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1. Introduction

Lattice twisted mass QCD (lattice tmQCD) has been introduced in refs. [1, 2] as a

solution to the problem of spurious quark zero modes, which plague lattice computa-

tions with light quarks of the Wilson type, especially if the action is O(a) improved.

The occurrence of spurious quark zero modes causes a breakdown of the quenched

and partially quenched approximations, as well as technical problems in the fully

unquenched simulations. In ref. [3] it has been shown how Symanzik’s on-shell im-

provement programme [4] can be implemented in the framework of this new lattice

regularization, which is intended for QCD with two mass degenerate quarks.

The purpose of this paper is to investigate the scaling violations in lattice twisted

mass QCD, following the lines of the study presented in ref. [5] for the O(a) improved

Wilson lattice action. The tmQCD lattice regularization differs from the latter only

by the parameterization of the quark mass term, which is rotated in the chiral flavour

space, whereas the Wilson term remains in the standard form. This difference is the
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key to avoid spurious quark zero modes and can viewed as a change of the quark

field basis that leaves unchanged — up to cutoff effects — the physical content of the

theory. Therefore it often happens that a certain physical quantity is obtained from a

different correlation function — with different cutoff effects — compared to the case

of standard quark mass parameterization. Moreover all the cutoff effects that are

proportional to (some power of) the quark mass may quantitatively change, although

for light quarks this is expected to be a small effect. These remarks motivate our

investigation of scaling violations in lattice tmQCD.

The physical parameters of the present study have been chosen so as to be in a

situation similar to that of the scaling test of ref. [5]. Namely, we consider a system

of finite size, (L3 × T ' 0.753 × 1.5) fm4, with Schrödinger functional boundary
conditions, and give the relevant renormalized quark mass parameter, MR, a value

such that LMR ∼ 0.15. For such a system, we study the approach to the continuum
limit of a few renormalized observables, which in the limit T → ∞ have the same
physical interpretation as the observables studied in ref. [5]. When also the limit

of large L is taken, the observables turn into the pion mass, the ρ-meson mass, the

pion decay constant and a quantity related to the ρ-meson decay constant. Based

on the study of ref. [6] in large spatial volume, we expect the cutoff effects observed

at L = 0.75 fm to be indicative of the size of the lattice artifacts in infinite volume.

In section 2 we introduce the relevant correlation functions within the Schrödin-

ger functional setup for lattice tmQCD. The renormalized observables of interest are

constructed in section 3, where the renormalization scheme adopted for tmQCD is

also specified. Section 4 presents numerical details and a discussion of our results,

while conclusions are drawn in section 5. A preliminary report on the present work

has already appeared in ref. [7]. In the following we assume that the reader is familiar

with refs. [1, 2, 3] and refer to the equations of ref. [3] by using the prefix I.

2. Schrödinger functional correlation functions

The Schrödinger functional (SF) for lattice tmQCD has been introduced in ref. [3],

where it is defined as the integral kernel of the integer power T/a of the transfer

matrix. It admits the following representation:

Z[ρ ′, ρ̄ ′, C ′; ρ, ρ̄, C] =
∫
D[U ]D[ψ]D[ψ̄] e−S[U,ψ̄,ψ] , (2.1)

where S[U, ψ̄, ψ] is the euclidean action of tmQCD and the arguments of Z are the
prescribed boundary values of the gauge and quark fields at x0 = 0 (C, ρ, ρ̄) and

x0 = T (C ′, ρ ′, ρ̄ ′). As usual, the Dirichlet time-boundary conditions for the quark
fields involve the projectors P± = (1± γ0)/2.
Renormalizability and O(a) improvement of the SF for tmQCD have been dis-

cussed in ref. [3, section 3]. We take over the outcome of that discussion and extend
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the action S[U, ψ̄, ψ] to include all the counterterms that are needed for renormal-

ization and O(a) improvement, as detailed in eq. (I.3.4). In particular, adopting the

same notational conventions as in refs. [3, 8], the quark action SF[U, ψ̄, ψ] takes the

same form as on the infinite lattice:

SF[U, ψ̄, ψ] = a
4
∑
x

ψ̄(x)
(
D + δD +m0 + iµqγ5τ

3
)
ψ(x) , (2.2)

where δD stands for the sum of the volume and the boundary O(a) counterterms.

The SF correlation functions can be written in the form

〈F〉 =
{
Z−1
∫
D[U ]D[ψ]D[ψ̄] F e−S[U,ψ̄,ψ]

}
ρ ′=ρ̄ ′=ρ=ρ̄=0;C′=C=0

, (2.3)

where F stands for any product of fields localized both in the interior of the SF box
and on its time-boundaries. For instance, quark and antiquark fields at x0 = 0 are

given by

ζ(x) = P−ζ(x) =
δ

δρ̄(x)
,

ζ̄(x) = ζ̄(x)P+ = − δ

δρ(x)
. (2.4)

The reader is referred to [3, 8] for any undefined conventions.

2.1 Bare SF correlation functions

Within this SF setup we now define a few on-shell correlation functions that involve

quark-antiquark pairs of boundary fields and the following isovector composite fields:

Aaµ(x) = ψ̄(x)γµγ5
1

2
τaψ(x) ,

V a
µ (x) = ψ̄(x)γµ

1

2
τaψ(x) ,

P a(x) = ψ̄(x)γ5
1

2
τaψ(x) ,

T aµν(x) = ψ̄(x)iσµν
1

2
τaψ(x) , (2.5)

where σµν = (i/2)[γµ, γν].

