
2 = e

2A (z;t)(� dt
2 + dz

2 + dxidx
i) (A.16)

Thisleadsto the vanishing ofthe projected W eyltensor

E ab = 0 (A.17)
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in thebulk.M oreoverthebulk and braneexpansion ratescoincide

H B = H : (A.18)

Notice that(A.14)leadsto the Riccitensor

R ab = �
W 2

4
gab+

W ;xW ;x

4p2
(p2gab+ 3papb) (A.19)

and the curvaturescalar

a
2
R = �

5W 2

4
+ 2W

0x
W ;x (A.20)

Thisim pliesthatEinstein equations

R ab�
R

2
gab = Tab (A.21)

are satis�ed with

@zA = �
UB

4
(A.22)

Noticethat(A.22)and (A.8)aretheBPS equationswhich lead totheaccelerating universe.

Solutionsoftheseequationssatisfy theEinstein equationsand theK lein-G ordon equation.

Letusnow considerthe second brane where supersym m etry isnotbroken. Now the

K illing spinorsforthe supersym m etricT = 1 case satisfy theprojection equation

�
�
i
= � i

5
Q ij�

� j (A.23)

as pt = 0. This is not com patible with (A.7) as � 6= 5. The only solution is therefore

� = 0,i.e. supersym m etry is com pletely broken by the non-supersym m etric brane with

T 6= 1. Notice that the breaking ofsupersym m etry is globaldue to the presence oftwo

boundariesrespecting incom patible supersym m etries.

So we have shown thatbreaking supersym m etry on the brane leadsto broken N = 0

background con�gurationswhich stillsatisfy a system oftwo �rstorderBPS conditions.

A .2 B reaking C onform alFlatness

Letusnow considerthecasewherem atterand radiation arepresenton thebrane.W ewill

show thatonecannotdeform thebulkgeom etry in such away thattheboundaryconditions

are satis�ed. Thisim plies that m atter on the brane breaksthe conform alatness ofthe

bulk.

Letusperform a sm allchange ofcoordinatesin the bulk

~x = x � � (A.24)

inducing a variation ofthe bulk m etric is

�gab = @a�b+ @b�a (A.25)

and ofthescalar�eld

�(@a�)= @c�@a�
c
;�(@a@b�)= @c@a�@b�

c+ @c@b�@a�
c (A.26)
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W e also need to evaluate thevariation

�(@zgab)= @z�
c
@cgab+ @a�

c
@zgcb+ @b�

c
@zgca (A.27)

Theboundary equation �(@z�)j0 = 0 leadsto

@z�
zj0 + pt@z�

t= 0 (A.28)

W e then �nd that

�(@zgaa)j0 = 2@a�
a
@zgaaj0 (A.29)

with no sum m ation involved. The m etric boundary condition at the origin are m odi�ed

according to

�(
@zgaa

gaa
)j0 =

�(@zgaa)

gaa
j0 �

@zgaa

gaa
j0
�gaa

gaa
j0 (A.30)

im plying that

�(
@zgaa

gaa
)j0 = �

UB

2
@ag

aa
�aj0 (A.31)

with no sum m ation involved.Thegii boundary condition then reads

UB

2
@ig

ii
�ij0 =

�

6
(A.32)

As the background is xi independentthis cannot be satis�ed unless � = 0. This proves

thatthe bulk m etric cannotbe sm ootly obtained from the m atterlesscase by perform ing

a change ofcoordinatesin the bulk. In particularconform alatnessisbroken leading to

an explicitbreaking ofsupergravity by m atteron the brane.
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