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1. Introduction

T he dea thatwe live on a hypersurface em bedded in a higherdim ensional space has sparked
a lot of interest recently. T hese theories are m otivated from string theory, where higher{
din ensional ob fcts, such as D {branes, play an essential role [fl|]. Sim ilarily, com pactifying
M {theory (or its e ective low {energy lin it: 11{D supergravity) on a S1=%,{orbifold and
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com pactifying six din ensionson a C alabi{Yau m anifold, results n a ve{din ensionalbrane
world scenario with two hypersurfaces, each located at the orbifold xed points (see eg.
@1anda B).

Brane world theories predict that our universe was higher{din ensional in the past.
Because of this, there is the hope that certain questions which cannot be answered w ithin
the context of the standard m odel of coan ology, can be addressed w ithin these theories.
Furthem ore, coan ology should be a way to severely constrain param eters In these m odels.

So far, m ost cosn ological considerations of brane worlds centered around the onef
brane scenario of Randall and Sundrum E]. In this m odel, the three{din ensional brane
universe is em bedded in a 5{din ensional A nti{de Sitter (AdS) spacetinm e. In particular,
the bulk{space is em pty, the only contribution to the curvature com es from the negative
coam ological constant in the bulk. This sin ple m odel already leads to new e ects which
are interesting for cosm ology [E ]. H ow ever, m ost scenarios m otivated from particle physics
predict m atter in the bul, such as scalar eds. In 5D heterotic M {theory, for exam ple,
one particular scalar eld m easures the deform ation of the Calabi{Yau m anifold, on which
six other sm alldim ensions are com pacti ed ]. O ther m odels, m otivated by supergravity
(SUGRA), also predict buk m atter, whose form is dictated by the eld theory under
consideration.

Coan ology m ay be a fruitfill eld where the above deas can be tested. A s such, the
study of the evolution of coan ological perturbations is extrem ely im portant ], because
the higher{din ensional nature of the world can leave traces in the distrbution of m atter
and/or anisotropies in the m icrowave sky. A lot of papers investigated di erent aspects of
perturbations in brane world scenarios ﬂ].

Theamm of this paper is to develop an understanding of the evolution of perturbations
In brane world scenarios, n which scalar eld(s) are present in the buk. A s a toy m odel,
we will use a coan ological realization of a supergravity m odel In sihgular spaces E ]. The
evolution of the brane word was discussed in depth in [§] and [LQ] (see also [I]] for a
discussion on brane cosn ology and bulk scalar elds). In particular four di erent coam o—
logical eras have been denti ed in thism odel. At high energy above the brane tension the
cogm ology is non-conventional before entering the radiation epoch where the scalar ed
is frozen. A fter m atteryadiation equality the scalar el starts evolving in tim e leading
to a slow -down of the expansion rate com pared to FRW cosn ology in the m atter dom i-
nated era. Eventually the scalar eld dynam ics becom es the dom inant one leading to a
supergravity era. R equiring that coincidence between the m atter and scalar eld energy
densities occurs In the recent past leads a coan ological constant with a ne-tuning of the
supersym m etry breaking tension on the brane. In the supergravity era it has been shown
that the observed acceleration of the expansion of the universe can be understood, ie. the
com puted acceleration parem eter ¢y = 4=7 is within the experin ental ballpark. This
accelerated expansion isdriven by a buk scalar eld, whose param eters are constrained by
the gauged supergravity theory in thebulk. O n top of this, them odelpredicts a signi cant
evolution of the induced gravitational constant G on the brane. Indeed, the value ofG can
be seen to have changed by 37 percent since radiation/m atter equality. T hus, the study of
coam ological perturbation theory in thesem odels is rather in portant, in particular the tim e
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evolution of G m ay leave traces In the evolution of perturbations. In this paper we discuss
the evolution of the density constrast and the e ect of the bulk scalar eld on coan ological
perturbations. In Section 2 we review E instein’s equations induced on our brane world and
discuss the Friedm ann equation. W e also review the background solutions found in @],
which are needed in order to solve the perturbation equations. In Section 3 we derive the
perturbation equations using the uid ow approach. This approach is very transparent
for our purposes and m akes it easy to derive the necessary evolution equations. In Section
4 we discuss som e solutions of these equations and discuss their properties. W e point out
the di erences to the R andall{Sundrum scenario and usual four{din ensional scalar{tensor
theories. W e conclude in Section 5. In the appendix we discuss som e details conceming

the issue of supersym m etry breaking and conform al atness.

2.Brane C osm ology

In this section we discuss the eld ejquations on the brane and discuss the background
evolution.

2.1 The Background Evolution

W e consider ouruniverse to bea boundary ofa vedin ensionalspacetin e. T he em bedding
is chosen such that our braneworld sits at the origin of the fth dim ension. W e In pose a
Z, symm etry along the fth din ension and dentify xs with .0 ur branesworld carries
two types of m atter, the standard m odel elds at su clently large energy and ordinary
m atter and radiation at lower energy. W e also assum e that gravity propagates in the buk
where a scalar eld lives. Thisscalar eld couples to the standard m odel elds living on
the braneword. At low energy when the standard m odel elds have condensed and the
electro-weak and hadronic phase transitions have taken place, the coupling of the scalar

eld to the braneworld realizes the m echanian proposed in [@] w ith a selffttuning of the
brane tension. In this section we derive the brane cosn ology equations descrlbing the
coupling between ordinary m atter on the brane and a scalar eld in the buk.

Consider the buk action

Z
Spx = ——  IxCTGR S(@ ) 21
bk = 573 x G ( 4(( )+ U ())) (2.1)
5
where Z= 1M 2 and the boundary action
Z
3 p__
Se = 77 dx  aUs (o) (22)
5

where g is the boundary value of the scalar eld. T he E instein equations read

1
Gap Rap ERgabz Tap+ x5 Top (2.3)

w here Ty, is the bulk energy-m om entum tensor and TaBb is the boundary contribbution. T he
buk term is

3 1 , 3
Tap = Z A CS Egab(@ ) ggabU (24)
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and the boundary tem

s 3
T = EgabUB( ) (2.5)

with a;b= 0:::3 in the last equation. Follow ing the selftuning proposalwe interpret Uy
as arising from a direct coupling Ug to the brane degrees of freedom , ie. the standard
model eds . Thevacuum energy generated by the 'syields the e ective coupling

3UB 0
=<V > U
2% () B

(2.6)

w here the din ension four potentialV ( ) represents all the contributions due to the elds
T after inclusion of condensations, phase transitions and radiative corrections.
W e also consider that ordinary m atter lives on the brane w ith a diagonal energy m o-
mentum tensor
%= diag(  ;pipip) (2.7)

and an equation of state p= !