In addition to the f -correlators that were introduced in ref. [3],

fabA (x0) = −〈Aa0(x)Ob〉 ,
fabP (x0) = −〈P a(x)Ob〉 ,
fabV (x0) = −〈V a

0 (x)Ob〉 , (2.6)
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we also consider some further correlation functions:

kabA (x0) = −
1

3

3∑
k=1

〈Aak(x)Qbk〉 ,

kabT (x0) = −
1

3

3∑
k=1

〈T ak0(x)Qbk〉 ,

kabV (x0) = −
1

3

3∑
k=1

〈V a
k (x)Qbk〉 . (2.7)

The isospin indices a and b are restricted to take values in the set {1, 2} for reasons
to be explained below, while the boundary fields Oa and Qak are defined by:

Oa = a6
∑
y,z

ζ̄(y)γ5
1

2
τaζ(z) ,

Qak = a6
∑
y,z

ζ̄(y)γk
1

2
τaζ(z) . (2.8)

For the purpose of boundary field renormalization, we also need to evaluate a

boundary-to-boundary correlator:

fab1 = −
1

L6
〈O′aOb〉 , (2.9)

where O′a is defined analogously to Oa but with derivatives with respect to quark
boundary fields at x0 = T rather than at x0 = 0.

2.2 Flavour structure of the SF correlators

As long as the isospin indices a and b take the values 1 or 2, one can show [3]

that the lattice symmetries of the tmQCD SF imply some exact properties of the

bare correlation functions. For the f -correlators these relations are summarized by

eqs. (I.3.48)–(I.3.49), while for the correlator fab1 one finds

f 111 = f
22
1 , f 121 = f

21
1 = 0 . (2.10)

The analogous relations for the k-correlators, which can be easily derived along the

lines of ref. [3], read

k12V (x0) = k
12
T (x0) = k

11
A (x0) = 0 , (2.11)

and for X = V,T,A

k22X (x0) = k
11
X (x0) , k21X (x0) = −k12X (x0) . (2.12)

The non-vanishing correlators to be evaluated in practice can hence be chosen as

f 11A (x0), f
11
P (x0), f

12
V (x0), k

11
V (x0), k

11
T (x0), k

12
A (x0) and f

11
1 .
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An explicit representation of the f -correlators in terms of the boundary-to-bulk

quark propagators is given in eqs. (I.3.50)–(I.3.52). The analogous representations

for the k-correlators and f 111 read:
1

k11V (x0) =
1

2

〈
1

3

3∑
k=1

tr
{
H+(x)

†γ5γkH+(x)γkγ5
}〉

G

,

k11T (x0) =
1

2

〈
1

3

3∑
k=1

tr
{
H+(x)

†γ5γ0γkH+(x)γkγ5
}〉

G

,

k12A (x0) =
i

2

〈
1

3

3∑
k=1

tr
{
H+(x)

†γkH+(x)γkγ5
}〉

G

(2.13)

and

f 111 =
c̃2t
2

a6

L6

∑
y,z

〈
tr
{
P+U(y, 0)

−1H+(y)H+(z)†U(z, 0)
}∣∣∣
y0=z0=T−a

〉
G

, (2.14)

where H+(x), eq. (I.3.43), is the first flavour component of the boundary-to-bulk

quark propagator H(x) defined in eq. (I.3.38). We remark that f 111 ≥ 0.
From the setup of the SF for tmQCD [3] one can readily see that evaluating H+

amounts to solving for 0 < x0 < T the one-flavour system

(D + δD +m0 + iµqγ5)H̃+(x) = c̃ta
−1δx0,aU(x− a0̂, 0)−1P+ , (2.15)

with the boundary conditions

P+H̃+(x)|x0=0= P−H̃+(x)|x0=T= 0 . (2.16)

The solution H̃+(x) of eq. (2.15) satisfies H̃+(x)P+ = H̃+(x) and is trivially related

to the boundary-to-bulk quark propagator H+(x):

H̃+(x) = H+(x)− δx0,0P+ . (2.17)

Provided the triplet isospin indices are restricted to the values 1 and 2, we are

able to express the correlation functions of subsection 2.1 in terms of H+(x) alone,

which saves about a factor of two in CPU-time. Since the full physical isospin

symmetry is expected to be restored in the continuum limit of lattice tmQCD [2],

the above restriction implies no loss of physical information.

1As in ref. [22], the bracket 〈. . .〉G means an average over the gauge fields with the effective
gauge action. In the quenched approximation the average is performed with the pure gauge action.
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3. Renormalization scheme and scaling observables

The SF for lattice tmQCD is expected to be ultraviolet finite after renormalization of

the bare parameters in the action, g20, m0 and µq, and the boundary quark fields [3].

As the latter renormalize multiplicatively and are set to zero, here we do not have to

worry about their renormalization. In the following we specify our renormalization

scheme for the parameters in the action and the correlation functions. Provided that

all the relevant improvement coefficients are given their proper values, the mutual

relations among renormalized parameters and observables are free from O(a) cutoff

effects.

3.1 Renormalized parameters

Since we work in the quenched approximation to QCD, it is convenient to renormalize

the gauge coupling by eliminating g20 in favour of the hadronic length scale r0 '
0.5 fm [9] and then express all the physical quantities in units of r0. In large physical

volume the relation between β = 6/g20 and a/r0 has been evaluated [10] with a relative

accuracy of about 0.5%. Since for the present scaling study we are working in an

intermediate volume, where finite-size effects are non-negligible, we keep constant

the ratio L/r0,
L

r0
=

[
a

r0

]
(β)

L

a
= 1.49 , (3.1)

while approaching the continuum limit. We choose T/a = 2L/a and values of L/a

such that the values of β lie in the range 6 ≤ β ≤ 6.5, which is the one of interest
for quenched lattice QCD with the Wilson plaquette action.