W ewillbem ainly concemed w ith m odelsderived from supergravity in singular spaces.
They iInvolve N = 2 supergravity w ith vector m ultiplets. W hen supergravity in the bulk
couples to the boundary in a supersym m etric way the Lagrangian is entirely speci ed by
the superpotential

UB =W (2 .8)
and the buk potential
ew
U= o W2 (29)

If one considers a single vector superm ultiplet then supersym m etry in poses that

W= e (2.10)

P- P-
where = 1= 3; 1= 12, these values arising from the param etrisation of the m oduli

gpace of the vector m ultiplets, and is a characteristic scale related to the brane tension.

Since supersym m etry is not observed in nature, one should incorporate supersym m etry
breaking. A naturalway to break supersymm etry is by coupling the buk scalar eld to
brane elds xed at their vevs. T his leads to

Ug = TW (211)

where T = 1 is the supersym m etric case. Larger values of T correspond to supersym m etry
breaking e ects w ith a positive energy density on the brane. W e w illanalyse the dynam ics
of the coupled system com prising gravity, the scalar eldd and m atter on the brane.

T hedynam ics of the braneword is speci ed by the fourdin ensionalFE instein equations

€3
G 3V . Ug . . 1 5 c )
= —n — —-r, r —(r
ab 3 ab 4 ab ab 2 a b 16
where ., isthem atter energy m om entum tensor, ng, the induced m etric on the brane and

Nap Eaps (2.12)

E ap the procted W eyl tensor of the bulk onto the brane. It appearsas an e ective energy
m om entum tensor on the brane, called the W eyl uid [E].
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The tensor ., is quadratic in the m atter energy m om entum tensor

C
ac p ab od 2
= — + — (3 213
ab 12 ab 4 24( cd ) ( )
where = 9 ,TheBianchiientity r *G 5, = 0 leads to the conservation equation
r 2U
raEabz 4B ab+ra ab+raPab; (2.14)

w here the tensor Py, is de ned by

3v 1 ,
Py = ?nab"' Era Tp 1_6(r ) Nap (2.15)

T his consistency equation ) will allow us to follow the tin e evolution of Egp In the
background and at the perturbative level. This is crucial in order to de ne the tine
evolution of the background and of the scalar eld and m atter perturbations.
Thedynam icsof the scalar eld is speci ed by the K lein-G ordon equation which reads
2, _8Us _ &V

A 5 (2.16)

w here we have de ned the loss param eter by

QUs @%Ug
@ @ 2

2= @ (217)

and @2 3 stands for the second nom alderivative of the scalar eld at the brane Jocation.
T he e ective scalar potential is de ned by

V = . (218)

W e derive these equations in section 3.
In order to illum nate the role of Uy further, we point out that the projpcted K lein-
G ordon eguation can be seen as an equation for the brane energy-m om entum tensor

1
Tap=Ta Tp (i ) + 2V Nap; (2.19)
which reads
r aTabZ gr bUb 2 p (2.20)
and can be derived from the four din ensional e ective action for
g p—
s= d'x g @ P+ 2v 3Us 2 5 (2.21)

w henever » is constant. It is rem arkable that Uy plays the role of a dilaton coupled to
the trace of the m atter energy-m om entum tensor.
For the background coan ology the K lein-G ordon equation reduces to (see section 3)

+ 4H — EUQ = v+ 5 (222)
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w here dot stands for the proper tin e derivative. T he buk expansion rate is de ned by
4H @ an_g@' evaluated on the brane.

T he background coan ology is characterized by its isotropy so we consider that E g; =
0;Ey= 0;16 j.M oreover we assum e that we obtain a FRW induced m etric on the brane.
D ue to the tracelessness of E 4, it is then su cient to obtain the di erential equation for
E oo

3 3 3 Usg
+ 4HgEgy= @ — 2+ -V + —Hg =2+ — ; 223
Eoo BE oo P 5 Sie 2 ( )
where H g is the brane expansion rate 3H g @ ]np @ B. This leads to

Z !

1 4 3, 3 3 5, Us
Epw=— da @ —L+ =V + —Hp L+ — : 224
0= 7 t g 3 SHs 2 ( )
W riting the buk m etric as
ds? = e Em) (g + dz?) + &% F®)gx?; (2.25)

the proper tin e on the brane is de ned by dt = &® O®)dt,. W e can alvays choose the
boundary condition A (0;t,) = B (0;%,) In such a way

H=Hg: (2.26)

Together w ith the K lein-G ordon equation this leads to
Z

E g = da* Uy (4 )+ 6 ,— (227)

l6at
In particularwe nd thatconform al atness isbroken assoon as becom es tin edependent
and either m atter is present on the brane or the energy loss param eter does not vanish.
N otice that a su cient condition for breaking conform al atness is that N ew ton’s constant
becom es tin edependent. W e w ill com m ent on this expression when discussing the various
cosm ological eras.
U sing
Goo= 3H2 (2.28)

and after one integration by parts we obtain the Friedm ann egquation

z Z
5 2 Ug 1 da* 5 1 dUg C
HZ= —+ — + ; dt—@v 2 Z t + = (2.29)

36 12 loa dt 12a dt a

T his equation has already been derived in [@ ]. Notice that the scalar eld enters in the
de nition ofthe e ective New ton’s constant. T he last three term s are a com bination of the
energy ow onto or away from the brane and the changes of the pressure along the fth
din ension @].

U sing the conservation of m atter

r.2=0 (2.30)
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we nd that
= 3Hg( +p): (2.31)

T his com pletes the description of the three equations determ ining the brane coan ology,
ie. the K lein-G ordon equation, the Friedm ann equation and the conservation equation.

N otice that there are two entities which depend on the bulk. First of all there is the
dark radiation temm C =a* whose origin springs from the possibility of black-hole form ation
in the buk. T hen there is the loss param eter » which depends on the evolution of the
scalar eld in the bulk. It speci es the part of the evolution of ,which is not constrained
by considerations of the brane dynam ics.

In the ollow ing we shalldescribe the case w here the buk theory isN = 2 supergravity
w ith vectorm ultiplets. W hen nom atter is present on the brane, the background cosm ology
can be explicitly solved. In particular the m etric is conform ally at in plying that

C = 0: (232)
M oreover the loss param eter vanishes explicitly
2= 0: (233)

A detailed analysis is presented in the appendix. In particular the last equation in plies
that the brane dynam ics is closed. W hen m atter density is present on the brane, we show
in the appendix that conform al atness is not preserved . N evertheless we assum e that the
breaking of conform al atness is sm allenough to allow one to assum e that (239) and (£.33)
are still valid, both for the background as well as on the perturbative level.

W enow tum to the discussion of the background evolution. T he solutions given below
have been obtained in ], but we need to present them in detail in order to discuss the
evolution of density perturbations in section 4.

2.2 Radiation D om inated E ras

T he background cosn ology can be solved in four di erent eras: the high energy era, the
radiation and m atter dom inated epochs and nally the supergravity era where the scalar
eld dynam icsdom nates. W e discuss these four eras In tum paying particular attention to
the m attersupergravity transition where we show that requiring coincidence now in plies
a ne-tuning of the supersym m etry breaking part of the brane tension.
F irst of all we consider the high energy regin e where the non-conventional 2 dom -
nates, ie. for energies higher than the brane tension. In that case we can neglect the
e ective potentialV and nd that

; (2.34)
while the scalar eld behaves like

(2.35)
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In the follow ng we will focus on the case = 0, ie. a constant scalar eld, for which the
progcted W eyl tensor vanishes altogether

Ego= 0: (2.306)

N otice that N ew ton’s constant does not vary In tim e in this case.
The usualradiation era isnotm odi ed by the presence of the scalar eld

-, (2.37)
and
a=a, — : (2.38)
N ew ton’s constant does not vary in tin e, while
Eoo = 07 (2.39)

as in the high energy regin e. Note that the solution in the radiation era in this brane
world scenario is sin ilar to the radiation era solution found in Brans{D icke theory, see @]
and ], forexample. The eld approaches quickly the attractor forwhich = constant.

2.3 M atter D om inated Era

Them atter dom inated era leads to a m ore interesting background cosm ology. Let us st
consider the pure sugra case where T = 1. This is a good approxin ation until coincidence
w here the potential energy of the scalar eld cannot be neglected anym ore. T he solution
to the evolution equations is

(2.40)

a= a — (241)
where . and a. are the tine and scale factors at radiation {m atter equality. W e are
Interested in the anall case as it leads to an accelerating universe when no m atter is

present and am all tin e deviations for N ew ton’s constant.

Foranall weget

15
_2 8 5,
3 45
(242)
T he profcted W eyl tensor is given by
4 2
Ego = @) (243)
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which decreases lke a ° to lading order in
In a phenom enological way we dentify N ew ton’s constant w ith the ratio

8 G H 2
6 HZ, (2.44)
3 n
In tem s of the red—shift z this is
4 2=5
Gy (z z+ 1
v (2) : (2.45)
Gy (Ze) Ze+ 1
For the supergravity case with 2 = 1=12 the exponent is 1=15. A s z 10 this leads to

a decrease by 37% since equality.

N otice that the N ew ton constant starts to decrease only from the tin e of m atter and
radiation equality and is strictly constant during the radiation dom inated era. N ucleosyn-—
thesis constrains the variation to be less than 20% . H owever, In ourm odelw e would expect
the couplings to standard m odel particles to also vary in a sin ilarm anner. Thiscould lead
to a variation in, for exam ple, the proton and neutron m asses since these arise from Yukawa
couplings in the standard m odel. W e note that m any of the tests for the variation of the
New ton constant assum e all other m asses and couplings are constant E]; it is possble
that our supergravity variation would evade detection.

2.4 Supergravity Era

A frer coincidence m atter does not dom Inate anym ore; this is the supergravity era dom i-
nated by the scalar eld dynam ics. Let us review it brie y. Consider rst the pure sugra
case. It is easy to see that the potential vanishes

Vsugra = 0 (2.46)

leading to a static universe w ith

1
= “mna °

¥
a= (1 2yt
(2.47)
where we have de ned dy = adxs. This isa at solution corresponding to a vanishing
cosm ological constant on the brane-world.

A s soon as supergravity is broken on the brane T 6 1 the static solution is not valid
anym ore. The new four dim ensional potential becom es

V=—"7"— W — : (2.48)

T he tim e dependent background is obtained from the static solution by going to con—
form al coordinates
ds? = a’@u)( d?+ du’+ dx'dx;) (2.49)
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and perform Ing a boost along the u axis

a(u; ): a u+h Hea———
1 v
(u; )= u+ h e
1 ¥
(2.50)
w here we have displayed the explicit dependence. Now for
P
T2 1
h= —— (2.51)
T

we nd that the Friedm ann equation is fill Iled. Sin ilarly the K lein-G ordon equation is
satis ed. M oreover we nd that
Eoo = 0; (2.52)

as the buk m etric is conform ally at.
T he resulting universe is characterized by the scale factor In coan ic tin e

1=3+ 1=6 2
t

A= p— 1 = (2.53)
T T

2 1

with ty = . The scale factor corresponds to a solution of the four din ensional

RETI=
FRW equaéion};; Jzth an acceleration param eter
6 2
Qo = 1122 1 (2.54)
and an equation of state ,

'sugra = 1+ﬁ (2.55)
which never violates the dom inant energy condition. The solution with = p% is
accelerating. In particular we nd that

@ = = (2.56)
5
and for the equation of state
!'sugra = g’ (2.57)

This isw ithin the experim ental ballpark.

2.5 The M atterSupergravity Transition

Letusnow investigate the transition between them atter dom inated and supergravity eras.
Ifwedenoteby H sygra the Hubble param eter derived in the pure supergravity case, then
the Friedm ann equation in the broken supergravity case is

\Y
= (2.58)

2 2
H"=Hgsygra * s
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where we have used the fact that vardes slow Iy com pared to . T he evolution coincides
w ith the one obtained from unbroken supergravity as long as the contrbution from the
potential does not dom inate. In the radiation dom inated era this requires

T? 1w 2 .