As for the renormalization of the quark mass parameters, we require

LmR = 0.020 ,

LµR = 0.153 , (3.2)

where mR and µR are the renormalized quark mass parameters introduced in eqs.

(I.2.8)–(I.2.9). Following ref. [3], the renormalized twisted mass parameter µR is

related to the bare masses µq and mq = m0 −mc via

µR = Zµ(1 + bµamq)µq , (3.3)

where bµ is an improvement coefficient introduced in [3]. The exact lattice PCVC

relation (I.2.14) implies that we can set:

Zµ = Z
−1
P . (3.4)

The renormalization constant of the isotriplet pseudoscalar density ZP is evaluated in

the SF scheme at the momentum scale q = (1.436r0)
−1, using the results of ref. [15].
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The value of mR in the same scheme and at the same scale is computed from the

renormalized PCAC relation as discussed later on.

We recall from ref. [2] that in renormalized tmQCD the “polar” quark mass

MR ≡
√
m2R + µ

2
R (3.5)

plays the role of the renormalized quark mass. The angle α, defined by

tanα ≡ µR

mR
, (3.6)

can be chosen arbitrarily and just determines the physical interpretation of the

tmQCD correlation functions. The numerical values on the r.h.s. of eq. (3.2) yield

LMR ' 0.154, which is in the range of the scaling study [5], and a value of α that is
far from zero, namely π/2− α ' 0.130.

3.2 Renormalized and O(a) improved correlators

The definition of renormalized and O(a) improved SF correlators is guided by the

form of the renormalized and O(a) improved bulk fields, eqs. (I.2.10)–(I.2.12) and

(TR)
a
µν = ZT(1 + bTamq)[T

a
µν + cTa(∂̃µV

a
ν − ∂̃νV a

µ )] , (3.7)

where ∂̃µ denotes the symmetric lattice derivative in the direction of the unit vector

µ̂. We hence define:

[f 11A (x0)]R=[Zζ(1 + bζamq)]
2ZA(1 + bAamq)

[
f 11A + cAa∂̃0f

11
P − aµq b̃A f 12V

]
(x0) ,

[f 12V (x0)]R=[Zζ(1 + bζamq)]
2ZV(1 + bVamq)

[
f 12V + aµq b̃V f

11
A

]
(x0) ,

[f 11P (x0)]R=[Zζ(1 + bζamq)]
2ZP(1 + bPamq) f

11
P (x0) ,

[k11V (x0)]R=[Zζ(1 + bζamq)]
2ZV(1 + bVamq)

[
k11V + cVa∂̃0k

11
T − aµq b̃V k12A

]
(x0) ,

[k11T (x0)]R=[Zζ(1 + bζamq)]
2ZT(1 + bTamq)

[
k11T − cTa∂̃0k11V

]
(x0) ,

[k12A (x0)]R=[Zζ(1 + bζamq)]
2ZA(1 + bAamq)

[
k12A + aµq b̃A k

11
V

]
(x0) (3.8)

and

[f 111 ]R = [Zζ(1 + bζamq)]
4f 111 . (3.9)

The improvement coefficients b̃A and b̃V have been introduced in [3], whereas all the

remaining improvement coefficients are the same as in lattice QCD with standard

quark mass parameterization. We remark that the expressions for [f 12V ]R and [k
12
A ]R

are independent of cV and cA, respectively, because of the translational invariance of

the theory in the spatial directions.
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3.3 Pion and ρ-meson channel correlators

The definition of the observables for this scaling test is inspired by the criterion of

considering observables that in the limit of large T and large L turn into the pion

and ρ-meson mass and decay constant, except for the normalization of the ρ-meson

decay constant which is not the physical one. The same criterion was followed in the

scaling study of ref. [5].

The first step in the construction of the meson observables is to build linear com-

binations of the correlators in eq. (3.8) so to yield at time x0 insertions of operators

with the appropriate quantum numbers to create/annihilate a pion or a ρ-meson (or

higher states in the same channels). According to the relation between renormalized

correlation functions of QCD and tmQCD in infinite volume [2], such operators can

be written as follows:

(A′R)
a
0(x) = cosα(AR)

a
0(x) + ε

3ac sinα(VR)
c
0(x) ,

(P ′R)
a(x) = (PR)

a(x) ,

(V ′R)
a
k(x) = cosα(VR)

a
k(x) + ε

3ac sinα(AR)
c
k(x) ,

(T ′R)
a
k0(x) = (TR)

a
k0(x) . (3.10)

We remark that the expression of local operators with given physical quantum num-

bers in the tmQCD quark basis does not depend on the choice of boundary conditions,

and the results of ref. [2] are hence valid in the present context. The situation is

different for the correlation function themselves, so that the SF correlators defined

below cannot be directly compared — at least for finite extent T of the SF — with

those computed at the same value of MR and α = 0. A detailed discussion of this

point is deferred to a forthcoming publication [11].

The correlators containing the operator insertions in eq. (3.10) with isospin index

a = 1 are correspondingly given by

[f 11A′ (x0)]R = cosα[f
11
A (x0)]R − sinα[f 12V (x0)]R ,

[f 11P′ (x0)]R = [f
11
P (x0)]R ,

[k11V′(x0)]R = cosα[k
11
V (x0)]R − sinα[k12A (x0)]R ,

[k11T′(x0)]R = [k
11
T (x0)]R . (3.11)

With the SF-boundary fields O1 or Q1k introduced in subsection 2.1, one expects that
in the limit of large x0 and T − x0 the correlators in eq. (3.11) are dominated by the
“pion” and “ρ-meson” states in spatial volume L3, respectively.