T 22 31 2'

(2.59)

where . is the m atter density at equality. This in plies that the left-hand side is much
an aller that 10 *° Gev?. Let us now denote the supersym m etric brane tension by

s 3W
Mg = (2.60)
5
and the supersym m etry breaking contribution
Mgg= (T 1)Mg: (261)
W e nd that
M & = (2.62)

Now this is an extrem e ne-tuning of the non-supersym m etric contribution to the brane
tension.

In them atter dom inated era the supergravity H ubble param eter decreases faster than
the potential contrbution. C oincidence between the m atter dom nated supergravity con-
tribution H 52U cra and the potential energy occurs at z.

e -1 e+ 1 > T 063)
BS 1 2 gz +1 e :

Im posing that coincidence has occurred only recently leads to
Mg ci (2.64)

where . is the critical density. This is the usual extrem e nestuning of the cosm ological
constant. Indeed it speci es that the energy density received by the braneworld from
the non-supersym m etric sources, eg. radiative corrections and phase transitions, cannot
exceed the critical energy density of the universe.

3. Coam ological Perturbations using the Fluid Flow A pproach

W e now tum to the discussion of coam ological perturbations. T here are di erent e ects
which will in uence the evolution of perturbations:

T he evolution of the gravitational constant In the m atter era changes the evolution
of the background: In the m atter era, the gravitational constant decreases and fur-
them ore the universe is expanding slower (up to order 2) than in the FRW m atter
dom inated era in general relativity.
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Perturbations In the scalar el are the source of m atter uctuations and vice versa.

Perturbations in the profcted W eyl tensor act as sources for the scalar and m atter
perturbations and vice versa.

These e ects w ill change the grow th of perturbations com pared to norm al 4D cosn o—
logicalm odels or the R andall{ Sundrum m odel. In particular it should be noted that our
form alism allow s us to treat the Randall{Sundrum cosn ology. Indeed by putting = O,
T = 1 and neglecting the scalar eld contribution we obtain the Randall-Sundrum case
with a atboundary brane whilk putting T 6 1 leads to a de Sitter boundary brane.

W hile discussing perturbations, we use the uid{ ow approach (see [L§], [El] and [@])
rather than the m etric{based approach [d]. The m ain di erence is that all perturbation
variables are expressed in termm s of uid {quantities, rather than m etric{variables. For our
purpose, ie. discussing the evolution of the density contrast = = of the dom lnant

uid at each epoch, this approach is sin pler in order to obtain the evolution equations. To
do so,we nead to derive the R aychaudhuri equation and the K lein {G ordon equation in the
com oving fram e.

3.1 The R aychaudhuri and K lein-G ordon Equation

On thebrane B, see gure 1, them atter energy-m om entum tensor is conserved . D enoting
by n the nom al vector to the brane and de ning the induced m etric by

Nap = Jab  Tulp (3.1)
such that n? = 1 and ngpn® = 0, the conservation equation reads
r, ®=0 (32)
where r , = n2Dy, is the brane covariant derivative and
ab= ( + PlUalp  Phap (33)

is the energy-m om entum tensor. N otice that the vector u, is the velocity eld of the brane
m atter and thus m ust be orthogonal to n and satis es u? = 1. In addition we have the

usualdecom position in tem s of the shear .y, the helicity ! 51, and the expansion rate
rcudz 1%1f+HBug+ dy 1 d (34)

C C

wherewe set = 0; !,= 0 lateron.
U sing the relations

one derives from (@)
_= 3 ( +p) (3:6)

N otice that no m atter leaks out of the brane. De ning

T4 Uabrb= rg+ uaubDb; (3.7)
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w hich is nothing but the spatial covariant derivative on the brane, one obtains

r
= 22, (38)
+ P

whose divergence r ,u® Jeads to the R aychaudhuri equation

g + 3MZ= Ry Ta.(—2) (39)

W e have neglected .p and !, = 0 here.

Figure 1: The braneworld B is perpendicular to the nom al vector n. The four din ensional
hypersurface C is orthogonal to the velocity vector u. The surface S = C \ B is a set of com oving
observers follow ing m atter on the brane. Note that the perturbed brane is not necessarily located
at y = constant. The di erent m etrics In the text are as follow s: g, is the full ve{din ensional
m etric, h,p is the induced m etric on the brane B, u,p is the Induced m etric on C and n,y is the
Induced m etric on the com oving hypersurface S .

In order to have a closed system of di erential equations for the perturbations we
nead the K lein-G ordon equation in the com oving gauge. The m etric on a hypersurface C
orthogonal to u, see gure 1, is given by

hap = Gap + UaUp; (3.10)
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where u? = 1 and hypu® = 0. De ning the covariant derivative on the hypersurface C by

D, = hapD P and using D ,u® = 4H one obtains

D,D®=D.,D® 4HuD® wuD?3D": (3.11)
In the com oving gauge we have ug = 1;u = 0 leading to
D? =D* 4H-— (312)

W e can now evaluate the Laplacian D ? i temm s of the Laplacian on the com oving surface
S (see gure 1) orthogonalto u. Notice that r , = nyD . Expanding r # leads to

D?=r?+ (K + u®u’K 5p)nD €+ nanyD °D P (3.13)
u'Dy(u n) sn,where

Kab: Danb (3.14)

is the extrinsic curvature tensor. Using (u  n)= 0 and%r sp= 0O we nd that

K ouiu® = 0: (3.15)
T he junction conditions lead to
K = z U ; (3.16)
with = + 3p. Fhhally we can read o the K lein-G ordon eguation
1QU
+40 — O = 0 r? = —— 317
6 U 2@ ( )

w here prin e stands for the nom alderivative. Now the junction conditions lead to

@u
0_ B . (3.18)
@
W e nd that the K lein-G ordon equation reduces to
+ 4H —+ — 3 r = — 4 : 319
c e P) a 2 ( )

N otice that it involves only brane derivatives w hen the loss param eter »>= 0.Wenow
tum to the evolution egquation for E gy which enters in the evaluation of R .

3.2 The Evolution Equation for E

Let us consider the hypersurface S on the brane w ith induced m etric u,, and orthogonal to
the velocity vector u® such that ug,u® = 0 and u?uy, = 1. The induced m etric is given by
Uap = Nap+ UsUp, Where ngy, is the brane m etric. Let r 4 be the brane covariant derivative
and r 5 the covariant derivative w ith respect to u,p.