3.4 The observables of this scaling test

We are now ready to define the scaling observables which we will focus on in the

remaining part of this paper.
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• Meson observables
In terms of the above correlators, eq. (3.11), the estimators of the finite volume

pion (PS) and ρ-meson (V) masses read:

mPS = − ∂̃0[f
11
P′ ]R

[f 11P′ ]R

∣∣∣∣
x0=T/2

, m̃PS = − ∂̃0[f
11
A′ ]R

[f 11A′ ]R

∣∣∣∣
x0=T/2

,

mV = − ∂̃0[k
11
V′]R

[k11V′]R

∣∣∣∣
x0=T/2

, m̃V = − ∂̃0[k
11
T′ ]R

[k11T′ ]R

∣∣∣∣
x0=T/2

. (3.12)

It should be noted that at finite T the quantities mPS and mV need not coincide

with m̃PS and m̃V, respectively, because they may receive contributions from

states heavier than the finite volume pion or ρ-meson.

The estimators of the finite volume pion and ρ-meson decay constants read

ηPS = [f
11
1 ]
−1/2
R CPS [f

11
A′ (x0)]R

∣∣∣
x0=T/2

,

η̃PS = [f
11
1 ]
−1/2
R C̃PS [f

11
A′ (x0)]R

∣∣∣
x0=T/2

,

ηV = [f
11
1 ]
−1/2
R CV [k

11
V′(x0)]R

∣∣∣
x0=T/2

,

η̃V = [f
11
1 ]
−1/2
R C̃V [k

11
V′(x0)]R

∣∣∣
x0=T/2

, (3.13)

where the normalization constants CPS and CV are given by

CPS =
2√

L3mPS
, CV =

2√
L3m3V

. (3.14)

The constants C̃PS and C̃V are defined analogously in terms of m̃PS and m̃V.

The normalization constant CPS is chosen such that ηPS → Fπ as T = 2L→∞.
In the same limit the quantity ηV, due to its unphysical normalization, does

not approach the (inverse) decay constant of the ρ-meson, but one may expect

the cutoff effects to be similar to those of the properly normalized estimator of

1/Fρ. Analogous remarks hold for the quantities η̃PS and η̃V, which differ from

ηPS and ηV only by their normalization.

• PCVC and PCAC quark masses
The PCVC and PCAC operator relations of renormalized tmQCD, which follow

from the flavour chiral Ward identities [2], imply corresponding relations among

the renormalized SF correlators introduced above:

∂̃0[f
12
V (x0)]R = −2µR[f 11P (x0)]R (3.15)

and

∂̃0[f
11
A (x0)]R = 2mR[f

11
P (x0)]R . (3.16)
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As a consequence of the improvement of the bulk action and relevant operators,

at finite lattice spacing a the cutoff effects on these relations are O(a2), even

without improving the SF-boundary action and fields.

A way of checking the size of the residual cutoff effects in the PCVC relation,

eq. (3.15), is to consider the quantity

rPCVC =
µq
µ̄
, (3.17)

where µ̄ is the estimate of the bare current twisted mass obtained from the SF

correlators:

µ̄ = −ZV(1 + bVamq) ∂̃0f
12
V (x0)

2f 11P (x0)

∣∣∣∣∣
x0=T/2

. (3.18)

In the definition of µ̄ we have left out the improvement coefficients that are

only perturbatively known.2 Close to the continuum limit we expect:

rPCVC = 1− amRZ−1m [bP + bµ + ZZVb̃V] + O(a2) , (3.19)

where Z = ZmZP/ZA (see e.g. ref. [12] for a recent non-perturbative esti-

mate of Z as a function of g20). In view of the very small values of amR
that correspond to L/a ≥ 8 and LmR = 0.020, the cutoff effects on rPCVC
should be dominated by the terms O(a2), and the sensitivity to the combina-

tion [bP + bµ + ZZVb̃V] ' O(1) should hence be very small. Our data (see
section 4) confirm this expectation.

The PCAC relation, eq. (3.16), is instead exploited to evaluate the renormalized

standard mass, which is defined by

mR ≡ ∂̃0[f
11
A (x0)]R

2[f 11P (x0)]R

∣∣∣∣
x0=T/2

. (3.20)

One could of course evaluate mR by eq. (I.2.5) and eq. (I.2.8), but then the absolute

accuracy on LmR is essentially limited by the accuracy on mc = mc(g
2
0). Turning the

argument around, one can exploit the determination of mR obtained from eq. (3.20)

to estimate the critical quark mass mc, which is independent of α up to cutoff effects

[2]. Within the tmQCD regularization, the estimate of mc can be performed for any

β with no singularities in the computation of quark propagators by working at very

small values of mR and reasonable finite values of µR. Moreover from ref. [3] it can

be argued that an O(a) improved evaluation of mc in lattice tmQCD requires the

non-perturbative knowledge of a certain combination of the improvement coefficients

b̃A and b̃m:

b̃m − (ZZV)−1b̃A .
Work in this direction is currently in progress by the Tor Vergata APE group [14].
2However, a non-perturbative estimate of bP at β = 6 and β = 6.2 has been given in ref. [13].
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4. Numerical details and results

The basic idea of any scaling test is to approach the continuum limit along a line in

bare parameter space where all renormalized parameters are kept constant, which is

achieved here by the renormalization conditions specified in subsection 3.1. Under

these conditions the renormalized and (almost) O(a) improved observables that we in-

troduced in subsection 3.4 are expected to depend on a/L only and converge to a well-

defined continuum limit as a/L→ 0 with (almost) no scaling violations linear in a/L.

4.1 Renormalization constants and improvement coefficients

The renormalization conditions for the gauge coupling, eq. (3.1), and for the two

quark mass parameters, eq. (3.2), where the scheme dependence arises only from ZP,

are sufficient to render ultraviolet finite the observables introduced in subsection 3.4.