Consder now r 2E g

r%E_ = ur Enp Jur Eop: (320)
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The last term can be written as
WU°r Eap= Ur c(U'Ea)  UEp: (321)
The rsttem in equation (B.2()) can be rew ritten as
Ur cEgp = r c(U*Eap)  Eaplr cu®™)
= r (U Ea) Eap@®+ 3Hpu): (322)

A s a next step we consider

r (U °E ) = T (WnYE Lg)

= rUYEa)  rc@ulueE L)
= ro(@uGEa)  Fro@uEa) U Egup: (323)
Using B4)
(r UU*°E squp = Hp U™ E jqup+ ( 2+ ! IUCE jqup: (324)
Let us further de ne the progcted tensor
Ea= WU E oy (3.25)
T hen
rcEQ=rEY uwEYy: (326)
So, from eg. 3.23) we get
ro(EL) = rES  wES  Ur @ Easw,)  HpuEgup
(J+ 1 UE qup: (327)
C ollecting everything and de ning E = u®E ., jthe spatial trace, we end up w ith
réEgp=rES wEY d'r c(u*°E ,qup)  (FE.)° HgEu,  3Hp u’E .y
(& 1R qqup: (3.28)

Let usnow specialize to the com oving gauge, ie. the surface S is a com oving one and
u’ = 1; ul= 0. Notice that the rst temm of the last expression vanishes. W e obtain

S 1R (329)

C

r®E,0=rEJ 4HgEq Egp WEG+ (

w here w e have used the tracelessness of E ;, toget E = E g . For the background w e retrieve

the previous expression asu, = 0 and Eé= 0 and we explicitly assume that = 0; ! = 0
for the background.
W e need further to to evaluate
r® =1« 3Hg oo Hp W o 0 (3.30)
which sin pli es to
raab:rcco 1.%.8 (3.31)
and nally we need
r°Pa=1rPs 3HgPoo HgP wP; Peo (3.32)

C ollecting all these ingredients leads to the consistency equation (£.14) expressed in the
com oving fram e.
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3.3 The Perturbed D ynam ics

W e have now obtained all the necessary equations in order to derive the perturbation
equations up to linear order. In doing so we decom pose all uid quantities into an average
(over the com oving hypersurface) of the quantity plus a perturbation, ie. (x;t)= p(t)+
(x;t), and sin ilar for the pressure and the expansion rate H . W e Insert these expressions
for all quantities into the equations we obtained above and subtract the average.
W e begin w ith the R aychaudhuriequation and energy conservation equation evaluated
In a com oving basis. T he R aychaudhuri equation reads

e IR Rgo: (3.33)
tp
In this expression H is the expansion rate, p the pressure and  the energy density. A1l
quantites are m easured w ith respect to a com oving cbserver'. R oo is the tin e{tin e com —
ponent of the R icci tensor. T he dot represents the tin e{derivative w ith respect of the
com oving observer (ie. proper tin e). T he R aychaudhuri equation expresses just the be-
haviour ofm atter under the in uence of geom etry and is lndependent of the eld equation.
In particular, for m atter on the brane, it is the sam e as in the usual 4D case. The wve{
din ensional character of the spacetin e enters only through R gp. For the FRW m etric, R g
is
Roo = §V+U—b( +3p)+i (2 + 3p) l_z Ego : (3.34)
8 8 12 16
T he proper tin e is not a unigue label of the com oving hypersurfaces, because it can vary
in gpace. T herefore, we need to transform to coordinate tin e, which labels these com oving
hypersurfaces. T his transform ation from proper tin e to coordinate tim e is given by (see

fi910r 241
Ao _ P (335)

dt + p:
T his gives the variation of proper tin e due to the perturbations. U sing the conservation

equation we obtain
| —

H :
1+ ! 31+ 1)
w here we have de ned the density contrast

H = (3.36)

=—: (337)

In the rest of the paperw e denote by dot the coordinate tim e derivative of the perturbations.
In this paper we concentrate on the case ofw = p= = const:and cﬁ = w.W ededuce that

= H—+H ) —; (3.38)
1+ ! 3(1+ !)

w hich com bined w ith the perturbed R aychaudhuri equation

P 1k p 1
H-= TpH— 2H H +-—— - ROO (339)

1T his observer is, of course, con ned onto the brane world.
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leads to an equation for the density constrast
+ (2 3)H— 6!EHP+H) = (1+ ') Ryp I!— (3.40)

where we have used r 2 = k?=a’. Notice that the keft-hand side coincide w ith the usual
four din ensional expression. The new physical ingredients all spring from Rpg. A s the
Friedm ann equation and its tin ederivative are given by com plicated expressions,we do not
derive a general equation for the evolution of but rather analyse each regin e separately
and derive the corresponding equation.

In the sam e fashion, we derive the perturbed K lein-G ordon equation, using 3. ):

:: : k2 @ZUB @ZV
& h 1 1eu,
= — 4H ) — 3 : 341
T3 1 + (+ ) + c e Bp ] ( )

w here the coupling between the m atter and scalar perturbations is explicit.
Finally we need the perturbed version of the E gy consistency equation. From the
equations we derived in the previous section we obtain

P
p+

(r®Ea0)=1r° Eco 4 HsEgo 4Hp Eqo Eog Eoo; (342)

w here the shear term vanishes autom atically at rst order. Sin ilarly we have

a

r a0 = I c c0 W 8 (343)
and
r® Poo=1r° Py 3 HsPoy 3Hg Ppo HP Hg P wP; ( Ro)  (344)

This allow s us to w rite down the necessary perturbed equation.

N otice that the com ponents of E 59 play a role in the perturbed dynam ics. A s can be
seen, they are not constrained by the brane dynam ics and lead to a direct in uence of the
buk perturbations on the brane perturbations. For this reason the perturbed dynam ics is
not closed on the brane. In the rest of this paper we w ill only dealw ith long wave-length
phenom ena w here the dynam ics is closed.