Indeed, no observables depend on the boundary field renormalization factor Zζ(1 +

bζamq), as well as on the product ZT(1 + bTamq). Concerning ZA and ZV, which

are needed to remove lattice artifacts that vanish more slowly than a as a → 0,
we employ the available non-perturbative estimates from ref. [17]. Since all these

renormalization constants are defined either at the chiral point of quenched QCD or

in the Yang-Mills SU(3) theory, we have actually set up a non-perturbative quark

mass independent scheme.

In order to further reduce the scaling violations of our observables, we have

to give proper values to all the relevant improvement coefficients. In the limit of

large time extent T of the SF system, the O(a) improvement of the bulk action and

operators is sufficient to improve the scaling observables defined in subsection 3.4. As

we actually work at T ' 1.5 fm, this statement remains valid only for the quantity
rPCVC, eq. (3.17). The remaining scaling observables, which are defined at x0 = T/2,

are indeed not completely dominated by the pion or the ρ-meson state and hence do

still depend on the details of the SF-boundary fields. As a consequence, the O(a)

improvement of the SF boundary action and fields can not be neglected.

Let us start with the coefficients that are relevant for the improvement of the

massless theory. We employ the non-perturbative estimates of csw, cA and cV com-

puted in refs. [18, 19], while setting cT to its one-loop value
3 [20]. As for the im-

provement of the SF-boundaries, the only coefficients relevant for our study are ct
and c̃t, which are both set to their one-loop values [21, 22]. We discuss below the

impact of reasonable changes of these values on our scaling observables.

In view of the very small values of amR corresponding to LmR = 0.020, the

improvement coefficients multiplying counterterms that are linear in amR need not be

very precisely tuned. Nevertheless, we adopted non-perturbative estimates of bA−bP
[12] and bV [20], and one-loop estimates for bA and bP [20], whereas bT is not necessary

3We recall that cT is only relevant for the improvement of m̃V and η̃V.
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at all for the improvement of our observables. It should be noted that, due to the

quark mass renormalization conditions (3.2), which entail α ' π/2, the correlator

[f 11A′ (x0)]R depends on bA only via a term proportional to amR cosα � 1. For the
same reason, the ratio ∂̃0[k

11
V′]R/[k

11
V′]R and thus mV are almost independent of bA.

Among the improvement coefficients that multiply counterterms of order aµR [3],

in this scaling test we only need to properly tune b̃A, eq. (I.2.10), b̃V, eq. (I.2.11), and

b̃1, eq. (I.3.6). Moreover, since the set of improvement coefficients { b̃1, b̃m, bµ, b̃A, b̃V}
is actually redundant, as explained in ref. [3], one of them can be arbitrarily pre-

scribed. For practical reasons that are specific to this scaling test, we find it con-

venient to set b̃1(g
2
0) ≡ 1 exactly. We can then completely forget about the corre-

sponding O(a) boundary counterterms. Concerning b̃A, b̃V and bµ, they are set to

the one-loop values [3] that follow from the above prescription of b̃1, i.e.

b̃A = 0.0213g
2
0 , b̃V = 0.0053g

2
0 , bµ = −0.0440g20 . (4.1)

We remark that the counterterm proportional to bµ is of order amR, while b̃m is not

needed at all for this study. It remains to be checked a posteriori whether the residual

O(aµR) effects are significant in comparison to the higher order scaling violations and

the statistical uncertainties of our observables.

4.2 Simulation parameters and analysis of the raw data

In order to check the size of the scaling violations in our observables and the rate

of the approach to the continuum limit, we perform simulations with four different

lattice resolutions in the range 2GeV ≤ 1/a ≤ 4GeV, while enforcing the renor-
malization conditions detailed above. Throughout the whole analysis we adopt the

definitions of the renormalization constants and the improvement coefficients spec-

ified in subsection 4.1 and evaluate them at the values of β = 6/g20 chosen for our

simulations.

An overview of the bare parameters, the corresponding renormalized parameters

and the accumulated statistics is given in table 1. The values of L/r0 and LµR follow

from our choice of bare parameters, and the quoted uncertainties stem from the

statistical errors on a/r0 [10] and on ZP = ZP(q) [15], respectively. The uncertainty

on LmR reflects instead the statistical error on the SF correlators in eq. (3.20),

which in turn is a combination of the statistical errors on the bare SF correlators, as

evaluated via simulations of lattice tmQCD, and the known ratio ZA/ZP.

Our Monte Carlo simulations of quenched lattice tmQCD are performed on the

APE100 parallel computers with 32–256 nodes at INFN Milan and DESY Zeuthen.

The parallelization of the program and the machine topology allow us to simulate

several independent replica of the smaller systems (i.e. A,B and C in table 1) at the

same time. The computational effort needed for the present scaling test amounts to

about 75 Gflops × days.
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set L/a β aµq κ L/r0 LµR LmR Nmeas
A 8 6.0 0.01 0.134952 1.490(6) 0.1529(8) 0.0228(23) 7680

B 10 6.14 0.00794 0.135614 1.486(7) 0.1530(8) 0.0203(30) 2880

C 12 6.26 0.00659 0.135742 1.495(7) 0.1530(8) 0.0201(23) 3072

D 16 6.47 0.00493 0.135611 1.488(7) 0.1529(8) 0.0180(24) 1680

Table 1: The bare and renormalized parameters for our data sets and the number (Nmeas)

of computed SF quark propagators on decorrelated gauge backgrounds.

The gauge configurations are generated using a standard hybrid overrelaxation

algorithm. The single iteration is defined by one heatbath step followed by NOR =

L/2a+1 microcanonical reflection steps. The correlation functions are evaluated by

averaging over sequential gauge field configurations separated by 50 iterations. For

the computation of the quark propagators H+(x) entering our observables, we use

the BiCGStab inversion algorithm with SSOR preconditioning [16]. As a stopping

criterion for the inversion algorithm we require the square norm of the dynamical

residue, as defined in ref. [16], to be 1013 times smaller than the square norm of

the solution. For the finest lattice spacing considered, convergence is always reached

within a number of BiCGStab iterations between 80 and 120.

A binning analysis of our data shows that for all simulation points consecu-

tive measurements of the correlation functions (in the above specified sense) can be

effectively taken as statistically independent. As our observables are non-linear com-

bination of the basic correlation functions, we adopt a single-elimination jackknife

procedure for the evaluation of their statistical errors.

4.3 Continuum limit extrapolations

By the above analysis procedure we obtain the results for rPCVC shown in figure 1

and the values of the meson observables quoted in table 2.

The errors on our results for rPCVC already take into account the small statistical

uncertainty4 on ZV, whereas the product bVamq � 1 is taken with no error. Inspec-
tion of Figure 1 immediately reveals that the residual cutoff effects of order amR —

see eq. (3.19) — are completely negligible with respect to the very small statistical

errors and higher order scaling violations. The very tiny mismatch between the val-

ues of LmR and the nominal value 0.020 is hence completely negligible in this case.

Moreover, due to its very definition, rPCVC is independent of ZP and cV. We hence

conclude that for α ' π/2 and the values of aµq that are relevant for (quenched)

QCD in the chiral regime, the PCVC relation shows surprisingly small cutoff effects

and is effectively O(a) improved once the proper value of csw is employed.

4We neglect here the tiny systematic uncertainties associated to the determination of ZV: see

ref. [17] for details.
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Figure 1: Our results for rPCVC and their continuum limit, obtained by fitting the four

data points to a first order polynomial in (a/L)2.

set mPSL mVL ηPSL ηV

A 1.866(14) 2.693(18) 0.5419(34) 0.1528(21)

B 1.805(21) 2.652(27) 0.5570(56) 0.1565(34)

C 1.831(21) 2.646(28) 0.5514(53) 0.1615(36)

D 1.825(27) 2.648(35) 0.5510(70) 0.1601(46)

set m̃PSL m̃VL η̃PSL η̃V

A 1.713(8) 2.398(12) 0.5654(25) 0.1817(21)

B 1.667(11) 2.337(19) 0.5793(38) 0.1889(34)

C 1.680(10) 2.345(19) 0.5751(36) 0.1933(34)

D 1.659(13) 2.323(25) 0.5779(49) 0.1949(47)

Table 2: “Raw” results for our meson observables: the quoted errors arise just from

statistical fluctuations over our samples of gauge configurations.

In the case of our meson observables, which may be quite sensitive to mismatches

and uncertainties in the renormalization conditions as well as to uncancelled O(a)

cutoff effects stemming from the SF-boundaries, we have performed a slightly more

refined analysis before producing scaling plots and attempting continuum extrapo-

lations. The starting point of this further analysis is represented by table 2, which

is directly obtained from the simulation data by considering all the renormalization

constants and improvement coefficients with no error. The quoted errors arise just

from the statistical fluctuations of the observables over the samples of gauge config-
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urations produced at the bare parameters of table 1. The remaining uncertainties

are taken into account as follows.

• Uncertainties on the renormalization and improvement coefficients
The observables m̃PS and mV have a very tiny dependence on ZA/ZV which

disappears in the limit α→ π/2. Since α ' π/2, the would-be decay constants

of the pion and the ρ-meson are almost proportional to ZV and ZA, respectively.

The statistical uncertainties on ZV and ZA [17], which are of about 0.01% and

1% of the mean values, respectively, are added quadratically to the errors in

Table 2. The systematic uncertainties on ZV and ZA [17] are shown separately

as errors on the continuum limit extrapolations, see table 4.

The uncertainties on the improvement coefficients that are needed to subtract

effects of order aµq or amq can safely be neglected, as we work with aµq ≤ 0.01
and amq one order of magnitude smaller than aµq. Concerning the uncertain-

ties on cA, cV and cT, their statistical errors represent very tiny effects, whereas

the intrinsic O(a) ambiguity of these coefficients by definition affects any scaling

observables only at O(a2). Nevertheless, in the case of cV, for which the avail-

able non-perturbative estimates at low values of β are non-small (of order 0.1)

and significantly different from each other, one might want to check5 the effect

of employing for our observables the one-loop value [20] or the non-perturbative

estimate by ref. [13] rather than the value determined in ref. [19].

By definition, among our observables, only mVL, ηV and η̃V depend on cV. The

dependence on cV is due to the contribution from [k
11
V (x0)]R to the correlator

[k11V′(x0)]R. Since this term comes with a factor of cosα, see eq. (3.11), one can

expect that for our choice of renormalized quark mass parameters, eq. (3.2),

the cV-dependent contribution to [k
11
V′(x0)]R is quite small. Indeed, at β = 6

we find

mVL = 2.697(18) , ηV = 0.1547(21) , η̃V = 0.1845(21) (4.2)

with the one-loop value of cV and

mVL = 2.696(18) , ηV = 0.1541(21) , η̃V = 0.1835(21) (4.3)

with the non-perturbative value of cV given in ref. [13]. Comparing with the

values quoted in table 2 (set A), we see that on mVL the effect of using the

value of cV by ref. [13] is negligibly small, while the analogous effect on ηV
and η̃V is less than one standard deviation. Moreover, employing the one-loop

value of cV at β = 6.26 we observe deviations from the results of table 2 that

are smaller by about a factor of two than the corresponding deviations found

5We thank the referee for suggesting this check.
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at β = 6. We hence conclude that the choice of the non-perturbative definition

of cV is not important for the scaling behaviour of our observables.