4. Tin e Evolution of C osm ological Perturbations

In this section we discuss som e solutions to the perturbed dynam ics. T he equations are
very di cult to solve In general so we restrict ourselves to the di erent coan ological eras.
W e start in the high {energy regin e, assum ing the universe to be dom inated by relativistic
particles. Then we discuss the nom al (low {energy) radiation dom inated epoch, follow ed
by them atter dom inated epoch. Because the systam is not closed on the brane for large k
(sn allwavelength ), we present solutions only for thek ! 0 lim it. This lim it enables us to
deduce the e ects of thebuk scalar eld and E on density perturbations.
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In particular we can w rite the perturbed E =~ equation in that I it as

I Us p Us Us
Ego + Ego+ 4Hp Ego+ 4 HgEqo = + Boo
+p 4 +p 4 4
P
+ Rgo + 3HB POO+3HBPOO+HB P+ HgP
P
(4.1)
E xplicitly we need
. _3v+3_2_P_ v 152 42)
0T g T 16T T 16 16
T he perturbed quantities are then
Ug = Ug — (43)
and
Pog = > (44)
0= 5=~ .

as we neglect the potential in the di erent eras. T his equation w illbe m ade m ore explicit
n each era.

Asa rststep wewill rstanalyse the RandallSundum scenario w ith a at boundary
brane. The di erential equation for the density contrast is of third order leading to the
appearance of threem odes. T his is to be com pared to theusualtwo FRW cosn ology m odes
derived from four dim ensional general relativity. A s already m entioned two of the m odes
w il coincide w ith FRW coam ology while the third m ode is entirely due to perturbations
in the W eyl tensor signalling a breaking of conform al invariance in the buk.

4.1 The Randall{Sundrum scenario
4.1.1 The high energy era

In the high energy regim e, the equations for Egy and read

2 4
+ H — 18H = 5 Eoos (4.5)
( Eoo)' + 4H ( Egg) = O: (4.6)
T his Jleads to
Egp = —: &.7)
0= ¢ .

T he overall solution of the equation for the density contrast isa sum of the solution of the
hom ogeneous equation as well as the general solution. It can easily be found as

_ . 16
= 7%+ 1t T4 5] Bot: (4.8)

{ 18 {



4.1.2 The low {energy radiation era

In this era, the equations for Egy and read

4
+H— 28 = 3 Eooi (49)

( Eoo)'+ 4H ( Egp) = O: (410)

A gain, the solution to the last equation is

Eo
Eop =~ (411)

The full solution to the rstequation is found to be
12 8
= ot+ 1t + 3 Eop: (412)

W edo, therefore, nd the nom algrow Ing and decayingm odes in thisregin e and a constant
m ode, which is absent in FRW cosm ology.

41.3 Them atter dom inated epoch

Finally, in them atter dom inated epoch the equation for Egy and read

3 2
+2H— SH® = Bo; (413)

( Ego)'+ 4H ( Ego) = O: (4.14)
T he solution to the last equation is
Epp = Eot °73; (4.15)
and the solution to the rst equation can then found to be
=3 1 9 2=3
= £+ 1t T+ 71 Eot : (4.16)

W e recover thus the nom algrow ing and decaying m ode aswellasam ode sourced by Egp,
which is decaying rapidly.

W enow tum to thecasew ith a scalar eld in thebulk. T he previousR andall=Sundrum
modes willbe modied in two ways. First of all the brane potential w ill lead to slight
deviations of the m ode exponents sin ilar to the m odi cation of the scale factor exponent
In the matter era. Then there will also appear new m odes due to the uctuations of
the scalar eld govemed by the K lein-G ordon equation. W e will now analyse each of the
di erent regin es In tum.

4.2 E ectsofthe bulk scalar eld on cosm ological perturbations

4.2.1 The high{energy regim e

In this regin e, the term swhich are quadratic in  and p dom inate both in the background
and in the perturbation equations. W e assum e, that relativistic particles dom inate the
expansion, ie. p= =3.

{194



C onsidering the lJarge wavelength 1l it is su cient because all coam ologically relevant
scales are far outside the horizon. T he perturbation equations in this regin e are

5 4
+ H—= 18H 5 Eoos (4.17)
( Y+ 4H ( Y= 0; (4.18)
. Usg .
( Ego)'+ 4H Ego = 2 () (4.19)

wherewe have assumed that3H ( f V
To obtain the solutions to these equations,we rstconsider theK lein {G ordon equation.
T he solutions are
= o+ 1 Int; (4.20)

where ( isa constantmode.W ecan now nd Egg.

o= 20 3Us DIt (421)
00 £ 3 1 £

N otice that the solution com prises two parts. The 1=t m ode is a solution of the hom oge—
neous equation while the logarithm ic m ode solves the com plete equation. In the follow ing
wewillalways nd that the solutions are expressible as a sum of hom ogeneous m odes and
m odes solving the com plete di erential equations.

W e can now deduce the density constrast

= 7%+ 1t T+ L1 (422)

w here the com plete solution reads
A Z ¢ Z w©
5 (t) = 5t3:2 atd@) B a® gy )™ (423)

In the long tim e regin e, we focus on the leading grow ing m ode, obtained by approxin ating
2(8)= 0 ((Int)y) (4.24)

This In plies that we nd two lading grow ng m odes in t2 and (In t)t. Notice that the
logarithm ic m ode is triggered by the scalar uctuation, 1, and is therefore absent in
the Randall-Sundrum case. M oreover for very long tim es we see that the leading m ode
increases like £, which ism uch larger than in FRW cosn ology. Interestingly, this grow th
of uctuations is anom alous, In the sense that the exponent of the grow ing m ode is larger
than one. T he reason for this is the source term (18H 2 ) which ismuch larger than the
nomald G , . In addition, there is the contribution of buk gravity. In thisregine we
cannot expect the nom albehaviour, because gravity is sin ply not four{din ensional.

4.2.2 R adiation dom ination

In this regin e the New ton’s constant is not varying in tin e. M oreover m atter does not
appear in the K lein-G ordon equation. This leads to the perturbation equations for the
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scalar eld and the density contrast

( F+4H ( Y= 0; (4.25)
2 2 4

+ H — 2H =4 H 5 Eoos (426)

( Ego)'+ 4H Egqo = 3 H?( V: (427)

A sbeforewe nd hom ogeneous and com plete solutions. M ore speci cally

= o+ t l; (4-28)
leading to the perturbed Ego
oo = —20 4 3 nt (429)
T T2 Ty 2

N otice that the rstm ode springs from the hom ogeneous equation and the last one from
the com plete equation. T he density contrast can then be deduced:

Z ¢ Z o 4
= 1t+  ,t et a7 "= B 430
1 1=2 (t) @)1z 3( ) 00 ( )
T here are two hom ogeneousm odes as in FRW coan ology. New contrilbutions em erge from
the scalar eld. In particular there is a grow ing m ode in O ( Int) which is triggered by

the decreasing scalar m ode in =t.