The available non-perturbative estimates of cA are smaller than the correspond-

ing ones of cV by at least a factor of four. Among our scaling observables only

m̃PSL, ηPSL and η̃PSL depend on cA, and the dependence vanishes as α→ π/2.

The situation is hence similar to the case of cV. Concerning the error associated

with the use of one-loop values for cT, we just remark that the non-perturbative

estimate given in ref. [13] at β = 6 is not much larger than the one-loop value,

which is about 0.02, and affected by large relative uncertainties.

In view of these remarks and for the sake of simplicity, in our analysis we have

neglected all uncertainties on the values of the improvement coefficients.

• Uncertainties on LmR
By extra simulations at the same bare parameters as those of the point A

in table 1, but with values of κ such that LmR ' 0.010 and LmR ' 0.034,
we estimate the derivatives of our meson observables with respect to LmR.

All derivatives are of order 1 and compatible with zero within errors. These

estimates are employed to (slightly) move the central values of the observables,

so that the nominal renormalization condition LmR = 0.020 is exactly matched,

and to add quadratically to the statistical errors the uncertainties arising from

the quoted error on LmR. The effect of this correction is however very tiny, as

well as the modification of the errors on the meson observables.

• Uncertainties on LµR
By extra simulations at the same bare parameters as those of the point A

in table 1, but with values of µq such that LµR ' 0.140 and LµR ' 0.168,
we estimate the derivatives of our meson observables with respect to LµR.

All derivatives take values between 0.5 and 3, with relative errors less than

10%. The estimated uncertainties are employed to add quadratically to the

statistical errors the uncertainties arising from the quoted error on LµR. The

corresponding increase of the statistical errors on the meson observables is

significant only in the case of ηPS and η̃PS.

• Uncertainties on L/r0
By an extra simulation at the same bare parameters as those of the point A

in table 1, but for β = 6.06 and a value of κ such to maintain LmR � LµR,

we finally estimate the derivatives of our meson observables with respect to

L/r0. We obtain estimates of order 1 for the would-be meson masses, of about

0.3 for ηPS and η̃PS and smaller than 0.1 for ηV and η̃V. The relative errors on

these estimates are of about 10%, except for the derivatives of ηV and η̃V which

have much larger relative errors. Also in this case, the estimated derivatives
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set mPSL mVL ηPSL ηV
A 1.861(18) 2.688(22) 0.5434(53) 0.1534(29)

B 1.805(22) 2.652(29) 0.5570(68) 0.1565(38)

C 1.831(22) 2.646(30) 0.5514(67) 0.1615(40)

D 1.828(29) 2.652(37) 0.5499(82) 0.1596(50)

set m̃PSL m̃VL η̃PSL η̃V

A 1.704(12) 2.395(18) 0.5686(47) 0.1823(30)

B 1.667(13) 2.337(22) 0.5793(53) 0.1889(39)

C 1.680(13) 2.345(22) 0.5751(52) 0.1933(40)

D 1.665(16) 2.324(29) 0.5756(62) 0.1944(51)

Table 3: Final results for our meson observables: the standard deviations given in paren-

theses account for all the uncertainties that we discuss in the text.

(or conservative upper bounds on them) are employed to add quadratically to

the statistical errors the uncertainties arising from the quoted error on L/r0.

The corresponding increase of the statistical errors on the meson observables

is typically not larger than half the standard deviations in table 2.

We present the outcome of this analysis in table 3 and plot the same results versus

(a/L)2 in the figures 2–5. In view of the almost complete implementation of non-

perturbative O(a) improvement, for each observable we perform a least squares fit of

the data to a polynomial of first order in (a/L)2. The fit line and the extrapolated

continuum values with their uncertainty are also shown in the mentioned plots. The

values of the χ2 per degree of freedom are of order 1 for all the fits we did, and in

most cases smaller than 1. The observed scaling violations of our meson observables

are hence apparently compatible with an O(a) improved approach to the continuum

limit.

In table 4 we quote the extrapolated continuum limit values for all our meson

observables, together with the relative deviations of these values from the values

measured at a ' 0.1 fm (point A of table 1). These relative deviations, which can be
considered as a measure of the size of the lattice artifacts, are indeed fairly small and

of the same order of magnitude as the analogous relative deviations observed under

similar conditions at α = 0 [5]. We remark that the largest relative scaling violation

is observed for η̃V, an observable which was not considered in ref. [5] and might be

affected by residual O(a) cutoff effects due to the poor knowledge of cT. Indeed,

both η̃V and m̃VL, which are the only observables that depend on cT, show relative

scaling violations larger than their cT-independent counterparts, ηV and mVL.

4.4 Residual O(a) cutoff effects

The fact that the dependence on a/L of our scaling observables, for the considered

values of β and within relative statistical errors of 1–2%, can consistently be described
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Figure 2: Scaling behaviour and continuum extrapolation for mPSL and m̃PSL.
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Figure 3: Scaling behaviour and continuum extrapolation for mVL and m̃VL.

as purely quadratic does not imply the complete absence of cutoff effects linear in

a/L. We can only conclude that they are small enough to be not clearly visible in

our data, which in some cases might also be due to accidental cancellations between

different O(a) cutoff effects. These remarks do not apply to the case of rPCVC, where
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Figure 4: Scaling behaviour and continuum extrapolation for ηPSL and η̃PSL.
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Figure 5: Scaling behaviour and continuum extrapolation for ηV and η̃V.

the cutoff effects linear in a/L are expected to be fully negligible, and are actually

not seen in the data with statistical errors of a few permille.