4.2.3 M atter dom ination

In this regin e New ton’s constant varies in tin e as the background scalar el is tine
dependent. This leads to a very rich structure of m odes for the density contrast. The
perturbation equations read

3., 1
+2H—=— H +— Fyo 7 (431)
( F+4H( F+2°%8% )= 28 ; (432)
( Eog)'+ 4H ( Eqo)+ 4( H )Egp= 3 H?*( ¥ 3H2—t
b 2 t2C Y+t F +3H-—( ¥ 122, (4.33)
8 t 2 )

This system of equations possesses power law solutions, which we derive up to order 2.

De ning each m ode by the ansatz
= it = % o= Egt® (4.34)

we nd that
a;=bi=oqcg+ 2 (4.35)

for allm odes. T here are two types of m odes. Let us rst discuss the com plete solutions
of the coupled di erential equations. W e nd that there are three m odes corresponding to
the exponents

2 1le24
=37 T ooz @17

1036 808
1 .
3 7875 375

2
;a p=3= §+ ﬁ (436)
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Themodes ,.3 and ;1 are deform ations of the FRW m odes due to the scalar eld. In
particularwe nd thata,_s 0:55. Thus, the grow th of uctuations is sm aller, than in the
nom alm atter dom inated epoch. T he perturbation of the bulk scalar eld is grow ing w ith
the sam e exponent as the density constrast and Egp is rapidly decaying w ith an exponent
c=a 2 1:45.

In addition to the grow Ing m ode, there are tw o decaying m odes. O ne of these decaying
modes isam odi cation of the usuala= 1 decayingmode. W e cbtain a=  1:223. Thus,
the m ode is decaying even faster than nom al. T he other decaying m ode corregponds to
a= 037.

On top of these three m odes there are seven hom ogeneous m odes corresponding to
zero m odes of the various di erential operators appearing in the three coupled equations.
Let usdiscuss them in som e detail as they have rem arkable properties. T he hom ogeneous
m odes of the perturbed R aychaudhuri equation have characteristic exponents

2 16 64

a3 = 3 ja 1= l1+—

+ — (4.37)
3 225 225

N otice that these m odes are two deform ations of the usual FRW m odes. The scalar eld
potential lifts the degeneracy between thedoubletsofa= 2=3anda= 1modes.W e nd
that a,_3 067 very close to the FRW value. T hat the grow Ing m ode is Jarger than the
one found in general relativity com es from the fact that the m atter dom inated universe
is expanding slower in the brane world m odel. T herefore, overdensities, which want to
contract but have to com pete w ith the cosn ological expansion, can grow m ore easily in
the brane world m odel.

T he hom ogeneousm odes of the K lein-G ordon egquation are characterized by the expo—

nents
8 5 56 ,

T 3t
corresponding to an aln ost constant m ode and a m ode which decreased very fast.

The E o9 equations com prises three di erential operators. The rst order di erential
operator acting on  Epp leads to a single m ode w ith

ap = ; (4.38)

2 32, (439)
a ,3= —+ — “:
2037 45
T he di erential operator acting on leads to two m odes
0 104 222 2 (4.40)
ay= 0;a = +— “: /
0 ’ 10 135
Eventually the operator acting on  leads to
10 (4.41)
ap= —: .
°7 27

N otice that in the epoch of accelerated expansion the structures get frozen in. W e have
thus described the perturbation m odes in the four coan ological eras.

In conclusion, we have found two the grow ing m odes, w ith exponent a,_; 067
and a,_3 0:55. The 00{com ponent of the W eyl{tensor is always decaying, whereas
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perturbations in  follow the density contrast. It is instructive to com pare these results
to the ones found in Brans{D icke theory. H ere the exponent of the grow ing and decaying

m odes arem odi ed as follow s [@]:
2 2 1
a,=—-+— and a = 1 —
3 3! 3!

where ! is the Brans{D icke param eter. N ote, that there are m ore m odes in these theories

i (4.42)

aswell. Herewe nd that the grow iIng and decaying m odes are shifted due to the presence
of a scalar el which couples to gravity in a way which di ers from BransD icke theory.

4.2.4 Observational consequences

A Ithough we have focused on the large wavelength Iim it only, we can draw som e (quali-
tative) conclusions from our ndings. First of all, which of the two grow Ing m odes in the
m atter dom inated epoch appear, depends on the Initial conditions Im posed in the early
universe. It is likely that both m odes are generated. If the m ode w ith exponent a 067
is not generated and the power spectrum is nom alized to the observations today (such
as to galaxy clusters), the brane world m odelwould have m uch m ore power in the m atter
perturbations than one would expect in normm al quintessence m odels, for exam ple. T hus,
in this case there should bem ore galaxy clusters at high redshift in the brane world m odel
than in nom alE instein gravity w ith com parable m atter density (w ith a coan ological con—
stant or quintessence eld). If the m ode w ith exponent a 0:67 contributes signi cantly
to perturbations, then the power in the perturbations in both theories would be sim ilar.
H owever, m uch m ore work is needed in order to m ake thism ore concrete.

A nother consequence is a m odi cation of the spectrum of anisotropies in the coam ic
m icrow ave background radiation (CM B). T his is because the distance to the last scattering
surface (LSS) willbem odi ed due to the slow er expansion in them atter dom inated epoch.
A's a result, the rst peak will be shifted to lJarger angular scales. However, we believe
this e ect to be anall to be detected. In addition to this e ect, it is conceivable that
isocurvature m odes (between the W eyl uid and radiation, for exam ple) m ght survive
quite long in the radiation era, leaving their in print in the CM B . To m ake m ore concrete
predictions, it is necessary to go beyond the sm all k{lin it, which we considered in this
paper. T his involves a study of the bulk gravitational eld,aswell as perturbations in the
buk scalar ed away from the brane [ﬂ]. T he calculations are very di cult and a detailed
discussion of the bulk egquations is beyond the scope of this paper and w ill be presented
elsew here.

5. Conclusions

W e have presented a discussion of coan ological perturbations in brane world scenariosw ith
a buk scalar eld. For a m odelm otivated from SUGRA in singular spaces, we were able
to nd solutions of the perturbation equations in the lJarge scale lin it. A s is the case w ith
brane world scenarios of the Randall{Sundrum type, the pertrubation equations on the
brane are not closed. Instead one has also to solve the bulk equations, which is a very
di cult task in general.
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N evertheless, our ndingsindicate that there are considerabledi erencesto theR andall{
Sundrum scenario aswellas to usualscalar{tensor theories in fourdim ensions. T he grow th
of structures isdi erent than in thesem odels. A m ore elaborate investigation of perturba—
tions, In particular of the bulk perturbations,would be necessary in order tom akede nitive
predictions concerming clister abundance, Jarge scale structure and the anisotropies in the
CMB.

T here are other open questions, which our work leaves. A sdiscussed In ], In m odels
based on SUGRA in singular spaces we expect a second brane In the bulk at som e distance
from our brane universe. W e have not addressed the in uence of this m irror brane on
the structures on our brane universe. Sin ilarly, we haven’t discussed the dynam ics of the
radion in these m odels. The e ects of these should be encom passed in the W eyl tensor.
W e w ill, however, tum to these questions in future work.
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A . Supersym m etric B ackgrounds

A .1 BPS con gurations

In thisappendix we w illconsider con gurationsw hich preserve supersym m etry in the bulk.
To do so we w ill Jook for K illing spinors satisfying the identities

i= O; X = 0 (A-l)

where ;isthegravitino spinor (1= 1;2)and ¥ belongsto the vectorm ultiplet com prising
the scalar eld *. This leads to the st order equations

WQii=0 @ 2)

and
i @ Xj_+W"XQj_jj=O (A.3)

whereQ£= Qal a)i and Q ;0% = 1. De ne the vector p; such that

@ “=p.@, * (A 4)
and them atrix a
o

such that 2 = 1. Rotation ivariance in plies that the only non-zero com ponents are

Pz = 1 and p:. The unknown com ponent p: is xed by the boundary condition. Now the
spinors ; can be split into positive and negative chiralities

i= T+ A 6)
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satisfying

;= 1045 (A7)
At each point this select the chirality de ned by , ie. we preserve one half of the super-
symm etries. Now (& ) is satis ed provided

1
@, = p=W * (A 8)
p2

This is the BP S equation for supersymm etric con gurations. Now choosing the positive
sign, we nd that the boundary condition at z = 0 is autom atically satis ed provided

| Sp—
T p?=1 @ 9)

T his leads to the vanishing
,=0 (A 10)

Let us com e to the buk evolution of the K illing spinors. T hey satisfy
WQii=0 @ 11)

This is a rst order di erential equation which can be solved provided the integrability
cond ition

od
DaiDpli = Rapu—g~ § (A 12)
is ful Iled. Now one gets
N 1 2 lpapy ®Ba x +
[Da;Db]i: —W abt 3 = w W;x )i (A 13)
64 8 2
from which we deduce that
1 2 1 X
Rared = —=W “(GacOa  Gd%c) + —5W "W x (PaGpuPe;  BYa@Pe)) A .14)

16 402

ForW x = 0, ie. at the critical points of the superpotential one recognizes the R iam ann
tensor of AdSs. M ore generally we nd that the background geom etry which preserves
supersym m etry in the buk is such that the W eyl tensor vanishes

Wapn =0 (A 15)

as the W eyl tensors form , in the set of curvature tensors, the com plam ent to the antisym —
m etrized product of the m etric tensor w ith itself or w ith a sym m etric tensor. T his in plies
that the bulk geom etry is conform ally at and can be w ritten as

ds? = P ( gf + dz? + dxidx’) @A 16)
T his leads to the vanishing of the profcted W eyl tensor

Eap=0 @A 17)
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in the bulk. M oreover the buk and brane expansion rates coincide
H B = H: (A .18)

N otice that (A .14) leads to the R icci tensor

W 2 W AW o,
Rap= —Gapt — 5 (P"Gap + 3pPapy) A 19)
4 4p
and the curvature scalar
5 5 2 0y
a’R = Z + 2W W 4 @& 20)
T his In plies that E Instein equations
R
Rap Egab = Tap (A 21)
are satis ed w ith .
@A = TB @ 22)

N otice that () and @) arethe BP S equationswhich lead to the accelerating universe.
Solutions of these equations satisfy the E Instein equations and the K lein ordon equation.

Let us now consider the second brane where supersym m etry is not broken. Now the
K illing spinors for the supersymm etric T = 1 case satisfy the pro fction equation

- i%gy (® 23)

i

as pr = 0. This is not com patible w ith @) as 6 °. The onl solution is therefore
= 0, ie. supersymm etry is com pletely broken by the non-supersym m etric brane w ith
T & 1. Notice that the breaking of supersym m etry is global due to the presence of two
boundaries respecting incom patible supersym m etries.
So we have shown that breaking supersym m etry on the brane leads to broken N = 0
background con gurationswhich still satisfy a system oftwo rst order BPS conditions.

A 2 Breaking Conform alF latness

Letusnow consider the case wherem atter and radiation are present on the brane. W e w ill
show thatone cannotdeform the buk geom etry In such a way that the boundary conditions
are satis ed. T his in plies that m atter on the brane breaks the conform al atness of the
bulk.

Let us perform a sm all change of coordinates in the bulk

®=X (A 24)
nducing a variation of the buk m etric is
o= Capt @pa (@ 25)
and of the scalar eld

(& )= @ @ ; (@ )= QQy @ C+ @@y @4 N (A 26)
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W e also need to evaluate the variation
(&9ap) = @ “Ceap+ Ca “@2gw+ @ “C;9ca (A 27)
The boundary equation (@, )3 = 0 leads to
@, "3+ pl; "= 0 (B 28)

W e then nd that
(@zgaa)j) = 2@, a@zgaaj) (A 29)

w ith no summ ation Involved. T he m etric boundary condition at the origin are m odi ed
according to

£2%a Vi = (@zgaa)j) @zgaaj) Ga 5 @ 30)
gaa gaa gaa gaa
In plying that
Q U
( gg h= 28 a3 @ 31)
aa

w ith no sum m ation involved. T he gj; boundary condition then reads

U G
TB@igu iD=z (B 32)
As the background is x' independent this cannot be satis ed unless = 0. This proves

that the bulk m etric cannot be an ootly obtained from the m atterless case by perform ing
a change of coordinates in the buk. In particular conform al atness is broken leading to
an explicit breaking of supergravity by m atter on the brane.
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