On the remaining scaling observables, the only quantitatively significant O(a)

effects may arise from possibly inappropriate values given either to ct and c̃t or to
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mPSL mVL ηPSL ηV
1.801(28) 2.624(37) 0.5572(83)[15] 0.1641(49)[6]

3.3% 2.4% 2.5% 6.5%

m̃PSL m̃VL η̃PSL η̃V
1.651(17) 2.295(28) 0.5805(65)[15] 0.2001(50)[7]

3.2% 4.4% 2.1% 8.9%

Table 4: Continuum limit values of our meson observables and their relative deviations

from the values at β = 6. The additional errors due to small systematic uncertainties in

the non-perturbative estimates of ZV and ZA are shown in square brackets.

b̃V and b̃A. In the latter case the effects are proportional to aµq, which is never

larger than 0.01, whereas the effects arising from the use of perturbative values

for ct and c̃t are suppressed in the limit of large T (and are thereby irrelevant for

physical applications). The lacking knowledge of the non-perturbative values of these

improvement coefficients makes any estimate of these uncancelled O(a) effects rather

subjective. However, in order to disentangle the various residual O(a) effects and

get a rough idea of their magnitude, we have looked at the influence of independent

variations of b̃V, b̃A, ct and c̃t on our observables.

When varying b̃V from its one-loop value, eq. (4.1), to a value of order 1, we

observe at β = 6 a change of a few standard deviations in m̃PS, ηPS and η̃PS, and no

changes elsewhere. If we instead vary b̃A from its one-loop value, eq. (4.1), to a value

of order 1, we note at β = 6 a change of about one standard deviation in LmR, ηV
and η̃V, and negligible changes in all other quantities.

Varying the values of ct and c̃t requires to perform extra simulations. We have

hence repeated the simulations at the bare parameters of point A and point C of

table 1 by changing either the value of ct or the value of c̃t. Following ref. [5],

we have chosen the new values of ct and c̃t so that ct − 1 and c̃t − 1 are about
2 and 10 times, respectively, larger than the values employed in our scaling test.

A variation of ct by this amount induces no statistically significant changes in our

meson observables. Under the mentioned variation of c̃t,

c̃t = 1− 0.018g20 −→ c̃t = 1− 0.180g20 ,

we do see statistically significant changes in a few observables, namely m̃PSL, ηPSL

and η̃PSL. At β = 6 (point A of table 1) the observed changes amount to 4–6% of

the mean values of these observables, whereas at β = 6.26 (point C of table 1) the

relative changes are smaller by a factor of 1.5, i.e. they scale proportionally to a/L as

expected. If one propagates the changes observed at β = 6 and β = 6.26 to the other

values of β considered in this work (by assuming that they are proportional to a/L),

and then tries to fit the resulting values of m̃PSL, ηPSL and η̃PSL for c̃t = 1−0.180g20
to a constant plus a term ∝ (a/L)2, still reasonably good fits are obtained.
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These quantitative checks about the influence of reasonable changes of b̃V, b̃A, ct
and c̃t on the meson scaling observables, together with the possibility of accidental

cancellations, show that our results in Subsection 4.3 are compatible with the pres-

ence of residual O(a) cutoff effects, which may individually have a relative magnitude

of a few percents. On the other end, fitting the results of table 3 to a polynomial

of second order in a/L yields continuum limit values that are consistent with those

in table 4, but with much larger uncertainties. As it is clear from figures 2–5, the

coefficient of the term ∝ a/L always takes values that are consistent with zero within

errors.

5. Conclusions

We have presented a scaling test for some representative hadronic observables in the

pseudoscalar and vector meson channels computed in quenched lattice twisted mass

QCD with Schrödinger functional boundary conditions. We have also studied an

observable that allows to quantify the lattice cutoff effects in the PCVC relation,

which is non-trivial due to µq 6= 0. To get accurate results at moderate computa-
tional effort, an intermediate-volume system of physical size 0.753×1.5 fm4 has been
considered.

We find that in the parameter region specified by β ≥ 6, LµR = 0.153� LmR =

0.020 and T = 2L ' 1.5 fm the O(a) improvement programme of tmQCD can be
successfully implemented, although non-perturbative estimates of b̃V and b̃A are still

missing. The size of the observed scaling violations, which range from 0.5% to 9%

depending on the observables, is acceptably small and comparable to the size of the

cutoff effects observed in standard lattice QCD with Wilson quarks. Studies of lattice

tmQCD in larger spatial volume, L = 1.5–2.2 fm, confirm that the pseudoscalar and

vector meson channels can be studied well in the chiral regime by simulations at

β ≥ 6 with small scaling violations [11].
Since this work represents the first non-perturbative study of lattice tmQCD, it

is worthwhile to emphasize that we employ completely standard lattice techniques

and find the computational effort to be essentially the same as for Wilson quarks

with standard mass parameterization. These findings, which have little to do with

our particular choice of boundary conditions, are basically due to the simple flavour

structure of the considered correlation functions (see subsection 2.2) and the good

performance of the BiCGStab solver in the explored parameter region (see table 1).

Following ref. [3], the renormalization of the twisted mass parameter turns out to

be easy in practice, because it can be traced back to the renormalization of the

non-singlet pseudoscalar density in the massless theory.

Of course it would be interesting to perform similar scaling tests of lattice

tmQCD for different choices of the physical parameters: e.g. at L = 0.75 fm but

T > 2L, in order to render the O(a) improvement of the SF boundaries unimpor-
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tant, or at higher values of µRr0, as well as for the lattice theory with two twisted

light quarks and one heavier standard quark, which is relevant for the study of kaon

physics [23, 2]. Some work in this direction is planned for the near future.
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